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JavaScript Performance Tuning as a
Crowdsourced Service
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Abstract—JavaScript (JS) is one of the most used programming
languages for mobile applications. As JS is increasingly used in
computation-intensive and latency-sensitive components, JS ap-
plication performance can significantly impact user experience.
While compilers play a crucial role in optimizing JS performance
on mobile systems, their optimizations must be simple due to the
computation and battery usage limitations of the underlying hard-
ware platforms. We present JSTUNER, a machine-learning system
to leverage compiler-based autotuning techniques to optimize JS
performance by finding a good compiler optimization sequence.
JSTUNER is designed to reduce the cost of autotuning by using
prior knowledge of JS programs collected through a crowdsourcing
framework to bootstrap the search process. It allows the user to
seamlessly utilize the computation resources of a cloud server to
perform the heavy-lifting autotuning process for repeatedly run-
ning JS components. This enables aggressive search-based opti-
mizations that are too expensive to run on the user’s device. We
evaluate JSTUNER by applying it to 60 JS benchmarks across three
distinct mobile devices and comparing it against four search-based
techniques. Experimental results show that JSTuner consistently
outperforms prior techniques and improves JS performance by
1.62x on average (up to 3.33x) over the default compiler setting
used by the Chrome V8 JS engine.

Index Terms—JavaScript optimization, mobile computing,
machine learning, program autotuning, crowdsourcing.

I. INTRODUCTION

JAVASCRIPT (JS) is one of the most popular programming
languages [1]. It is widely used to develop mobile and

web-based applications running on diverse computing hardware
and operating system environments. Optimizing JS performance
is essential for ensuring fast response time and a good user
experience, which becomes increasingly important as JS is often
used for computation-intensive and latency-sensitive tasks like
animation, interactive maps and video playing.

A JS program is dynamically interpreted or compiled by a JS
engine to run in the underlying computing environment. While
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performance optimization for JS code is crucial, the capability
of today’s JS engines is restricted by the computation resources
of a mobile phone or embedded device. Due to the limited
CPU power and memory capacity, they cannot apply aggressive
analysis and code optimization strategies [2], which, while ex-
pensive, can significantly improve the performance of the code.
As a result, many JS are poorly optimized, leading to poor user
experience and energy inefficiency of computing systems.

Autotuning is a viable means of assisting compilers with code
optimization [3], [4], [5], [6]. Instead of relying on hand-craft
decision models to determine the best optimization options, au-
totuning techniques automatically search and model a typically
large compiler optimization space to find a set of parameter
settings to improve the performance of the compiled code. This
technique can outperform hand-crafted compiler optimization
strategies on a wide range of applications and tasks [6], [7], [8].
A key advantage of auto-tuning is that it can adapt to a wide range
of computing environments as the technique makes no prior
assumptions about the program and the underlying hardware.

This work exploits autotuning techniques to optimize JS pro-
grams for mobile and embedded devices. Auto-tuning permits us
to target a wide range of JS engines and execution environments
with little change to the JS compiler implementation. One of
the key hurdles in applying autotuning to optimize JS code on
resource-contradicted mobile systems is its expensive resource
requirements and search time. A typical autotuning algorithm
like generic search [9] and Bayesian optimization [10] require
thousands or even hundreds of thousands of search iterations to
find a good optimization setting [11], [12]. During this search
process, the search algorithm needs to evaluate a (partially)
transformed program by running the program on the target hard-
ware to gather feedback (e.g., program execution time) to guide
the search direction. Because running programs takes time, this
search process can take hours or weeks on a single desktop
machine, which is prohibitively expensive for optimizing JS
code on a mobile device.

We present JSTUNER, a machine-learning guided JS autotun-
ing framework to speed up JS autotuning by reusing knowledge
from prior program tuning and cloud computing. Our key insight
is to map JS programs onto a carefully designed program feature
space, where programs that are similar in the feature space can
benefit from similar compiler optimization settings. This allows
us to leverage the known good optimization configurations
(e.g., the combination of JS compiler flags) of a previously
seen JS program to speed up the search process of a new,
unseen program.
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Fig. 1. Workflow of the Chrome V8 JS engine.

To mitigate the search overhead of autotuning, JSTUNER uti-
lizes the high-performance computing power of cloud comput-
ing infrastructures. It supports the deployment of a search engine
on a remote server to perform autotuning remotely to return the
optimal JS compiler options to the end-user device to perform
the optimization locally. Offloading the search computation to
the cloud server speeds up the search process and reduces the
battery power consumption on mobile devices for running the
iterative autotuning process. On the remote server, JSTUNER

utilizes the optimal setting found on similar JS benchmarks as the
initial search point and skips poor configurations to accelerate
the search process. Since JSTUNER does not alter the JS com-
piler implementation nor the user program, it can work with any
JS engine and does not introduce new security vulnerabilities.

JSTUNER further incorporates a crowdsourcing module to
collect data in real-time from various platforms, testing new
compiler optimizations of target JS programs and learning how
to optimize the unseen JS programs for new hardware plat-
forms. This, in turn, allows us to use collective knowledge to
improve our predictive model and the auto-tuning process. This
permits us to periodically update the machine-learning-based
decision model using JS program workloads collected through
crowdsourcing. This ability for continuous learning improves
the generalization ability of JSTUNER and enables it to adapt to
the change in application workloads. The more JSTUNER, the
better it knows what works.

We have implemented a working prototype of JSTUNER and
integrated it with the Chrome V8 JS engine. We evaluate JS-
TUNER on 60 JS benchmarks using three mobile devices and
one laptop. Experimental results show that JSTUNER achieves
an average of 1.27x speedup by reusing the previously searched
configuration. With the help of cloud computing, our approach
performs a fine-tuning search and achieves a 1.62x speed up over
the Chrome V8 default configuration used to compile and run the
JS. It improves a state-of-the-art compiler tuning engine [13] by
an average of 1.12x. In addition, we consider the cases for porting
an existing model to different programs and environments. We
show that JSTUNER provides portable performance but incurs
significantly less training overhead over prior strategies.

Contributions: This paper is the first to:
� introduce a JS autotuning framework incorporating deep

learning and crowdsourcing into the existing autotuner to
provide a general, high quality and efficient JS optimization
service specifically designed for mobile and embedded
devices (Section III);

� show that the new coming, unseen JS can get benefit from
prior JS tuning knowledge, which can help to skip the poor

configuration to accelerate the search process (Sections IV
and V);

� apply the crowdsourcing to gather JS real-time data, and
speed up learning to address the predictive model portabil-
ity issue across programs and devices (Section VI).

II. BACKGROUND AND MOTIVATION

A. JS Engine

JS execution dominates the computation delays of mobile web
browsers and mobile web-based applications [14]. JS is widely
used to develop cross-platform mobile apps that seamlessly work
across various devices and operating systems, and it is a popu-
lar choice for mobile app development, including games [15],
augmented reality [16] and machine learning based tasks [17],
such as object detection [18] and speech recognition [19].

