
1

Optimizing Deep Learning Inference on Embedded Systems
Through Adaptive Model Selection

VICENT SANZ MARCO∗, Osaka University, Japan
BEN TAYLOR∗, Lancaster University, United Kingdom
ZHENG WANG, University of Leeds, United Kingdom
YEHIA ELKHATIB, Lancaster University, United Kingdom

Deep neural networks (DNNs) are becoming a key enabling technique for many application domains. However,
on-device inference on battery-powered, resource-constrained embedding systems is often infeasible due
to prohibitively long inferencing time and resource requirements of many DNNs. Offloading computation
into the cloud is often unacceptable due to privacy concerns, high latency, or the lack of connectivity. While
compression algorithms often succeed in reducing inferencing times, they come at the cost of reduced accuracy.

This paper presents a new, alternative approach to enable efficient execution of DNNs on embedded devices.
Our approach dynamically determines which DNN to use for a given input, by considering the desired accuracy
and inference time. It employs machine learning to develop a low-cost predictive model to quickly select a pre-
trained DNN to use for a given input and the optimization constraint. We achieve this by first off-line training
a predictive model, and then using the learned model to select a DNN model to use for new, unseen inputs.
We apply our approach to two representative DNN domains: image classification and machine translation. We
evaluate our approach on a Jetson TX2 embedded deep learning platform, and consider a range of influential
DNN models including convolutional and recurrent neural networks. For image classification, we achieve a 1.8x
reduction in inference time with a 7.52% improvement in accuracy, over the most-capable single DNN model.
For machine translation, we achieve a 1.34x reduction in inference time over the most-capable single model,
with little impact on the quality of translation.

CCS Concepts: • Computer systems organization → Embedded software; • Computing
methodologies→ Parallel computing methodologies; Machine learning;

ACM Reference Format:
Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib. 2019. Optimizing Deep Learning Inference
on Embedded Systems Through Adaptive Model Selection. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1
(January 2019), 25 pages. https://doi.org/10.1145/3371154

1 INTRODUCTION
Deep learning is getting a lot of attention recently, and with good reason. It has proven ability
in solving many difficult problems such as object recognition [13, 28], facial recognition [51, 66],
speech processing [2], and machine translation [3]. While many of these tasks are also important
application domains for embedded systems [39], existing deep learning solutions are often resource
∗Both co-authors contributed equally to this research.

A preliminary version of this article appeared in ACM LCTES 2018 [68].
Authors’ addresses: Vicent Sanz Marco, Osaka University, Japan, v.sanzmarco@cmc.osaka-u.ac.jp; Ben Taylor, Lancaster
University, United Kingdom, b.d.taylor@lancaster.ac.uk; Zheng Wang, University of Leeds, United Kingdom, z.wang5@
leeds.ac.uk; Yehia Elkhatib, Lancaster University, United Kingdom, y.elkhatib@lancaster.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.
1539-9087/2019/1-ART1 $15.00
https://doi.org/10.1145/3371154

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3371154
https://doi.org/10.1145/3371154

1:2 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

intensive tasks, consuming a considerable amount of CPU, GPU, memory, and power [6]. Without
a solution, the hoped-for advances on smart embedded sensing will not be realized.
Numerous optimization tactics have been proposed to enable deep inference1 on embedded

devices. Prior approaches are either architecture specific [64], or come with drawbacks. Model
compression is a commonly used technique for accelerating deep neural networks (DNNs). Using
compression, a DNN can be optimized by reducing its resource and computational requirements [19,
25, 26, 30]. Unfortunately, this also comes at the cost of a reduction in model accuracy. To avoid
this, alternate approaches have been developed; offload some, or all, computation to a cloud server
where resources are available for fast inference times [35, 69]. This, however, is not always possible
due to high network latency or poor reliability [14]. Furthermore, sending sensitive data over a
network could be prohibited due to privacy constraints.

Our work seeks to offer an alternative to execute pre-trained DNN models on embedded systems.
Our aim is to design a generalizable approach to optimize DNNs to run efficient inference without
affecting accuracy. Central to our approach is an adaptive scheme for determining, at runtime,
which of the available DNNs is the best fit for the input and evaluation criterion. Our key insight
is that the optimal model – the model which is able to give the correct input in the fastest time –
depends on the input data and the evaluation criterion. In fact, by utilizing multiple DNN models we
are able to increase accuracy in some cases. In essence, for a simple input – an image taken under
good lighting conditions, with a contrasting background; or a short sentence with little punctuation
– a simple, fast model would be sufficient; a more complex input would require a more complex
model. Similarly, if an accurate output with high confidence is required, a more sophisticated but
slower model would have to be employed – otherwise, a simple model would be good enough.
In this work, we employ machine learning (ML) to automatically construct a predictor able to

dynamically select the optimum model to use. Our predictor is first trained off-line. Then, using
a set of automatically tuned features of the DNN input, the predictor determines the optimum
DNN for a new, unseen input; taking into consideration the evaluation criterion. We show that
our approach can automatically derive high-quality heuristics for different evaluation criteria.
The learned strategy can effectively leverage the prediction capability and runtime overhead of
candidate DNNs, leading to an overall better accuracy when compared with the most capable DNN
model, but with significantly less runtime overhead. Compression can be used in conjunction to
our approach to generate multiple DNNs of varying capability, then automatically choose the best
at runtime. This is a new way for optimizing deep inference on embedded devices.
Our approach is designed to be generally applicable to all domains of deep learning. As case

studies, we choose two typical and unique domains for evaluation: image classification and
machine translation. Both domains have a dynamic range of available DNN architectures including
convolutional and recurrent neural networks. We evaluate our approach on the NVIDIA Jetson
TX2 embedded platform and consider a wide range of influential DNN models, ranging from simple
to complex. Experimental results show that our approach delivers portable good performance
across the two DNN tasks. For image classification, it improves the inference accuracy by 7.52% over
the most-capable single DNN model while achieving 1.8x less inference time. For machine
translation, it reduces the inference time of 1.34x over the most-capable model with negligible
impact on the quality of the translation.

The paper makes the following technical contributions:
• We present a novel ML based approach to automatically learn how to select DNN models based
on the input and precision requirement (Section 3). Our system has little training overhead
as it does not require any modification to pre-trained DNN models;

1Inference in this work means applying a pre-trained model on an input to obtain the corresponding output.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:3

M o b i l e n e t R e s N e t _ v 1 _ 5 0 I n c e p t i o n _ v 2 R e s N e t _ v 2 _ 1 5 20 . 0
0 . 5
1 . 0
1 . 5
2 . 0

+ *+
*

+ *
+ O p t i m a l t o p - 5 s c o r e m o d e l

Inf
ere

nc
e T

im
e (

s) I m a g e 1 I m a g e 2 I m a g e 3
O p t i m a l t o p - 1 s c o r e m o d e l*

(a) Image 1 (b) Image 2 (c) Image 3 (d) Inference time

Fig. 1. The inference time (d) of four CNN-based image recognition models when processing images (a) - (c).
The target object is highlighted on each image. This example (combined with Table 1) shows that the optimal
model (i.e. the fastest one that gives an accurate output) depends on the success criterion and the input.