Fig. 1 illustrates the working process of Chrome V8, a pow-
erful and high-performance open-source JS engine developed
by Google for use in their Chrome web browser. V8 is also
popular for building web applications and running JS on the
server side (using tools like Node.js [20]). To execute JS, V8
follows a number of steps: parsing, generating bytecodes, inter-
preting/optimizing compilation and execution. First, the input
JS source code is parsed to construct an Abstract Syntax Tree
(AST), where each node of the tree represents a token by break-
ing down the JS code into smaller units, such as variable type,
value and kind. Next, the bytecode generator takes in the AST
to produce the bytecode, which is then interpreted and executed
by the interpreter on the target machine. At the same time, the
interpreter collects profiling data. Frequently used bytecodes are
sent to the optimizing compiler, which translates the bytecode
into highly optimized machine code using techniques like hidden
class optimization, inline caching, and hidden class transition
elimination. In cases where optimization fails, the compiler
de-optimizes codes and lets the interpreter executes the original
bytecodes. Once the JS code has completed execution, the V8
engine frees up any memory that was used during the process,
ensuring efficient memory usage.

B. Program Autotuning

Autotuning is a powerful technique that automatically fine-
tunes program or system parameters to optimize performance.
It is widely used in high-performance computing to improve
speed and efficiency by adapting the program to the underlying
hardware. However, autotuning can be resource-intensive, time-
consuming, and demands substantial effort for implementation
and maintenance. Typically, it leverages search techniques to
explore the space of possible optimizations and identify the best-
performing configuration for the target program on a specific
platform [6], [13], [21]. Due to the large search space size, recent
program autotuning integrates machine learning into the search
technique [22], which proves effective for navigating a sizeable
discrete space, outperforming traditional search techniques on a
range of optimization tasks. Until now, several successful pro-
gram autotuning frameworks have been developed for program
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optimization, such as OpenTuner [13], CompilerGym [21] and
SuperSonic [6].

Since autotuning is traditionally performed offline, the search
overhead is less of a concern than our scenarios of online
autotuning on resource-limited mobile systems. JSTUNER is
designed to make online autotuning practical on mobile sys-
tems through low-cost predictive modeling and leveraging the
computation capabilities of cloud servers.

C. Problem Scope

While many of our optimization techniques can be ported
to other computing systems used by PC and high-performance
servers to speed up the autotuning process, this work specifically
focuses on autotuning JS performance on mobile systems -
an area that has received relatively little attention despite its
significance.

The distinct nature of mobile systems presents two unique
challenges that differentiate them from high-performance and
desktop computing environments. First, mobile devices are char-
acterized by their compact form factor and thermal limitations,
which constrain the available computational resources and com-
puting capabilities. These restrictions require optimization tech-
niques that are mindful of resource consumption, ensuring that
the performance improvements achieved are feasible within the
mobile device’s limitations. Second, unlike PCs and servers that
benefit from a continuous power supply, mobile devices rely on
battery power in most cases. Consequently, energy consumption
becomes the first class constraint, and any optimization approach
must prioritize lightweight methodologies with minimal com-
putational overhead on the end-user device.

JSTUNER is designed to work with the aforementioned mobile
device characteristics. By leveraging the computation power of a
remote server through a lightweight predictive model running on
the user device, JSTUNER ensures that the autotuning process re-
mains efficient, imposing minimal impact on the end-user device
while still delivering substantial performance enhancements.

D. Basic Ideas

Using autotuning techniques in JS can be an effective way
to improve the performance of a program, especially in cases
where the JS is running in environments with limited resources,
such as smartphones and embedded systems. However, it is
important to carefully consider the tradeoffs involved, as au-
totuning can be time-consuming. For example, Chrome V8 has
over 250 options, and search spaces can be intractably large, up
to 10158 possible configurations. It is a big challenge to find the
right configuration for performance optimization in such a large
search space. Additionally, popular websites and web-based
applications frequently update the JS source code frequently
to enhance user experience, further increasing the overhead of
searching for the right configuration.

Our idea is to leverage prior JS tuning knowledge to guide
autotuning. If the new incoming JS has a similar workload to
a previously optimized program, we can use this knowledge to
guide the search for the best configurations for the new program,
thus greatly accelerating the JS autotuning process. Furthermore,

to adapt to changing programs and runtime environments, we
also develop a crowdsourcing system to collect profiling data
to make our predictive model more robust. Our approach can
complement existing autotuning techniques, like OpenTuner,
and help JS developers to optimize JS performance on the target
platform.

E. Motivation Examples

Setup: As a motivating example, consider running two typical
JS programs (pdfjs and box2d) on three mobile devices (from
high-end to low-end, Table IV lists details). Pdfjs is a JS-based
PDF renderer supported by Mozilla labs [23]. It has been adopted
as the default PDF viewer by many browsers, such as Firefox
and Opera. box2d is a JS port of the Box2D Physics Engine [24],
a well-tested library for developing popular games like Angry
Birds [15]. The JS engine used in this work is the Chrome V8.
We leverage OpenTuner (running on the cloud server) to search
for the configuration that can provide the best performance for
each JS program on the respective devices. The networking
condition is WiFi 6 with an average upload speed of 1232 Mbps
and download speed of 1543 Mbps.

Results: Fig. 2 presents the performance improvement
achieved by the configuration found by OpenTuner against the
V8 default setting. To find the best-performing configuration, we
use OpenTuner to automatically search all the flags and param-
eters supported by V8. As we can see from this figure, the con-
figurations found by OpenTuner give a noticeable performance
improvement on all three platforms, which can reduce an average
of 38.1% (71 ms), 25.7% (58.5 ms) and 36.5% (127 ms) latency
on Pixel 6, Xiaomi 9 and Huawei P9, respectively. However, we
apply the best-performing configuration of pdfjs to run box2d
on the same device, leading to an average of 3.7% slowdown.
Additionally, we test the compatibility of applying the same JS
(JS) configuration across different devices. For example, using
the optimal configuration of box2d on the Pixel 6 to run the same
program on the Huawei P9 takes 313 milliseconds, which is less
effective compared to using the best-performing configuration
searched on the Huawei P9 (257 milliseconds). Specifically, we
list part of the selected options of OpenTuner configuration for
box2d and pdfjs across all platforms in Table I. We can see
that the OpenTuner configuration of pdfjs prefers to disable the
flag of turbo-inlining and use-osr on all three platforms. On
the contrary, the box2d configuration remains consistent with
the default settings. For garbage collection, both box2d and pdfjs
enable the parallel-marking flag, which can reduce the garbage
collection time. It is worth noting that the best-performing value
of min-semi-space-size, max-optimized-bytecode-size and max-
inlined-bytecode-size have great diversity. Therefore, simply
using one optimal configuration discovered for one JS program
on a specific device is likely to miss out on potential optimization
opportunities.

F. Insights

The two examples show the enormous potential of perfor-
mance optimization for JS engine on the mobile device. How-
ever, finding the right optimization configuration can be quite
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Fig. 2. Performance of two typical JS programs run on the Pixel 6 (a) Xiaomi 9 (b) and Huawei P9 (c) with the V8 default setting and the best-performing
configuration found by the OpenTuner. We set the search time to 500 seconds. We can see that the OpenTuner configuration outperforms the V8 default setting.

TABLE I
PART OF THE SELECTED OPTIONS OF THE BEST PERFORMING CONFIGURATIONS FOUND BY THE OPENTUNER

Fig. 3. Overview of JSTUNER.

tricky as it depends on the characteristics of the JS program
and the performance of the hardware. Besides, the time required
for searching the right configuration in a large search space is
unacceptable for mobile JS. The following section will describe
how our approach tackles these challenges by analyzing the
program complexity and modeling the impact of the compile
configuration on JS performance through predictive modeling.

III. OVERVIEW OF JSTUNER

Fig. 3 presents the high-level architecture of JSTUNER, a ma-
chine learning-guided JS autotuner. The core idea is to leverage
the collective knowledge to deliver fast optimization service for
the target JS. To achieve this, we first design a Fast Program
Matching (termed as FPM) module to provide a fast and effective
optimization for the new coming JS. Based on the idea that
similar programs can benefit from the same configuration, the
FPM calculates the similarity between the target JS and the
stored benchmarks, and then compile and execute the target JS
by using the previously found best-performing configuration of
the matched JS benchmark. Moreover, to further improve the JS
runtime performance, we employ a deep neural network-based
search engine to perform a fine-grained optimization, and this

Fig. 4. Workflow of FPM.

process will find the right configuration within a large search
space in a short time. Finally, we design a crowdsourcing module
to collect the JS features on various types of devices with dif-
ferent compiler configurations and corresponding performance,
which are used to update the deep neural network used in
FPM and the search engine. As the number of JS codes and
hardware platforms continues to grow, JSTUNER can test new
compiler optimizations for their applications and learn how to
optimize each JS for different mobile devices, resulting in faster
JS execution.

A. Fast Program Matching

Fig. 4 illustrates the working process of Fast Program Match-
ing (termed as FPM), designed to promptly deliver a coarse-
grained optimization configuration. To this end, we characterize
a set of selected benchmarks on mobile devices and document
the best-performing configuration and its associated feature
values from benchmark and hardware. The FPM leverages the
Siamese Neural Network (SNN) [25] to predict the similarity
between the incoming JS programs on specific hardware and
the previously stored feature values. We assume that similar
features of programs and hardware can benefit from the same
compilation configuration. The FPM outputs a configuration
from a stored set of previously characterized benchmarks with
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Fig. 5. Workflow of search engine.

the highest similarity score and uses this configuration to run
the new coming JS program. The program is executed using
default settings when the similarity score falls below a specific
threshold. Furthermore, we employ the autotuning technique to
optimize the JS runtime performance for conducting a detailed
search (refer to Section V).

B. Search Engine

Fig. 5 illustrates the working process of the search engine,
which aims to find the best-performing configuration by fine-
tuning the V8 support parameters and flags for the coming JS
within a limited time. While there is a critical challenge related
to this goal. How to speed up the fine-tuning process within a
large search space. We integrate a speedup predictor into the
OpenTuner, a generic tuning framework to address this issue.
The predictor is a classification model that classifies the com-
ing JS with candidate configurations into four speedup levels.
For the configuration that may degrade the target JS runtime
performance, we report back a high cost to the autotuner, thus
reducing the device measurement cost. By giving up testing the
configuration candidate that may slow down the performance,
our search engine can significantly accelerate the tuning process
and reduce the energy cost on the target platform needed for
executing the tuning tests.

C. Crowdsourcing

To improve the generalizability of JSTUNER, we develop
a crowdsourcing module that gathers JS runtime data from
a variety of devices. This module evaluates the performance
of different compilation configurations, updates the models,
and provides users with customized compiler optimizations.
For instance, when a new, unseen device requests the JS op-
timization service, the crowdsourcing module will run the eight
representative benchmarks while the device is charging and
report the dynamic and static characteristics of the benchmarks
and the runtime performance. The profiling data is utilized to
recalibrate the speedup predictor and SNN model. Additionally,
we apply the conformal prediction technique to monitor the
SNN performance and use the automated runtime measurements
on incorrectly predicted inputs to improve the speedup model
over time. In cases where the configuration provided by SNN
degrades the performance, we will leverage OpenTuner to find

Fig. 6. Structure of our siamese neural network.

the best-performing configuration at first, update the benchmark
dataset and add a new class at the last layer of the SNN model.
With the support of the crowdsourcing module, the predictive
models used in JSTUNER are continually updated, ensuring
optimization for newly encountered programs.

IV. FAST PROGRAM MATCHING

The FPM aims to deliver a quick optimization for any JS.
By calculating the similarity between incoming JS features
with the hardware characteristics and the pre-stored feature
values, we use the previously best-performing configuration of
the stored features with the highest similarity score to compile
and execute the incoming JS. To do so, we employ the SNN
to rank the similarity between the input features and the stored
candidates and then output the configuration corresponding to
the maximum similarity. We have evaluated several alternative
modeling techniques, including KNN, SVM, Random Forest,
and ANN. We chose the SNN because it extracts semantic
similarity between the projected representation of the two input
features, gives the best performance in our small dataset, and
has a moderate training overhead (see Section VIII-F2). Our
prototype is implemented using the Pytorch and scikit-learn
machine learning package [26].

A. Problem Modeling and Training Data Generation

1) Model Structure: Fig. 6 depicts our SNN, including two
parallel, fully connected, feed-forward ANN with 3 hidden
layers and 42 nodes per hidden layer. The number of nodes in
the input layer is determined by the dimensionality of the input
features. This structure is automatically determined by applying
the AutoML [27] tool on the training dataset. The two ANN sub-
networks have the same architecture, parameters, and weights
and any updates to the parameters are mirrored across both
subnetworks. During training, the two identical feedforward
neural networks read the two input features (Table II lists part
of the essential features) and process their values through three
hidden layers, and then feed into the merge layer to calculate
the difference between the outputs of the two subnetworks by
applying the torch.nn.abs() function. The result of the merge
layer is then passed through a sigmoid activation, mapping
the result onto the interval [0, 1]. Finally, we use the Binary

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 09:18:13 UTC from IEEE Xplore.  Restrictions apply. 



REN et al.: JAVASCRIPT PERFORMANCE TUNING AS A CROWDSOURCED SERVICE 6121

TABLE II
THE SELECTED FEATURES FOR SIAMESE NEURAL NETWORK

Fig. 7. Training process of SNN.

CrossEntropy Loss as the loss function and update the weights
through error back-propagation.

2) Training Data Generation: We apply cross-validation to
train and test our models (see Section VI-C). Training data
are generated by profiling 60 JS benchmarks on three mobile
devices, where the benchmarks come from JetStream 2 (see
Section VII-B for details). Fig. 7 depicts the process for learning
the baseline model on our training data.

Profiling: First, we leverage OpenTuner [13] to search for
the best-performing configuration for each JS benchmark on
every mobile device. Since we have 60 JS benchmarks and three
mobile devices, we obtained a total of 180 samples and 180
optimal configurations. Subsequently, we perform cross-testing
using the best-performing configuration for each JS benchmark.
Specifically, we exhaustively executed the 180 samples using the
previously discovered 180 optimization configurations. Samples
are classified into the same group when performance improve-
ments are observed using the same configuration. Ultimately, we
identify 8 configurations that cover all 180 samples, allowing us
to categorize all benchmarks into 8 classes.

Feature: The SNN model is based exclusively on JS code,
JS dynamic features, and hardware features. Code features are
extracted from the JS source code, and dynamic features are
collected using hardware performance counters during the initial
profiling run of the target JS. We extract V8 dynamic fea-
tures at runtime and collect code features by using complexity-
report [28] and IstanbulJS [29]. The dynamic features, such
as the number of Symbols, TotalParseSize, and TotalPrepars-
eSkipped can be extracted during the JS parsing stage. The
hardware features, such as CPU frequency, RAM size, and cache
size, significantly impact JS runtime performance. Finally, we
considered 35 raw features in this work. To learn effectively over
a small training dataset, we apply the correlation coefficient (re-
move values above 0.75) and principal component analysis [30]
to reduce the dimensionality of raw features from 35 to 21.
Table II lists the features used for training. We also scale each

Fig. 8. Importance of top ten important features for siamese neural network.

of the extracted feature values to a common range (between 0
and 1) to prevent the range of any single feature from being a
factor in its importance. We record the minimum and maximum
values of each feature in the training dataset to scale the feature
values of an unseen JS. We also truncate a feature value to make
sure it is within the expected range during deployment.