Table 1. List of models that give the correct prediction per image under the top-5 and the top-1 scores.

Image 1 Image 2 Image 3
top-5 score MobileNet_v1_025,

ResNet_v1_50, Inception_v2,
ResNet_v2_152

Inception_v2, ResNet_v1_50,
ResNet_v2_152

ResNet_v1_50, ResNet_v2_152

top-1 score MobileNet_v1_025,
ResNet_v1_50, Inception_v2,
ResNet_v2_152

Inception_v2, ResNet_v2_152 ResNet_v2_152

• Our work is the first to leverage multiple DNN models to improve the prediction accuracy and
reduce inference time on embedded systems (Section 7).
• Our approach has a good generalization ability as it works effectively on different network
architectures, application domains and input datasets. We show that our approach can be
easily integrated with existing model compression techniques to improve the overall results.

2 MOTIVATION
As a motivation, consider two contrasting examples, image classification and machine translation,
of using DNNs. The experiments in this section are carried out on a NVIDIA Jetson TX2 platform
where we use the GPU for inference; full details of the system can be seen in Section 4.1.

2.1 Image Classification
Setup. For image classification, we investigate one subset of DNNs: Convolutional Neural
Networks (CNNs). We compare the performance of three influential CNN architectures:
Inception [32], ResNet [29], and MobileNet [30]2. Specifically, we used the following models:
MobileNet_v1_025, the MobileNet architecture with a width multiplier of 0.25; ResNet_v1_50,
the first version of ResNet with 50 layers; Inception_v2, the second version of Inception; and
ResNet_v2_152, the second version of ResNet with 152 layers. All these models are built upon
TensorFlow [1] and have been pre-trained by independent researchers using the ImageNet ILSVRC
2012 training dataset [58].
Evaluation criteria. Each model takes an image as input and returns a list of label confidence
values as output. Each value indicates the confidence that a particular object is in the image. The
resulting list of object values are sorted in descending order regarding their prediction confidence,
so that the label with the highest confidence appears at the top of the list. In this example, the
accuracy of a model is evaluated using the top-1 and the top-5 scores defined by the ImageNet
Challenge. Specifically, for the top-1 score, we check if the top output label matches the ground
truth label of the primary object; and for the top-5 score, we check if the ground truth label of the
primary object is in the top 5 of the output labels for each given model.

2 Each model architecture follows its own naming convention. MobileNet_vi_j , where i is the version number, and j is a
width multiplier out of 100, with 100 being the full uncompressed model. ResNet_vi_j , where i is the version number, and
j is the number of layers in the model. Inception_vi , where i is the version number.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

3 _ l a y e r g n m t _ 2 _ l a y e r g n m t _ 4 _ l a y e r g n m t _ 8 _ l a y e r
0

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0 *+

+ *
O p t i m a l B L E U - P S s c o r e m o d e lO p t i m a l B L E U s c o r e m o d e l+ *

Inf
ere

nc
e T

im
e (

ms
)

 S e n t e n c e 1 S e n t e n c e 2 S e n t e n c e 3

+ + *
3 _ l a y e r g n m t _ 2 _ l a y e r g n m t _ 4 _ l a y e r g n m t _ 8 _ l a y e r

0
1 0
2 0
3 0
4 0
5 0

BL
EU

 sc
ore

 S e n t e n c e 1 S e n t e n c e 2 S e n t e n c e 3

(a) Runtime (b) BLEU scores

Fig. 2. The inference time, optimal model (a), and BLEU score (b) of three sentences (shown in Table 2). Here
the optimal model achieves the highest score for an evaluation criteria. Model names explained in footnote 3.

Results. Figure 1d shows the inference time per model using three images from the ImageNet
ILSVRC validation dataset. Recognizing the main object (a cottontail rabbit) from the image shown
in Figure 1a is a straightforward task.We can see from Table 1 that all models give the correct answer
under the top-5 and top-1 score criterion. For this image, MobileNet_v1_025 is the best model to use
under the top-5 score, because it has the fastest inference time – 6.13x faster than ResNet_v2_152.
Clearly, for this image, MobileNet_v1_025 is good enough, and there is no need to use a more
advanced (and expensive) model for inference. If we consider a slightly more complex object
recognition task shown in Figure 1b, we can see that MobileNet_v1_025 is unable to give a correct
answer regardless of our success criterion. In this case Inception_v2 should be used, although this
is 3.24x slower than MobileNet_v1_025. Finally, consider the image shown in Figure 1c, intuitively
it can be seen that this is a more difficult image recognition task, as the main object is a similar
color to the background. In this case the optimal model changes depending on our success criterion.
ResNet_v1_50 is the best model to use under top-5 scoring, completing inference 2.06x faster than
ResNet_v2_152. However, if we use top-1 for scoring we must use ResNet_v2_152 to obtain the
correct label, despite it being the most expensive model. Inference time for this image is 2.98x
and 6.14x slower than MobileNet_v1_025 for top-5 and top-1 scoring respectively. The results are
similar if we use different images of similar complexity levels.
2.2 Machine Translation
Setup. In the second experiment, we consider the following 4 machine translation models as they
provide a range of accuracy and runtime capabilities 3: 3_layer, gnmt_2_layer, gnmt_4_layer, and
gnmt_8_layer. We chose three distinct sentences from the WMT15/16 English-German newstest
dataset [71], which can be seen in Table 2.
Evaluation criteria. Unlike image classification, no metrics similar to top-1 and top-5 exist for
machine translation. Therefore, we use the following metrics for evaluation:
• BLEU (higher is better). Bilingual Evaluation Understudy is widely used to evaluate machine
translation model output. It returns a value between 0 and 1, 1 being a perfect output; it is
very rarely achieved.
• BLEU-PS (higher is better). BLEU per second. BLEU is only able to represent a degree of
correctness, we also use BLEU-PS to evaluate the trade-off between BLEU and inference time.
BLEU-PS is similar to Energy Delay Product (EDP, which is used to evaluate the trade-off
between energy consumption and runtime), and is calculated as BLEU×BLEU

Inf er .T ime .
Results. Figure 2 shows the inference time, BLEU score and optimal model for each sentence.
Sentence 1, is the simplest sentence, therefore the easiest translation task. The optimal model for all
metrics is our simplest, 3_layer. Surprisingly, our most complex model, gnmt_8_layer, fails on
this sentence; by using the cheapest model we achieve a higher accuracy 1.66x quicker. Similarly
3 We name our models using the following convention: {gnmt_}N_layer, we prefix the name with gnmt_where the model
uses the Google Neural Machine Translation Attention [18], and N is the number of layers in the model.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:5

Table 2. The sentences used in Figure 2
Sentence ID Sentence
1 High on the agenda are plans for greater nuclear co-operation.
2 Advertisements, documentaries, TV series and parts in films consumed his next decade but after his 2008 BBC series,

LennyHenry.tv, he thought: " What are you going to do next, Len, because it all feels a bit like you’re marking time or
you’re slightly going sideways."