B. Features Used in Fast Program Matching

To understand the usefulness of each feature, we apply a factor
analysis technique called Varimax rotation [31] to the feature
space transformed by the principal component analysis (PCA).
This technique quantifies the contribution of each feature to the
overall variance in each of the PCA dimensions. Intuitively, the
more variances a feature brings to the space, the more useful
information the feature carries. Fig. 8 shows the top 10 features
chosen for the SNN model. These include static code features,
such as Cyclomatic complexity and Physical LOC, as well as
hardware features cache size, RAM size, RAM frequency, and
RAM channels. Cyclomatic complexity indicates the complex-
ity of a JS code, and Physical LOC is the lines of code. The
hardware feature cache size influences the number of cache hits
during compilation, the RAM size affects the available memory
size for the heap memory and stack memory, and the RAM
frequency relates directly to the rate of reading/writing from/in
the RAM memory. Additionally, the number of RAM channels
integrated into the SoC directly impacts data transfer rates.

C. Building the Model

We first combine the collected code feature, dynamic feature
and hardware feature values with a label for each training
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sample, where each label represents a class that the same con-
figuration can optimize. The training process requires building
input pairs for the same and different class samples. Then we
traverse the training dataset, combine two samples arbitrarily,
check their labels, and set the new label as 1 if they belong to
the same class and 0 otherwise, termed as< x1, x2, 0/1 >. This
results in a new training set of over thirty thousand paired sam-
ples. Finally, we feed the training samples into the supervised
learning algorithm, and the output of our learning algorithm is
an SNN model, where the weights of the model are determined
from the training data. Model parameter tuning is performed
on the training dataset for each targeting hardware architecture
using cross-validation (see also Section VII). Since training is
performed only once “at the factory”, this is a one-off cost.

D. Runtime Deployment

Once we have built and trained our SNN as previously de-
scribed, we can use it to find the best matching stored feature
and then output the corresponding optimization configuration
for the new program. Specifically, we first extract static code
features, hardware characteristics, and dynamic features as soon
as the JS code is downloaded onto the user’s device. Next, we
upload the collected features to the server and combine them
with the pre-stored features of each class (8 classes in this work)
to form a paired sample and feed them into the SNN to determine
similarity. The SNN predicts whether input features are similar
or dissimilar and output the class label with the highest similarity
score. Finally, the selected configurations are sent to the mobile
device to compile and execute the JS on the specific platforms
(Section VIII-F2 shows the cost details). Considering the poten-
tial variations in networking conditions and inference costs, the
FPM will first use the default configuration to execute a newly
arrived JS program so that there is no delay in executing the code.
However, for subsequent executions of the same JS program, the
FPM utilizes SNN prediction to optimize the program. Since a JS
program (or function) is invoked many times by an application
or webpage, our techniques can be advantageous for repeatedly
executed programs. Repeated execution is a common pattern
for JS programs, examples of such patterns include JS scripts
periodically checking for live updates, like social media feeds
or chat messages, using polling mechanisms or WebSockets for
real-time communication like video streams, computing gaming
logic, or rendering graphics. Moreover, web applications use
event-driven programming to respond to user interactions and
system events. Events like clicks, form submissions, keyboard
input, and timers trigger code execution in response. Each time
these events occur, the associated code is executed, leading to
repeated execution. For JS program that only gets executed once
on a webpage loading, our approach can store the tuning results
in a local cache to be used the next time the same page is loaded.

E. Continuous Adaptation

The FPM aims to promptly provide configurations for opti-
mizing JS performance. This is achieved through the utilization
of a lightweight SNN model that is trained to effectively extract
key features from incoming JS code and categorize them into 8

Fig. 9. Training process of speedup predictor.

distinct classes. Each class corresponds to a specific compiler
configuration that enhances performance. As the JS compiler
implementation evolves or new types of JS workloads emerge,
we may need to expand the number of compiler option classes.
JSTUNER is designed to support the continuous update of the
decision model to allow FPM adapt to changes in the application
landscape. To facilitate this adaptability, JSTUNER incorporates a
crowdsourcing framework that allows the underlying prediction
model to evolve over time. For instance, the decision model
can be periodically retrained using new application workloads
gathered from diverse users, where our methodology for learning
program features and model training can remain unchanged.

V. SEARCH ENGINE

Our search engine aims to find the best-performing config-
uration within a large search space. To this end, we build a
speedup predictor to classify the coming JS with the candidate
configurations into four levels of speedup, ranging from 0 (de-
livers over 1.2x speedup) to 3 (gives over 1.2x slowdown). We
then integrate the predictor with existing autotuning techniques
like OpenTuner, genetic algorithm, greedy algorithm, etc. By
utilizing the predictor outputs, the autotuner can significantly
speed up the search process (see Section VIII-D). In this section,
we describe how to employ machine learning to train the speedup
predictor to guide the tuning process.

A. Speedup Modeling

The central component of our search engine is the speedup
predictor, built upon a Multi-layer Perceptron (MLP) Artificial
Neural Network (ANN). We selected ANNs as they give supe-
rior and more consistent performance compared to alternative
methods (as discussed in Section VIII-F3). Additionally, using
ANNs allows us to employ transfer learning, which reduces the
training overhead in the deployment environment.

1) Training the Speedup Predictor: Fig. 9 depicts the process
of building the speedup predictor. To learn a classification model,
we begin by profiling the runtime performance of JS using a
large number of candidate configurations. We then calculate the
speedup factor over the default configuration (V8 default setting)
for each configuration and classify the speedup values into four
levels. Finally, we use the configurations, JS feature values and
speedup levels to train the classification model.

Generating Training Data: We apply cross-validation to train
and test our models (see Section VII). The training data is
generated by profiling JS using various configurations. In de-
tail, we use OpenTuner to search for the optimal performance
configuration for compiling and executing a particular JS on the
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TABLE III
TOP 15 IMPORTANT COMPILER OPTIONS FOR SPEEDUP PREDICTOR

target platform, while simultaneously recording the JS perfor-
mance with the corresponding tuning configuration generated by
OpenTuner during the search process. However, performing a
full, exhaustive search of such a large space (up to 10158 possible
configurations) is not feasible due to the excessive overhead it
would incur. Therefore, we train eight speedup predictors for
eight FPM clusters, each of which is trained on over 240,000 (3
devices × ∼8 benchmarks × 10 thousand samples) automati-
cally generated training samples.

Building the Model: Each evaluated configuration is appended
to the JS and hardware feature values to form input for the
model. The model inputs and the corresponding speedup levels
for all JS training benchmarks used for training are passed to the
learning algorithm. The algorithm finds a correlation between
the input vector and the desired prediction. The output of our
learning algorithm is an MLP model, whose weights are deter-
mined based on the training data. Using cross-validation, we
fine-tune the model parameters on the training dataset for each
target hardware architecture. In our case, the overall training
process for all training benchmarks takes two weeks on a single
machine (dominated by training data generation). Since training
is performed only once “at the factory”, this is a one-off cost.

2) Features: Our speedup models rely on code, dynamic fea-
tures of the target programs and candidate configurations. Code
features are extracted from the JS source code, and dynamic
features are obtained during the initial profiling run of the target
application (see also Section IV-A2), configurations are built
upon the V8-supported flags and parameters for ARM.

Feature selection from compiler options: To build an accurate
model through supervised learning, the training sample size
typically needs at least one order of magnitude greater than
the number of features. In this work, we start from 241 raw
features, including 21 FPM features (see Section IV-A2) and 220
compiler options. Our process for feature selection is fully auto-
matic, described as follows. First, we calculate the impact of the
V8-supported options one by one by using the equation below:

Impact =
|runtime− runtimebaseline|

runtimebaseline

where runtimebaseline is the JS performance under the V8
default setting, and runtime is a measurement of the JS
performance when removing one flag. We then calculate the

impact variance of each option for all programs in the training
set. Next, we eliminate the flags or parameters that consistently
improve performance for the whole JS benchmarks on all three
platforms, such as –use-ic, –inline-new, –sparkplug, –no-jitless.
This reduces the number of V8-supported options to 181, with
21 FPM features (as discussed in Section IV-A2). We use 202
features to predict the speedup levels of the incoming program
with different configurations. Table III lists the top 15 most
important V8-supported options for the speedup predictor.
Since our approach for feature selection is automated, it can be
applied to other sets of candidate features. It is important to note
that feature selection is also performed using cross-validation.

Feature normalization: In the final step, we scale each of
the extracted feature values to a common range (between 0 and
1) to prevent the range of any single feature being a factor in
its importance. We record the minimum and maximum values
of each feature in the training dataset, in order to scale the
feature values of an unseen JS and configuration. We also clip a
feature value to make sure it is within the expected range during
deployment.

B. Runtime Deployment

Once we have built and trained our speedup predictor de-
scribed above, we can use it as a cost function to search for the
best-performing configuration for any new JS. Fig. 10 shows the
simplified code example of using our search engine to search
over the space of the V8-supported options on ARM. First, we
load the speedup predictor built upon the PyTorch framework
(line 8). Next, the selected configuration of the autotuner in
each tuning iteration and the FPM features are encoded as a
feature vector of real values (from line 46 to line 51). Then,
feeding the feature vector into the speedup predictor to estimate
the speedup level (line 52). When the speedup_level is zero
(speedup ≥ 1.2x), which represents the given configuration
may significantly improve the performance over the default
setting, the search engine will measure the latency in the target
device(line 56 to line 57). When the speedup predictor outputs
1 (speedup ≥ 1x and speedup < 1.2x), the search engine has
a 30% chance of feeding back the default latency directly
(line 63 to line 67). Furthermore, when the speedup_level is
2 (speedup ≥ 0.8x and speedup < 1x), the search engine has
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Fig. 10. Simplified code for our search engine.

an 80% of feeding back three times of default latency (line 73
to line 77). When the speedup_level is 3 (speedup < 0.8x), it
returns five times of default latency directly (line 82 to line 83).
With the help of the speedup predictor, the search engine can
perform more tests and reach convergence more quickly (see
Section VIII-D). We use the search engine to perform aggressive,
fine-grained searches to find a good compiler configuration for

the target JS programs on specific hardware architectures offline.
We store the best-performing configuration for future reference
or use it to extend the speedup classes for FPM. Since the search
engine is not designed to provide real-time optimization and the
search is performed offline, this overhead is excluded from the
runtime evaluation of JSTUNER.

We also attempt to construct a regression model for the
speedup factor, where the predictor enables the autotuner to
receive a specific speedup value for a given configuration, elim-
inating the need for running tests on real devices. However, it is
important to note that the input features from the configuration
may contain conflicting compiler options. For instance, the
heap management-related options like –max-heap-size, –max-
old-space-size, and –max-semi-space-size cannot be specified
simultaneously, as doing so would lead to a memory trap.
Pruning these options may be a solution to avoid conflicts, but it
may overlook non-intuitive, yet effective configurations. Despite
this, the regression model may deliver a wrong prediction,
such as giving a speedup value above 1x, which can lead the
autotuner to explore an invalid search space. Our search engine
is designed to leverage the classification model for predicting
the speedup level. If the predicted speedup result is above 1x,
the given configuration is also evaluated on the real device.
Skipping such configurations may likely result in a slowdown
of JS performance. Our experiment results show that the search
engine outperforms the other SOTA methods for the averaged
performance across test benchmarks.

VI. CROWDSOURCING

To maintain the effectiveness of JSTUNER with the growing
number of JS and the increasing diversity of the available
hardware devices, we design the crowdsourcing module to con-
tinuously collect the incoming data, and retrain our predictive
model if we find that the data distribution has deviated signif-
icantly from the original training data distribution. However,
there are two critical challenges we need to consider when we
design the crowdsourcing module. The first challenge is how to
efficiently incorporate new data into the FPM service scope, as it
is important to keep our predictive model up-to-date and aligned
with the latest JS and hardware devices. The second challenge
is how to minimize the training overhead across different JS and
platforms, as retraining the predictive model on new data can be
computationally expensive and time-consuming.

A. Adaptive Learning for FPM

There are two scenarios in which the input features may not
match all classes of the SNN, resulting in a similarity score below
0.5. First, it is possible that the SNN has not learned the specific
data distribution, although the previously searched configuration
can optimize the upcoming JS. In this situation, we can address
the issue by combining the new data with existing data from the
same class and retraining the SNN. This process ensures that
the new data is placed close to the existing data from its class,
improving the model’s performance.

Second, there may be cases where the new data does not
benefit from any existing configurations. In such scenarios, we
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TABLE IV
EVALUATION PLATFORMS

can extend the baseline model by adding a new class and apply
transfer learning to update the SNN model. Transfer learning
involves utilizing the newly observed programs to update the
hidden layers of an already trained SNN. This approach allows
the model to generate embeddings for the new class that are dis-
tinct from the existing classes, as discussed in Section VIII-E1.

Since the SNN is hosted on a crowdsourced server, the service
provider has the capability to retrain the model from scratch
using data collected on new JS programs with the new compiler
optimization sequence. This ensures that our system, JSTUNER,
becomes increasingly effective and adaptable to changes in
application workloads over time.

B. Transfer Learning of Search Engine

When we need to fine-tune the coming JS, we apply the
DNN-based search engine to search for the best-performing
configuration. During the search process, we measure the run-
time performance on the device, calculate the speedup factor,
and then compare it with the predicted speedup levels. If the
variance is greater than 10%, we perform transfer learning on the
current speedup predictor. This is done by automatically running
the coming JS with 40 configurations generated by OpenTuner
on the target device. The JS features, hardware features and
configuration with the corresponding speedup levels are then
combined as the transfer learning dataset. When the device is
charging, JSTUNER starts collecting profiling data and runs the
learning algorithm to update the predictors. which freezes the
first two layers (Section VIII-E2 gives the experimental details).