3 Kenya has started biometrically registering all civil servants in an attempt to remove "ghost workers" from the
government’s payroll.

Input

Feature

Extraction
Inference

Model

Selection Output

Fig. 3. Overview of our approach.

Y

Model 1

Input
features

Distance
calculation

Model 1?
N

Model 2?

Model 2

N
Model n?

Model n

N

KNN-1 KNN-2 KNN-n

all models
will fail

...

Y Y

Fig. 4. Our premodel for image classification, made up of a series
of KNNmodels predicting whether to use a specific DNN or not. Our
process for selecting classifiers is described in Section 3.3.

the optimal model for Sentence 3 across both metrics is gnmt_4_layer. In this case, we cannot use
our cheapest model, as it fails. By choosing the optimal model for Sentence 3 we can infer 1.15x
quicker, without impacting accuracy. It is clear that Sentence 2 is more complex than Sentence 1, it
is much longer, has frequent punctuation, and contains non-words, e.g. 2008 and TV. In this case,
the optimal model changes depending on the evaluation metric. If we are optimising for BLEU-PS
we use gnmt_2_layer, which is 1.31x times quicker than gnmt_8_layer. However, if we would
like to maximize accuracy, we need to use gnmt_8_layer.
2.3 Summary of Motivation Experiments
The above examples show that the best model depends on the input and the evaluation criterion.
Hence, determining which model to use is non-trivial. What we need is a technique that can
automatically choose the most efficient model to use for any given input. In the next section, we
describe our adaptive approach that solves this task.

3 OUR APPROACH
3.1 Overview
Figure 3 depicts the overall workflow of our approach. Our approach trades memory footprints for
accuracy and reduced inference time. At the core of our approach is a predictive model (termed
premodel) that takes a new, unseen input (e.g. an image or sentence), and predicts which of a set
of pre-trained DNN models to use for that given input. This decision may vary depending on the
scoring method used at the time, e.g. either top-1 or top-5 in image classification.
Our premodel is automatically generated based on the problem domain. An example of a

generated premodel can be seen in Figure 4. The prediction of our premodel is based on a set of
quantifiable properties – or features, such as the number of edges and brightness of an image – of
the input. Once a model is chosen, the input is passed to the selected DNN, which then performs
inference on the input. Finally, the inference output of the selected DNN is returned. Use of our
premodel will work in exactly the same way as any single model i.e. the input and output will be
in the same format, however, we are able to dynamically select the best model to use.
3.2 Premodel Design
To design an effective premodel for embedded inference, we consider two design goals: (i) high
accuracy and (ii) fast execution time. By correctly choosing the optimal model, a highly accurate
premodel can reduce the average inference time. Furthermore, a fast premodel is important because
if a premodel takesmuch longer than any single DNNwill be useless. The task of choosing a candidate
DNN to use is essentially a classification problem in machine learning. Although using a standard ML
classifier as a premodel can yield acceptable results, we discovered we can maximize performance
by changing the premodel architecture depending on the domain (see Section 3.3).

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

Algorithm 1Model Selection
Require: data, θ , selection_method
1: Model_1_DNN =most_optimum_DNN (data)
2: curr_DNNs .add (Model_1_DNN)
3: curr_acc = дet_acc (curr_DNNs)
4: acc_diff = 100
5: while acc_diff > θ do
6: improvement_metric = next_selection_metric(selection_method)
7: next_DNN = greatest_improvement_DNN(data, curr_DNNs, improvement_metric)
8: curr_DNNs .add (next_DNN)
9: new_acc = дet_acc (curr_DNNs)
10: acc_diff = new_acc - curr_acc
11: curr_acc = new_acc
12: end while

In this work we consider four well-established classifiers: K-Nearest Neighbour (KNN), a simple
clustering based classifier; Decision Tree (DT), a tree based classifier; Naive Bayes (NB), a probabilistic
classifier; and Support Vector Machine (SVM), a more complex, but well performing classification
algorithm. In Section 7.1, we evaluate a number of different ML techniques, including Decision
Trees, Support Vector Machines, and CNNs.

Simultaneously, we consider two different types of premodel architecture: (i) A simple, single
classifier architecture using only one ML classifier to predict which DNN to use; (ii) A multiple
classifier architecture (See Figure 4), a sequence of ML classifiers where each classifier predicts
whether to use a single DNN or not. The later is described in more detail in Section 3.2.1. Finally, we
chose a set of features to represent each input; the selection process is detailed in in Section 3.5.

3.2.1 Multiple Classifier Architecture. Figure 4 gives an overview of a premodel implementing
a multiple classifier architecture. As an example, we will use the KNN based premodel created for
image classification. For each DNN model we wish to include in our premodel, we use a separate
KNN model. As our KNN models are going to contain much of the same data, we begin our premodel
by calculating our K closest neighbours. Taking note of which record of training data each of the
neighbours corresponds to, we avoid recalculating the distance measurements; instead, we simply
change the labels of these data-points. KNN-1 is the first KNN model in our premodel, through
which all input to the premodel will pass. KNN-1 predicts whether the input image should use
Model-1 to classify it or not. If KNN-1 predicts that Model-1 should be used, then the premodel
returns this label, otherwise the features are passed on to the next KNN, i.e. KNN-2. This process
repeats until the image reaches KNN-n, the final KNN model in our premodel. In the event that
KNN-n predicts that we should not use Model-n, the next step will depend on the user’s declared
preference: (i) use a pre-specified model, to receive some output to work with; or (ii) do not perform
inference and inform the user of the failure.
3.3 Inference Model Selection
In Algorithm 1 we describe our selection process for choosing which DNNs to include in our

premodel. This algorithm takes in three parameters: (1) data, containing the output of each DNN
for every input; (2) θ , a threshold parameter telling us when to terminate the model selection
process; and (3) selection_method, one of a choice of methods that produces an improvement_metric
(accuracy or optimal) for determining when if a candiate DNN should be included in the premodel
in each iteration. We consider the following three model selection methods:
• Based on accuracy. Using this selection method, we will add a DNN to premodel if it has the
greatest improvement in accuracy for each iteration. There are some cases where the selected
DNNs all fail to make a correct prediction, but some of the remaining candidate models can.
During each selection iteration, we will choose a remaining DNN that if it is included, it can
lead to the most significant improvement in prediction accuracy for premodel.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:7

• Based on optimal. In each iteration of the loop, the most optimal DNN is selected; i.e. the one
that gives the greatest overall improvement in accuracy, but leads to the lowest increase in
inference time, for the selected DNN set.
• Alternate. A hybrid of the first two approaches. We alternate between choosing the most
optimal and the most accurate DNN in each iteration. Our first DNN is always the most optimal.