VII. EVALUATION SETUP

A. Evaluation Platforms

We use Google V8 (ver. 10.2.0) as our JS engine and compile it
for ARM to enable evaluation on mobile devices. Table IV gives
details of our hardware platforms. For training, we use a cloud
server with a 10-core 3.7GHz Intel i9-10900X CPU and two
NVIDIA RTX 3090 GPUs. Our mobile test board and the server
communicate through WiFi-6 using Huawei AX6 remoter, but
we use Netem [32] to control the network delay and server band-
width (with an upload bandwidth of 1232 Mbps and download
bandwidth of 1543 Mbps). Considering the rapid development of
network technology, we only add 5% of variances (which follow
a normal distribution) to the bandwidths and delay to simulate a
dynamic network environment. Our predictive models build on
PyTorch v1.2.

B. JS Workloads

We use the JetStream 2 [33] benchmark suite, which includes
a range of JS benchmarks such as SunSpider, Octane 2, ARES-6,
and Web Tooling programs. These benchmarks are often used
as a standardized measure for evaluating the performance of
JavaScript applications. We exclude the JavaScript-based ma-
chine learning benchmarks and Web Assembly benchmarks in
this work.

Fig. 11 shows the cumulative distribution function (CDF) of
their JS size, cyclomatic complexity, and runtime performance
for our selected JS benchmarks. As we can see from this figure,
the JS size and cyclomatic complexity range from small (204 B
and 1) to large (over 11 MB and 3972), indicating that our test
data cover a diverse set of JS programs. Moreover, Fig. 11(c)
presents the JS runtime performance on three representative
mobile platforms, the latency range from 0.03 ms to 2159 ms,
representing a great diversity of runtime performance of our
benchmarks on different platforms.

C. Competitive Approache

We compare our FPM and search engine against the following
widely used autotuning techniques:

OpenTuner [13] is a framework for program autotuning,
which is the process of automatically finding the optimal con-
figuration of a program for a specific platform and input. It
is designed to efficiently explore the large and often high-
dimensional search space of possible program configurations.
This is achieved through the use of intelligent search algorithms,
such as Bayesian optimization and genetic algorithms, that can
guide the exploration towards the most promising regions of the
search space.

GGA [34] is a modified genetic algorithm for solving con-
strained optimization problems. It combines a genetic algo-
rithm for global search with a gradient-based local search for
fine-tuning the solutions found. This combination allows GGA
to effectively explore the search space while ensuring that the
solutions found are close to the global optimum.

Greedy [35] is a type of optimization algorithm that makes
choice at each step based on a specific criterion, aiming to select
the best immediate option. Its objective is to find a globally
optimal solution by iteratively making locally optimal choices.

Random [36] search algorithm utilizes randomness or prob-
ability in its definition to achieve optimal solutions. This algo-
rithm demonstrates the capability to efficiently solve large-scale
problems and has proven useful for a wide range of ill-structured
global optimization problems involving continuous and/or dis-
crete variables.

D. Model Evaluation

Like [37], we use five-fold cross-validation to train all ma-
chine learning models. Specifically, we randomly partition our
60 JS benchmarks into 5 sets, each containing 12 programs.
We use one set as the validation data for testing our model and
the remaining 4 sets as training data to learn a model. In each
iteration, we exclude one set for predictions from the training
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Fig. 11. CDF of JS program size (a) cyclomatic complexity (b) and runtime performance (c).

Fig. 12. JS speedup over the V8 default compilation configuration on three representative mobile devices. Search engine outperforms alternative methods for the
averaged performance across test benchmarks.

program set, and learn a model using the remaining 4 sets. This
process is repeated five times (folds), ensuring that each of the
5 sets is used exactly once as the validation data.

E. Reporting

We run each program under a configuration multiple times
and report the geometric mean of the runtime. The geometric
mean is widely seen as a more reliable performance metric
over the arithmetic mean [38]. Moreover, configurations are
automatically generated by OpenTuner. To have statistically
sound data, we run each approach on a test case repeatedly
until the confidence-bound under a 95% confidence interval is
smaller than 5%. In our experiments, we set three levels for the
search time limit, 50 seconds, 100 seconds and 200 seconds, as
our experimental results show that our approach can get good
enough speedup for all the benchmarks within 200 seconds (see
Section VIII-D), and the benchmark can choose different search
time limit depending on the runtime performance.

VIII. EXPERIMENTAL RESULTS

A. Overall Performance

We compare our approach against OpenTuner, GGA, Greedy
and Random search techniques for performance improvement.
We set the search time to 200 seconds for all search algorithms.
Fig. 12 compares the speedup performance of all strategies. In
this experiment, we exclude the cost feature extraction, data
transfer and model inference from measuring the speedup of
SNN. This evaluation allows us to determine the maximum
achievable performance of FPM when the JS needs to be ex-
ecuted multiple times. Later in Section VIII-F2, we show the
end-to-end performance of FPM by including all the overhead

associated with feature extraction, data transfer and model in-
ference.

The diagram shows that SNN improves runtime performance
compared to the default setting across test benchmarks, with
average improvements of 1.31x, 1.24x, and 1.28x on Pixel 6,
Xiaomi 9, and Huawei P9, respectively. Although there are∼8%
programs (4-6 of 60) that perform worse than the default settings
because the SNN gives the wrong matching configuration, the
SNN still delivers an average of 89% performance of default
settings for these cases. As we expected, because of the high
performance of our predictive model, the search engine improves
OpenTuner by an average of 1.12x (up to 2.51x), improving the
default configuration by an average of 1.63x, 1.69x, and 1.54x on
Pixel 6, Xiaomi 9 and Huawei P9, respectively. The other three
search techniques: GGA, Greedy and Random give an average
speedup of 1.31x, 1.20x, and 1.30x over the default setting.

Specifically, Fig. 13 presents the speedup details for all 60 JS
benchmarks on the Pixel 6. We observe that the SNN makes the
wrong prediction on zlib, Air, sjlc, and bitops-bits-in-byte. The
search engine improves the OpenTuner on 91.6% of benchmarks
(55 of 60) and achieves 96.2% performance of OpenTuner on
the rest of the benchmarks. On the other hand, the search engine
improves the GGA, Greedy and Random techniques with an
average of 1.29x, 1.32x and 1.35x speedup. In detail, the GGA,
Greedy and Random deliver the optimization configuration on
75.0%, 73.3% and 76.3% of benchmarks, and we apply default
configuration for the rest of the benchmarks.

B. Compare to the Extended Search Techniques

We extend the GGA, Greedy and Random by leveraging our
speedup predictor, termed as GGA-Speedup, Greedy-Speedup
and Random-Speedup. In detail, we integrate the speedup

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 09:18:13 UTC from IEEE Xplore.  Restrictions apply. 



REN et al.: JAVASCRIPT PERFORMANCE TUNING AS A CROWDSOURCED SERVICE 6127

Fig. 13. Performance speedup on Pixel 6.

Fig. 14. Performance of extended search techniques on Pixel 6.

predictor into the three autotuning techniques. The GGA-
Speedup, Greedy-Speedup and Random-Speedup take the input
features (JS and hardware) with the candidate configuration and
then feed them into the speedup predictor to estimate the speedup
level, and then report back to the search technique to perform the
next search (see Section V-B). As we can see from Fig. 14, the
GGA-Speedup and Random-Speedup benefit from the speedup
predictor, with 1.09x and 1.11x speedup over the original GGA
and Random, respectively. The Greedy-Speedup seems can not
benefit from the speedup predictor on the performance improve-
ment, as the core of the Greedy algorithm focuses on the local
optimal. However, the speedup predictor can improve the speed
of convergence for all the search techniques.

C. Applying JSTUNER on Laptop

We apply JSTUNER to the high-performance laptop Alienware
m15 r4, which is equipped with an 8-core 10th Generation Intel
Core i7-10870H CPU, an NVIDIA GeForce RTX 3070 GPU,
and 16 GB RAM memory. Fig. 15 presents the improvement of
our approach on 60 JS benchmarks over the default compila-
tion configuration. We observe an average of 1.18x and 1.51x
improvement for SNN and search engine, respectively. These
results demonstrate that our approach can effectively enhance
the JS performance on high-performance devices. As knowledge

Fig. 15. JSTuner on laptop.

Fig. 16. Aggregated performance of 10 runs of OpenTuner and our search
engine for box2d (a) and pdfjs(c) on Pixel 6 within 500, error bars indicate the
maximum and minimum value. Our approach speeds up the convergence and
improves the performance achieved by the OpenTuner.

of devices and JS grows, the system will make those devices
faster and more energy efficient.

D. Searching Engine Performance

Fig. 16 reports the performance and the number of tuning
iterations when applying OpenTuner and our search engine to
search the best-performing configuration for box2d and pdfjs on
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Fig. 17. Applying crowdsourcing to collect data for JSTUNER continuous
learning.

Pixel 6. We can see that our search engine can speed up the
convergence by 1.53x over OpenTuner. As the search engine
leverages the speedup predictor to skip the configuration that
slows down the performance and feedback a high penalty cost
to the OpenTuner, thus can save time to run the configuration
on the real environment. Fig. 16(b) and (d) present the number
of tuning iterations with time. We can see that the search engine
conducts up to 1068 and 2803 tests for box2d and pdfjs in 200
seconds, which is 2.84x and 5.28x over OpenTuner. Over the
large tuning tests, the configuration performance of our search
engine improves OpenTuner by an average of 1.13x on both JS
programs.

E. Evaluation of CrowdSourcing

We employ crowdsourcing to collect data for retuning two
predictive models used in JSTUNER, when the models are failures
on the new coming data. In detail, we evaluate the SNN model
performance when adding a new class and test the speedup
model for applying transfer learning (TL) to tune baseline pre-
dictors for the new coming JS.

1) Adding a New Class to SNN: Our baseline SNN model
includes 8 classes. To test the performance when adding a new
class, we use one out of all 8 classes as the testing class, while
the rest samples from the other 7 classes are used for training a
baseline model. Fig. 17(a) presents the SNN performance when
adding a new class, the average error rate achieves 8.9%, which
is comparable to the training on the whole dataset. Adding a
new class in SNN is to learn the similarity function and make
the new class far away from the existing classes, which do not
need to retrain the SNN from scratch.

2) Tuning Speedup Predictors for New Coming Feaures: The
speedup predictor performs Transfer Learning (TL) when the
bias of the estimated speedup level and the measured speedup
is above 10%. In such case, we consider the predictor fails for
the new coming input features. For TL, we need to determine
whether the input vector belongs to one of the eight classes of
FPM. As we train 8 baseline speedup predictors for the 8 FPM
classes, the input features belonging to the same class use one
speedup predictor. Fig. 17(a) plots the results for using TL to
port the baseline speedup predictor for the new input features in
two situations. When the input features match one of eight FPM
classes, we can leverage the corresponding speedup predictor
to perform TL directly. As expected, TL performs better when
the input vector belongs to one of our existing classes, which
gives the lowest error rate of between 4.4% and 7.5%. For

Fig. 18. Impact of the number of hidden neural layers for two models.

Fig. 19. Breakdown of runtime overhead.

unmatched cases, we see a slight increase in the error rate when
applying TL with the unmatched speedup predictor but it still
gives an acceptable error rate, which is 8.43%. The experiment
results show that the error rates reach a plateau when the training
samples reach 40. With the FPM outputs, the new input features
are able to select a suitable speedup predictor to accelerate the
training process. We also train a new speedup predictor for when
the FPM adds a new class.

F. Model Analysis

1) Impact of Neural Layers: Fig. 18 presents the error rate
when the SNN model and speedup model with different number
of hidden layers. We train each model with the same training
set and record the error rate. We can see that the SNN model
and speedup model give the best performance when the model
is constructed with 3 and 7 hidden layers, respectively.

2) Overhead Breakdown of FPM: Fig. 19 presents a quanti-
tative analysis of the overhead associated with each processing
stage of FPM when searching for a coarse-grained optimization
configuration for a newly arrived JS program. Once the JS code
is downloaded onto the user device, we then start extracting JS
features, which are then sent to the server for feature matching.
It is important to note that during the initial loading of the JS,
we will use the default configuration for execution (refer to
Section IV-D for further details) so that the user does not
experience an additional delay in our processing pipeline. Sub-
sequently, the FPM carries out inferences based on the incom-
ing features and applies the feedback configuration to compile
and execute the JS program. Considering the volatile nature
of networking conditions, the feature transfer stage can incur
the highest cost in terms of processing overhead. However,
due to the parallel execution of the FPM with JS parsing, the
average overhead introduced by the FPM only contributes to an
end-to-end turnaround time of less than 5%. Fig. 20 presents
the end-to-end latency of FPM, where FPM delivers an average
improvement of 1.19x over the default compiler configuration
used by Chrome V8. We can observe that in a few test cases (8%
of the test benchmarks), our predictive model yields sub-optimal
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Fig. 20. End-to-end performance of the FPM.

Fig. 21. Comparing our SNN-based FPM and ANN-based speedup predictor
with other modeling techniques.

predictions, while still achieving an average performance of
86% compared to the default settings, and the remaining cases
outperform the average performance of the default configura-
tion. To mitigate the slowdown caused by incorrect predictions,
we can enhance model prediction accuracy through increased
training samples. Our framework offers this continuous learning
capability by employing an offline search engine to identify
optimal configurations, which can then be utilized to enhance
the predictive model through retraining.

At the same time, our compiler strategy may change across
JS programs of the same web page. The overhead introduced by
our scheme for this multi-program scenario would solely be the
prediction overhead-less than 1 ms. This is because the default JS
engine will also compile each JS program individually. Our con-
figuration prediction can also be performed for all JS programs at
once after they are loaded, where the model inference overhead
can be hidden while executing the first JS program. Therefore,
the overhead of using program-specific compiler configurations
is negligible.

3) Alternative Modeling Techniques: Fig. 21(a) compare our
SNN-based fast program matching module against four alterna-
tive classification methods: K-Nearest Neighbors (KNN), Sup-
port Vector Machine (SVM), Random Forest (RF) and ANN.
On the other hand, we also try to build our speedup predictor by
using KNN, SVM, RF, SNN and ANN, and Fig. 21(b) presents
the performance for all modeling techniques. All the alternative
techniques were trained and evaluated by using the same method
and training data as our models. Our approach achieves the
lowest error rate and enables us to employ transfer learning.

G. Discussions and Future Work

Application scenarios: JSTUNER can be useful in multiple
practical scenarios. One such scenario is the application of
JSTUNER within an app store environment, where it can be
harnessed to provide tailored JS optimization services, thereby
enhancing the user experience for individual mobile apps and
improving the competitiveness of the mobile app. This optimiza-
tion service can be made available to application developers

as a paid API, with the cost based on the number of API
requests made per month. Consequently, the service provider can
leverage the aggregated information from the crowd to continu-
ously enhance the quality of the optimization services offered.
Furthermore, JSTUNER empowers application developers by
providing crowdsourcing capabilities that facilitate evaluating
JS performance across diverse mobile hardware platforms dur-
ing the development phase. This enables developers to conduct
comprehensive performance testing and deliver the JS code with
the appropriate configuration directly to the intended mobile
devices, ensuring optimized performance on each platform.