Model selection process. The model selection process works as follows.
• Initialization. The first DNN we include is the most optimal model for our training data, i.e.,
the DNN that is most frequently considered to be optimal across training instances.
• Iterative selection. At each iteration, we consider each of the remaining potential DNNs, and
add the one which brings the greatest improvement to our improvement_metric (accuracy or
optimal), which can change per iteration based on the selection_method.
• Termination.We iteratively add new DNNs until our accuracy improvement is lower than
the termination threshold, θ%.

Using this Model Selection Algorithm we are able to add DNNs that best compliment one another
when working together, maximizing our accuracy while keeping our runtime low. In Section 7.2
we evaluate the impact of different parameter choices on our algorithm.
Illustrative example. We now walk through the Model Selection Algorithm using the image
classification problem as an example. In this example, we set our threshold θ to 0.5, which is
empirically decided through our pilot experiments. We also set selection_method to “based on
accuracy" for this example.We carry out a a sensitivity analysis for these parameters later in Section 7.2.
Figure 5 shows the percentage of our training data that considers each of our CNNs to be optimal.
For this example, the model selection process works as follows:
• First model. The first model is the most optimal model. In this example, MobileNet_v1_100
is chosen to be Model-1 because it is optimal for most (70.75%) of our training data.
• Iterative selection. If we were to follow the “based on optimal" selection method and
choose the next most optimal CNN, we would choose Inception_v1. However, we do not do
this as it would result in our premodel being formulated of many cheap, yet inaccurate
models. Instead we choose to look at the training data and consider which of our remaining
CNNs gives the greatest improvement in accuracy (i.e., “based on accuracy"), as ’Accuracy’ is
our improvement_metric. Intuitively, as image classification is either right or wrong, we are
searching for the CNN that is able to correctly classify the most of the remaining 29.25% cases
where MobileNet_v1_100 fails. As seen in Figure 7b, Inception_v4 is best, correctly
classifying 43.91% of the remaining data and creating a 12.84% increase in premodel
accuracy. Repeating this process (Figure 7c), we add ResNet_v1_152 to our premodel,
further increasing total accuracy by 2.55%.
• Termination. After adding ResNet_v1_152, we iterate once more to achieve a premodel
accuracy increase of less than 0.5% (θ), and therefore terminate.
• Results. After running this process, our premodel is composed of: MobileNet_v1_100 for
Model-1, Inception_v4 for Model-2, and ResNet_v1_152 for Model-3.

3.4 Training the Premodel
Training our premodel follows the standard procedure, and is a multi-step process. We describe
the entire training process in detail below, and provide a summary in Figure 6. Generally, we need
to figure out which candidate DNN is optimum for each of our training inputs (to be used by the
Model Selection Algorithm described in Section 3.3), we then train our premodel to predict the
same for any new, unseen inputs.
Generate training data. Our training dataset consists of the feature values and the corresponding
optimum DNN for each input under an evaluation criterion. To evaluate the performance of the

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

M . n e t _ v 1 _ 1 0 0
I n c e p t i o n _ v 1

R e s n e t _ v 1 _ 5 0
I n c e p t i o n _ v 2

R e s n e t _ v 2 _ 5 0
I n c e p t i o n _ v 3

R e s n e t _ v 1 _ 1 0 1
I n c e p t i o n _ v 4

R e s n e t _ v 2 _ 1 0 1

R e s n e t _ v 2 _ 1 5 2

R e s n e t _ v 1 _ 1 5 20
2 0
4 0
6 0
8 0

%
of

be
ing

 op
tim

al

Fig. 5. How often a CNN model is considered to be
optimal under top-1 on the training dataset.

Training
Data

Inference

Profiling

Feature

extraction

optimum model

feature values

L
earn

in
g

A
lg

o
rith

m Predictive Model

Fig. 6. The training process. We use the same
procedure to train each individual model within
the premodel for each evaluation criterion.

M . n e t _ v 1 _ 1 0 0
I n c e p t . _ v 1

I n c e p t . _ v 2
I n c e p t . _ v 4

R e s n e t _ v 1 _ 5 0

R e s n e t _ v 1 _ 1 0 1

R e s n e t _ v 1 _ 1 5 2

R e s n e t _ v 2 _ 5 0

R e s n e t _ v 2 _ 1 0 1

R e s n e t _ v 2 _ 1 5 20 . 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4

Inf
ere

nc
e T

im
e (

s) I n f e r e n c e t i m e

0
2 0
4 0
6 0
8 0
1 0 0 T o p - 1 a c c u r a c y

 To
p-1

 Ac
cu

rac
y (

%)

I n c e p t i o n _ v 1
I n c e p t i o n _ v 2

I n c e p t i o n _ v 4

R e s n e t _ v 1 _ 5 0

R e s n e t _ v 1 _ 1 0 1

R e s n e t _ v 1 _ 1 5 2

R e s n e t _ v 2 _ 5 0

R e s n e t _ v 2 _ 1 0 1

R e s n e t _ v 2 _ 1 5 20
1 0
2 0
3 0
4 0
5 0

To
p-1

 Ac
cu

rac
y (

%)

R e s n e t _ v 1 _ 5 0

R e s n e t _ v 1 _ 1 0 1

R e s n e t _ v 1 _ 1 5 2

R e s n e t _ v 2 _ 5 0

R e s n e t _ v 2 _ 1 0 1

R e s n e t _ v 2 _ 1 5 20
5

1 0
1 5
2 0
2 5

To
p-1

 Ac
cu

rac
y (

%)

(a) All CNNs (b) Where MobileNet fails (c) Where Mobilnet & Inception fails.

Fig. 7. Image classification results. (a) The top-1 accuracy and inference time of all CNNs we consider. (b)
The top-1 accuracy of all CNNs on the images on which MobileNet_v1_100 fails. (c) The top-1 accuracy of all
CNNs on the images on which MobileNet_v1_100 and Inception_v4 fails.

candidate DNN models, they must be applied to unseen inputs. We exhaustively execute each
candidate DNN on the inputs, measuring the inference time and prediction results. Inference time
is measured on an unloaded machine to reduce noise; it is a one-off cost – i.e. it only needs to be
completed once. Because the relative runtime of models is stable, training can be performed on a
high-performance server to speedup data generation. It is to note that adding a new DNN simply
requires executing all inputs on the new DNN while taking the same measurements described above.

Using the execution time, and DNN output results, we can calculate the optimum classifier for each
input; i.e. the model that achieves the accuracy goal (top-1, top-5, or BLEU) in the least amount of
time. Finally, we extract the feature values (described in Section 3.5) from each input, and pair the
feature values to the optimum classifier for each input, resulting in our complete training dataset.
Building the premodel. The training data is used to determine the classification models to use and
their optimal hyper-parameters. All classifiers we consider for premodel support are supervized
learning algorithms. Therefore, we simply supply the classifier with the training data and it carries
out its internal algorithm. For example, in KNN classification the training data is used to give a label
to each point in the model, then during prediction the model will use a distance measure (in our
case we use Euclidian distance) to find the K nearest points (in our case K=5). The label with the
highest number of points to the prediction point is the output label.
Training cost. Total training time of our premodel is dominated by generating the training data,
which took less than a day using a NVIDIA P40 GPU on a multi-core server. This can vary depending
on the number of candidate inference models to be included. In our case, we had an unusually long
training time as we considered a large number of DNN models. We would expect in deployment
that the user has a much smaller search space for potential DNNs. The time in model selection and
parameter tuning is negligible (less than 2 hours) in comparison. See also Section 7.4.

3.5 Features
One key aspect in building a successful predictor is selecting the right features to characterize the
input. In this work, we have developed an automatic feature selection process, the user is simply
required to provide a number of candidate features. Automatic feature generation could be used to
provide candidate features, however this is out of the scope of this work.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:9

3.5.1 Feature Selection. Feature extraction is the biggest overhead of our premodel, therefore
by reducing our feature count we can decrease the total execution time. Moreover, by reducing the
number of features we are also improving the generalizability of our premodel.

Initially, we use correlation-based feature selection. If pairwise correlation is high for any pair of
features, we drop one of them and keep the other; retaining most of the information. We perform
this by constructing a matrix of correlation coefficients using Pearson product-moment correlation
(PCC). The coefficient value falls between −1 and +1. The closer the absolute value is to 1, the
stronger the correlation between the two features being tested. We set a threshold of 0.75 and
removed any features that had an absolute PCC higher than the threshold.

Next, we evaluated the importance of each of our remaining features. To do so, we first trained
and evaluated our premodel using K-Fold cross validation (see also Section 7.4) and all of our
current features, recording premodel accuracy. We then remove each feature and re-evaluate
the model on the remaining features, taking note of the change in accuracy. If there is a large
drop in accuracy then the feature must be important, otherwise, the feature does not hold much
importance for our purposes. Using this information we performed a greedy search, removing the
least important features one by one. We detail the outcome of this process in Section 7.3. Below we
have summarized the result of each feature selection stage on both of our case studies. Removing
any of the remaining features resulted in a significant drop in model accuracy.

3.5.2 Feature Scaling. The final step before passing our features to a ML model is scaling each
feature to a common range (between 0 and 1) in order to prevent the range of any single feature
being a factor in its importance. Scaling does not affect the distribution or variance of feature values.
To achieve this during deployment, we record the minimum and maximum values of each feature
in the training dataset and use these to scale the corresponding features of new data.

3.6 Runtime Deployment
Deployment of our proposed method is designed to be simple and easy to use, similar to current
DNN usage techniques. We have encapsulated all of the inner workings, such as needing to read
the output of the premodel and then choosing the correct DNN model. A user would interact with
our premodel by simply calling a prediction function and getting a result in return in the same
format as the DNNs in use. Using image classification as an example, the return value would be the
predicted labels and their confidence levels.

4 EVALUATION SETUP
We apply our approach to two representative DNN domains: image classification and machine
translation. Each domain is presented as a case study (Sections 5 and 6) that shows the results at
each stage of applying our approach; providing an end-to-end analysis. The case studies will end
with an analysis in Section 7 of how our approach performed against other representative DNNs in
the domain. In the remainder of this section, we describe our evaluation setup and methodology.

4.1 Hardware and Software
Hardware.We evaluate our approach on the NVIDIA Jetson TX2 embedded deep learning platform.
The system has a 64 bit dual-core Denver2 and a 64 bit quad-core ARM Cortex-A57 running at
2.0 Ghz, and a 256-core NVIDIA Pascal GPU running at 1.3 Ghz. The board has 8 GB of LPDDR4
RAM and 96 GB of storage (32 GB eMMC plus 64 GB SD card).
System software. Our evaluation platform runs Ubuntu 16.04 with Linux kernel v4.4.15. We use
Tensorflow v.1.0.1, cuDNN (v6.0) and CUDA (v8.0.64). Our premodel is implemented using the
Python scikit-learn package. Our feature extractor is built upon OpenCV and SimpleCV.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

4.2 Evaluation Methodology
4.2.1 Model Evaluation. We use 10-fold cross-validation to evaluate each premodel on its

respective dataset. Specifically, we split our dataset into 10 sets which equally represent the full
dataset, e.g. if we consider image classification, we partition the 50K validation images into 10
equal sets, each containing 5K images. We retain one set for testing our premodel, and the
remaining 9 sets are used as training data. We repeat this process 10 times (folds), with each of the
10 sets used exactly once as the testing data. This standard methodology evaluates the
generalization ability of a machine-learning model.

We evaluate our approach using the following metrics:
• Inference time (lower is better). Wall clock time between a model taking in an input and
producing an output, including the overhead of our premodel.
• Energy consumption (lower is better). The energy used by a model for inference. For our
approach, this also includes the energy consumption of the premodel. We deduct the static
power when the system is idle.
• Accuracy (higher is better). The ratio of correctly labeled cases to the total number of testing
cases.

Metrics for image classification. The following metrics are specific to image classification:
• Precision (higher is better). The ratio of a correctly predicted images to the total number
of images that are predicted to have a specific object. This metric answers e.g., “Of all the
images that are labeled to have a cat, how many actually have a cat?".
• Recall (higher is better). The ratio of correctly predicted images to the total number of test
images that belong to an object class. This metric answers e.g., “Of all the test images that
have a cat, how many are actually labeled to have a cat?".
• F1 score (higher is better). The weighted average of Precision and Recall, calculated as
2 × Recall×Precision

Recall+Precision . It is useful when the test datasets have an uneven distribution of classes.
Metrics for machine translation. The following metrics are specific to machine translation:
• BLEU (higher is better). Similar to precision in image classification. It is a measure of how
much the words (and/or n-grams) in the DNNmodel output appeared in the reference output(s).
• Rouge (higher is better). Similar to recall in image classification. It is a measure of how much
the words (and/or n-grams) in the reference output(s) appear in the DNN model output.
• F1 measure (higher is better). Similar to F1 score for image classification. The weighted
average of BLEU and Rouge, calculated as 2 × Rouдe×BLEU

Rouдe+BLEU .

4.2.2 Performance Report. We report the geometric mean of the aforementioned evaluation
metrics across the cross-validation folds. To collect inference time and energy consumption, we
run each model on each input repeatedly until the 95% confidence bound per model per input is
smaller than 5%. In the experiments, we exclude the loading time of the DNN models as they only
need to be loaded once in practice. However, we include the overhead of our premodel in all our
experimental data. To measure energy consumption, we developed a lightweight runtime to take
readings from the onboard energy sensors at a frequency of 1,000 samples per second. It is to note
that our work does not directly optimize for energy consumption. We found that in our scenario
there is little difference when optimizing for energy consumption compared to time.