Portability: JSTUNER can be easily ported into other comput-
ing platforms, including desktop and high-performance com-
puting systems. Doing so would require collecting training data
on the target platform and JS engine. However, our approach
to training and using the machine learning model can remain
largely unchanged. JSTUNER can also work with off-the-shelf
web browsers, including Chrome, as we do NOT change the
internal implementation of the JS engine. Instead, we use
the compiler options exposed by the JS engine to optimize the
program and treat the JS engine as a black box. Consequently,
our techniques are compatible with any web browser implemen-
tation.

Dynamic offloading: Our evaluation was conducted within a
high-quality network environment, primarily focusing on com-
putationally intensive benchmarks. However, we also realize that
real network conditions often exhibit instability. Consequently,
the detrimental effects of a poor network status may outweigh the
performance advantages gained through FPM, particularly for
non-computation-intensive JS programs. A hybrid scheme can
be employed to tackle this challenge, wherein the prediction task
is executed locally on the mobile device or offloaded to the cloud.
The decision to offload depends on network status, available
hardware resources, and the complexity of the upcoming JS
task. The objective is to minimize the cost associated with FPM
on the mobile device. To reduce the FPM cost on the mobile
device, we are exploring the design of a lightweight SNN model
on mobile the highly efficient and lightweight deep learning
framework [39] for future research.

We also consider how to combine offline auto-tuning and on-
line compiler option prediction to offer a high-quality real-time
optimization service. Specifically, we can deploy a lightweight
predictive model on the mobile device to predict a configu-
ration for the coming JS to provide real-time coarse-grained
optimization. Additionally, we can utilize the search engine to
find the optimal configuration when the device is idle. This
optimal setting is applied in subsequent JS runs and updates
the on-device predictive model.

Privacy and security: Our techniques do not alter the JS code
or the internal implementation of a JS engine. Therefore, it
should not introduce new security issues. Furthermore, since
the JS code is downloaded from the internet and we only
offload the code rather than user data, JSTUNER should not
lead to the leakage of private data. Furthermore, JSTUNER can
leverage other privacy-preserving frameworks like gg [40] to
enhance privacy and data security. For the predictive model,
JSTUNER can seamlessly integrate with the Federated Learning
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framework [41] to train and deploy our predictive model directly
on the local device. This ensures that the JS code remains on
the device, enhancing privacy and reducing the need for data
transmission to external servers.

IX. RELATED WORK

Our work is broadly related to the literature in three areas:
JavaScript optimization: There is considerable work on

JavaScript optimization. One common approach is to use code
optimization techniques, such as minification, tree shaking, and
dead code elimination, to reduce the size of the code and re-
duce the number of operations that need to be performed at
runtime [42], [43]. While some work focused on improving
the efficiency of JS runtime engines, such as by implementing
Just-In-Time (JIT) compilation, optimizing garbage collection
algorithms [44], and leveraging hardware features such as SIMD
instructions to accelerate certain operations [45]. Furthermore,
there has also been research on optimizing the use of specific
JS features, such as the use of functional programming con-
structs, the use of asynchronous programming patterns, and
the optimization of object-oriented design patterns. Recently,
there has been research on using machine learning techniques
to optimize the performance of Javascript applications, such as
by using neural networks to predict the performance of different
code paths [46] or using natural language information to predict
JavaScript function types [47], [48]. However, these works give
limited performance optimization and can not always deliver op-
timization across different platforms and usage scenarios. Prior
works also try to offload the intensive-compute JavaScript task to
cloud [49], [50] or convert JavaScript to the executable binary
file [51] on the server, while offloading may pose numerous
security problems and convert to the binary file can not make
up the compilation cost, as the user may only run the program
once in most cases. JSTUNER is designed to address these limits,
focuses on JavaScript engine optimization, and can adapt to
different programs, platforms and JavaScript engines.

Program autotuning: Researchers have developed a wide
range of algorithms and search strategies for program autotun-
ing, including genetic algorithms, Bayesian optimization [10],
and reinforcement learning [6]. These approaches aim to ef-
ficiently explore the search space of possible configurations
and select the best ones. Besides, researchers have also ex-
plored the use of machine learning techniques [52], [53] to
learn performance models of programs, which can be used by
autotuners to guide the search for the best configurations. This
can reduce the number of program runs required to find the
optimal configuration. While they mainly focus on tuning the
hyperparameters and layers of the neural network. Furthermore,
many works [6], [13], [21] integrate reinforcement learning with
other search techniques, such as evolutionary algorithms [54],
Bayesian optimization and particle swarm optimization [55],
which can further improve the performance of programs and
make it easier to optimize them for specific hardware platforms.
However, to find a good solution, the autotuning techniques
need to perform fine-grained searches with a long search time
which is not acceptable for JS on the mobile side. JSTUNER

leverages the similarities between programs, and delivers a
portable configuration to optimize the target program, then use
a performance predictor to accelerate the configuration search
process.

Predictive modeling: Machine learning has been used to
model power consumption [56], task scheduling [57] of mobile
systems and program tuning in general [6]. Our work is the first to
deploy machine learning for tuning mobile JavaScript. To build
a consistently valid model, JSTUNER employs crowdsourcing to
gather a large amount of data from a diverse group of mobile
devices and JS, which can lead to more accurate and robust
models. Furthermore, Our work tackles an outstanding problem
of porting a model to a new computing environment or JS.
Transfer learning was recently used for wireless sensing [58]
through randomly chosen samples. JSTUNER leverages transfer
learning to avoid training from scratch, as it allows the JSTUNER

to make use of the knowledge and experience gained from other
JS or platforms to inform the search.

X. CONCLUSION

This paper has presented JSTUNER, a simple and effective
machine-learning guided autotuning system to optimize JS per-
formance on mobile devices by delivering a good compiler op-
timization sequence. JSTUNER provides a significant improve-
ment over the other autotuning algorithms in terms of run time
performance. Central to JSTUNER is two predictive models,
one is the siamese neural network-supported program matching
model for the configuration selection based on the similarity
between the input features and the pre-stored features; the
annual neural network-based speedup predictor skips the poor
configuration by considering the input JS features, hardware
characteristics and the tunning configuration, which can reduce
the measurement cost on the devices, and greatly accelerate
the search process. Furthermore, we design the crowdsourcing
module to collect data for continuously improving JSTUNER.
We evaluate JSTUNER by applying it to 60 JS benchmarks on
3 representative mobiles. Experimental results show that JS-
TUNER outperforms OpenTuner, the state-of-the-art autotuning
framework, with an average improvement of 1.12x (up to 2.51x)
across these test benchmarks.

In addition, our approach has been paired with multiple auto-
tuning algorithms, resulting in improved performance compared
to the original methods. Although our approach has not yet been
tested with the latest autotuning systems, such as CompilerGym
and SuperSonic, which primarily optimize for LLVM, and need a
significant amount of engineering effort to modify them, we plan
to integrate our method with these systems in the future research
and expand our approach to other programming languages.
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