5 CASE STUDY 1: IMAGE CLASSIFICATION
To evaluate our approach in the domain of image classification we consider 14 pre-trained CNN
models from the TensorFlow-Slim library [63]. The models are built using TensorFlow and trained
on the ImageNet ILSVRC 2012 training set. We use the Imagenet ILSVRC 2012 validation set to
create the training data for our premodel, and evaluate it using cross-validation (see Section 4.2).

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:11

Table 3. All features considered for image
classification.

Feature Description
n_keypoints # of keypoints
avg_brightness Average brightness
brightness_rms Root mean square of brightness
avg_perc_brightness Average of perceived brightness
perc_brightness_rms Root mean square of perceived brightness
contrast The level of contrast
edge_length{1-7} A 7-bin histogram of edge lengths
edge_angle{1-7} A 7-bin histogram of edge angles
area_by_perim Area / perimeter of the main object
aspect_ratio The aspect ratio of the main object
hue{1-7} A 7-bin histogram of the different hues

Table 4. Correlation values (absolute) of removed
features to the kept ones for image classification.

Kept Feature Removed Feature Correl.
perc_brightness_rms 0.98
avg_brightness 0.91avg_perc_brightness
brightness_rms 0.88

edge_length1 edge_length {4-7} 0.78 - 0.85
hue1 hue {2-6} 0.99

M . n e t _ v 1 _ 1 0 0
I n c e p t i o n _ v 4

R e s n e t _ v 1 _ 1 5 2 O u r s0
1
2
3

Inf
ere

nc
e T

im
e (

s) i n f e r . m o d e l P r e m o d e l

M . n e t _ v 1 _ 1 0 0
I n c e p t i o n _ v 4

R e s n e t _ v 1 _ 1 5 2 O u r s0
1
2
3
4
5 I n f e r . m o d e l P r e m o d e l

Jo
ule

s

M . n e t _ v 1 _ 1 0 0
I n c e p t i o n _ v 4

R e s n e t _ v 1 _ 1 5 2 O u r s O r a c l e4 0
6 0
8 0

1 0 0

Ac
cu

rac
y (

%)

 T o p - 1 T o p - 5

M . n e t _ v 1 _ 1 0 0
I n c e p t i o n _ v 4

R e s n e t _ v 1 _ 1 5 2 O u r s
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 P r e c i s i o n R e c a l l F 1

(a) Inference Time (b) Energy Consumption (c) Accuracy (d) Precision, Recall & F1

Fig. 8. Image Classification – Overall performance of our approach against individual models and an Oracle
for inference time (a), energy consumption (b), accuracy (c), and precision, recall and F1 scores (d).

5.1 Premodel for Image Classification
5.1.1 Feature Selection. In this work, we considered a total of 29 candidate features, shown

in Table 3. The features were chosen based on previous image classification work [27], e.g. edge
based features (more edges lead to a more complex image), as well as intuition based on our
motivation (Section 2.1), e.g. contrast (lower contrast makes it harder to see image content). Table 4
summarizes the features removed using correlation-based feature selection, leaving 17 features.
Next, we iteratively evaluated feature importance and performed a greedy search that reduced our
feature count down to 7 features (see Table 5). This process is described in Section 3.5.1.

5.1.2 Feature Analysis. We now analyze the importance of each feature that was chosen during
our feature selection process. We calculate feature importance by first training a premodel using
all of our chosen features (n), and note the accuracy of our premodel. In turn, we then remove each
feature, retraining and evaluating our premodel on the remaining n − 1 features, noting the drop
in accuracy. We then normalize the values to produce a percentage of importance for each feature.
Figure 9a shows the top 5 dominant features based on their impact on our premodel accuracy. It is
clear our features hold a very similar level of importance, ranging between 18% and 11% for our
most and least important feature, respectively. The similarity of feature importance is an indication
that each of our features is able to represent distinct information about each image. All of which is
important for the prediction task at hand.

5.1.3 Creating The Premodel. Applying our automatic approach to premodel creation, described
in Section 3.2, resulted in implementing a multiple classifier architecture consisting of a series of
simple KNN models. We found that KNN has a quick prediction time (<1ms) and achieves a high
accuracy for this problem. Furthermore, we applied our Model Selection Algorithm (Section 3.3) to
determine which CNNs to be included in the premodel. As we have explained in Section 3.3, this
process resulted in a choice of: MobileNet_v1_100 for Model-1, Inception_v4 for Model-2, and,
finally, ResNet_v1_152 for Model-3. Finally, we use the training data generated in Section 5.1.1 and
10-fold-cross-validation to train and evaluate our premodel.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

Table 5. Image Classification – The final chosen
features after feature selection.

n_keypoints avg_perc_brightness hue1
contrast area_by_perim edge_length1
aspect_ratio

Table 6. Machine Translation – The final chosen
features after feature selection.

n_words
avg_adj
BoW

5.2 Overall Performance of Image Classification
5.2.1 Inference Time. Figure 8a compares the inference time among DNN models used by our

premodel and our approach. Due to space limitations we limit to these three models
(MobileNet_v1_100, Inception_v4, and ResNet_v1_152) since they are the ones used by our
premodel. MobileNet_v1_100 is the fastest model for inferencing, being 2.8x and 2x faster than
Inception_v4 and ResNet_v1_152, respectively, but is least accurate (see Figure 8c). The average
inference time of our approach is under a second, which is slightly longer than the 0.4 second
average time of MobileNet_v1_100. Our slower time is a result of using a premodel, and
choosing Inception_v4 or ResNet_v1_152 on occasion. Most of the overhead of our premodel
comes from feature extraction. Our approach is 1.8x faster than Inception_v4, the most accurate
inference model in our model set. Given that our approach can significantly improve the prediction
accuracy of MobileNet_v1_100, we believe the modest cost of our premodel is acceptable.

5.2.2 Energy Consumption. Figure 8b gives the energy consumption. On the Jetson TX2 platform,
the energy consumption is proportional to the model inference time. As we speed up the overall
inference, we reduce the energy consumption by more than 2x compared to Inception_v4 and
ResNet_v1_152. The energy footprint of our premodel is small, being 4x and 24x lower than
MobileNet_v1_100 and ResNet_v1_152 respectively. As such, it is suitable for power-constrained
devices, and can be used to improve the overall accuracy when using multiple inferencing models.
Furthermore, in cases where the premodel predicts that none of the DNN models can successfully
infers an input, it can skip inference to avoid wasting power. It is to note that since our premodel
runs on the CPU, its energy footprint ratio is smaller than that for runtime.

5.2.3 Accuracy. Figure 8c compares the top-1 and top-5 accuracy achieved by each approach. We
also show the best possible accuracy given by a theoretically perfect predictor for model selection,
for which we call Oracle. Note that the Oracle does not give a 100% accuracy because there are
cases where all the DNNs fail. However, not all DNNs fail on the same images, i.e. ResNet_v1_152
will successfully classify some images which Inception_v4 will fail on. Therefore, by effectively
leveraging multiple models, our approach outperforms all individual inference models. It improves
the accuracy of MobileNet_v1_100 by 16.6% and 6% for the top-1 and the top-5 scores, respectively.
It also improves the top-1 accuracy of ResNet_v1_152 and Inception_v4 by 10.7% and 7.6%,
respectively. While we observe little improvement for the top-5 score over Inception_v4 – just
0.34% – our approach is 2x faster than it. Our approach delivers over 96% of the Oracle performance
(86.3% vs 91.2% for top-1 and 95.4% vs 98.3% for top-5). This shows that our approach can improve
the inference accuracy of individual models. Overall, we achieve a 7.52% improvement in accuracy
over the most-capable single DNN model, while reducing inference time by 1.8x.

5.2.4 Precision, Recall, F1 Score. Finally, Figure 8d shows our approach outperforms individual
DNNmodels in other evaluationmetrics. Specifically, our approach gives the highest overall precision,
which in turns leads to the best F1 score. High precision can reduce false positive, which is important
for certain domains like video surveillance because it can reduce the human involvement for
inspecting false positive predictions.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:13

a s p e c t _ r a t i o
n _ k e y p o i n t s

a v g _ p e r c . _ b r i g h t . c o n t r a s t
e d g e _ l e n g t h 10

5
1 0
1 5
2 0

los
t a

ccu
rac

y (
%)

B o W n _ w o r d s a v g _ a d j
0
2
4
6
8

1 0
1 2
1 4

Ac
cu

rac
y L

os
s (

%)

(a) Image Classification (b) Machine Translation

Fig. 9. The loss in accuracy when final chosen features are not used in our premodel. For image classification
(a) we only show the top five. For machine translation (b) we show all 3.

Table 7. All features considered for machine
translation. See Section 3.5

Feature Description
n_words # words in the sentence
n_bpe_chars # bpe characters in a sentence
avg_bpe Average number of bpe characters per word
n_tokens # tokens in the sentence when tokenized
avg_noun Average number of nouns per word
avg_verb Average number of verbs per word
avg_adj Average number of adjectives per word
avg_sat_adj Average number of satellite adjectives per word
avg_adverb Average number of adverbs per word
avg_punc Average punctuation characters per word
avg_word_length Average number of characters per word

Table 8. Correlation values (absolute) of
removed features to the kept ones for machine

translation.
Kept Feature Removed Feature Correl.

n_bpe_chars 0.96n_words n_tokens 0.99

6 CASE STUDY 2: MACHINE TRANSLATION
To evaluate our approach for machine translation we consider 15 DNN models. We include models
of varying sizes and architectures, all trained using Tensorflow-NMT, a Neural Machine
Translation library provided by Tensorflow [43]. We name our models using the following
convention: {gnmt_}N_layer, we prefix the name with gnmt_where the model uses the Google
Neural Machine Translation Attention [18], and N is the number of layers in the model. e.g.
4_layer is a default Tensorflow-NMT model made up of 4 layers. The models were trained on the
WMT09-WMT14 English-German newstest dataset, and we use the WMT15/16 English-German
newstest dataset [71] to create our premodel training data. Using 10-fold-cross-validation on our
premodel to give a end-to-end analysis of our approach.

6.1 Premodel for Machine Translation
6.1.1 Feature Selection. We considered a total of 11 features, which can be seen in Table 7, and

a Bag of Words (BoW) representation of each sentence (explained in more detail below). Similar to
image classification, we chose our candidate features based on previous work [36, 42], e.g. BoW, as
well as intuition based on our motivation (Section 2.1), e.g. n_words (longer sentences are more
complex and require a more complex translator).
Bag of words. Applying our method to machine translation brings with it the need to classify each
sentence to predict the optimal DNN. Text classification is a notoriously difficult task, and is made
more difficult when we only have a single sentence to gather features from. We are able to create a
successful premodel only using the features described in Table 7. However, with the addition of a
Bag of Words (BoW) representation of each sentence we saw an increase in accuracy. Furthermore,
previous work in sentence classification [36, 42, 44] often use a BoW representation, suggesting
that BoW can be useful for characterizing and modeling a sentence. A BoW representation of text
describes the occurrence of words within the text. It is represented as a vector that is based on a
vocabulary. We generated a domain specific vocabulary based on all words in our training dataset.
Finally, we used Chi-square (Chi2) to perform feature reduction, which is widely used for BoW,
leaving us with a BoW feature vector of length 1500. We include a full evaluation of the effect of
BoW and Chi2 feature selection on our machine translation premodel in Section 7.3.2.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

3 _ l a y e r
g n m t _ 2 _ l a y e r

g n m t _ 8 _ l a y e r
O u r A p p r o a c h O r a c l e

0
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0

Inf
ere

nc
e T

im
e (

ms
)

3 _ l a y e r
g n m t _ 2 _ l a y e r

g n m t _ 8 _ l a y e r
O u r A p p r o a c h O r a c l e

0
2
4
6

Jo
ule

s

3 _ l a y e r
g n m t _ 2 _ l a y e r

g n m t _ 8 _ l a y e r
O u r A p p r o a c h O r a c l e

01 02 03 04 05 06 07 0 B L E U R o u g e F 1

(a) Inference Time (b) Energy Consumption (c) BLEU, Rouge, and F1

Fig. 10. Machine Translation – Overall performance of our approach against individual models and an Oracle.

Table 8 summarizes the features we removed during the first stage of feature selection, leaving
9 features. During the second stage we reduced our feature count down to 3 features (see Table 6).
Figure 9b summarizes the accuracy loss by removing any of the three selected features; the two
shown in Table 6, and a BoW representation. It can be seen that by including BoW we reach a much
higher accuracy. This is to be expected, as BoW is a well researched and used representation of text
input. If we remove either n_words or avg_adj there is a small drop in accuracy, this indicates that
BoW is able to capture similar information. We chose to keep both of these features as they bring a
small increase to accuracy with negligible overhead.

6.1.2 Creating The Premodel. Using our approach resulted in implementing a single NB classifier
premodel. We believe that a single architecture premodel was chosen because of our reduced
dataset, i.e. we have one tenth of the training data compared to image classification. NB achieved a
high accuracy for this task, and has a quick prediction time (<1ms).
Applying our Model Selection Algorithm, we set selection_method to ‘Accuracy’ and θ to 2.0.

Again, see Section 7.2 for a sensitivity analysis of these parameters. This resulted in a premodel
selection of gnmt_2_layer, gnmt_8_layer, and gnmt_3_layer for Model-1, Model-2, and Model-3,
respectively. Finally, we use the training data generated in Section 6.1.1 and 10-fold-cross-validation
to train and evaluate our premodel.

6.2 Overall Performance for Machine Translation
In this section, we evaluate our methodology when applied to Neural Machine Translation (NMT).
We compare our approach to three other NMT models considered in our premodel. We chose these
models as they show a range of complexity and capability. Furthermore, we compare our approach
to an Oracle, a theoretical perfect approach that achieves the best possible score for each metric.

6.2.1 Inference Time. As depicted in Figure 10a, 3_layer is the quickest DNN, 1.55x faster than the
Oracle and 2.05x faster than the most complex individual DNN, gnmt_8_layer. However, 3_layer
is also the least accurate DNN (Figure 10c) as it is outperformed in every accuracy metric by all
other approaches. Our approach, the Oracle, and gnmt_2_layer have very similar inference times;
nonetheless, our approach and the Oracle outperform gnmt_2_layer for accuracy. The runtime
of our premodel and feature extraction is small, consisting of <1ms for the premodel and <5ms for
feature extraction, per sentence. Feature extraction and premodel overheads are included in the
inference time of our approach and the Oracle. Incidentally, our approach is slightly quicker than
the Oracle; this is a result of our premodel often mispredicting gnmt_2_layer for gnmt_8_layer
and vice versa. This specific misprediction makes up 38.5% of the cases where premodel makes
an incorrect prediction. To improve accuracy we will need more data to train our premodel, as
we currently have a high feature to sentence ratio. Alternatively, we could deeply investigate the
sentences that are best for each model and intuitively add a new feature to our premodel, however,
the differences may not be intuitive to spot. Overall, we are 1.34x faster than the single most capable
DNN without a decrease in accuracy.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:15
C N

N
S V

M
D e

c i s
i o n

 T r
e e s K N

N
d t . s

v m
. d t

k n n
. d t .

d t
s v m

. d t .
d t

d t . k
n n .

d t
k n n

. s v
m . d

t
s v m

. s v
m . d

t
d t . s

v m
. s v

m
d t . k

n n .
s v m

k n n
. d t .

s v m
d t . k

n n .
k n n

s v m
. d t .

s v m
k n n

. s v
m . s

v m
d t . s

v m
. k n

n
s v m

. s v
m . s

v m
k n n

. k n
n . d

t
d t . d

t . k n
n

s v m
. k n

n . d
t

k n n
. d t .

k n n
d t . d

t . d t
k n n

. s v
m . k

n n
s v m

. d t .
k n n

d t . d
t . s v

m
s v m

. s v
m . k

n n
k n n

. k n
n . s

v m
s v m

. k n
n . s

v m
s v m

. k n
n . k

n n
k n n

. k n
n . k

n n

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6 T i m e T o p - 1 P e r c e n t a g e

Tim
e (

s)

5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0 Top-1 Percentage

F e a t u r e S t a c k i n
g

M u l t i D
T
S i n g l e D T

M u l t i K
N N

S i n g l e K N N
M u l t i S

V M
M u l t i N

B

S i n g l e S V M
S i n g l e N B

0
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0 I n f e r e n c e F 1

Inf
ere

nc
e (

ms
)

3 5
3 6
3 7
3 8
3 9
4 0

F1

(a) Image Classification (b) Machine Translation

Fig. 11. Comparison of alternative predictive modeling techniques for building the premodel.

6.2.2 Energy Consumption. Figure 10b compares energy consumption, including premodel costs,
which are negligible (See Section 7.4). Much like the image classification DNNs, energy consumption
is proportional to model inference time; therefore, as we reduce overall inference time we also
improve energy efficiency. A major difference between energy consumption and inference time is
the emphasized ratios between each model, e.g. gnmt_2_layer is 1.24x quicker than gnmt_8_layer,
but it uses 1.90x less energy, nearly half as much. Overall, we use 1.39x less energy on average
than the single most capable model, without a significant change in F1 measure. Therefore, our
methodology can be used to improve energy efficiency while having little impact on accuracy, or
in some cases, seeing an improvement in accuracy. Furthermore, our premodel is able to predict
when none of the DNNs are able to give a suitable output, in this case we can skip inference to avoid
wasting power. Implementing this results in using 1.48x less energy on average than gnmt_8_layer.

6.2.3 BLEU, Rouge, and F1 Measure. Figure 10c compares DNNs across our accuracy metrics. We
will mostly compare F1 measure here, but all metrics follow the same pattern. As all models do
not fail on the same sentences, we are able to achieve an overall better F1 measure by leveraging
multiple DNNs. This can be seen by looking at the Oracle, which achieves an F1 measure of 47.54,
a 20% increase over gnmt_8_layer, which achieves 39.71. For this case study, we achieved 83% of
the Oracle F1 measure. Overall our approach achieves approximately the same F1 measure as the
single most capable model, and improves upon the accuracy of gnmt_2_layer (the closest single
DNN in terms of inference time), by 4%. For our premodel to achieve its full potential, as show by
the Oracle, we require more data to train and test our premodel.
7 ANALYSIS
We now analyze the working mechanism of our approach to justify our design choices.
7.1 Alternative Techniques for Premodel

7.1.1 Image Classification. Figure 11a shows the top-1 accuracy and runtime for using different
techniques to construct the premodel. Here, the learning task is to predict which of the inference
models, MobileNet, Inception, and ResNet, to use. In addition to our multi-classifier architecture
made up of only KNN classifiers, we have considered different variations of Decision Trees (DT) and
Support Vector Machines (SVM). We also consider a single architecture premodel using the above
mentioned ML techniques, and a CNN. Our CNN-based premodel is based on the MobileNet structure,
which is designed for embedded inference. We train all models using the same examples. We also
use the same feature set for KNN, DT, and SVM. For the CNN, we use an automated hyper-parameter
tuner [38] to optimize the training parameters, and we train the model for over 500 epochs.
Notation. In this instance, our multiple classifier architecture requires 3 components. We denote a
premodel configuration as X .Y .Z (see also Section 3.2.1), where X , Y and Z indicate classifier for
the first, second and third level of the premodel, respectively. For example, KNN.SVM.KNN denotes
using a KNN model for the first and last levels, with a SVM model at the second level.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:16 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

O p t i m a l - 5 . 0
O p t i m a l - 2 . 0

O p t i m a l - 1 . 0
O p t i m a l - 0 . 5

A l t e r n a t e - 5 . 0
A l t e r n a t e - 2 . 0

A l t e r n a t e - 1 . 0
A l t e r n a t e - 0 . 5

A c c u r a c y - 5 . 0
A c c u r a c y - 2 . 0

A c c u r a c y - 1 . 0
A c c u r a c y - 0 . 5

0
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0 M e a n R u n t i m e T o p - 1 A c c u r a c y

Me
an

 Ru
nti

me
 (m

s)

0
2 0
4 0
6 0
8 0
1 0 0 Top-1 Accuracy (%)

Fig. 12. The inference time and Top-1 accuracy achieved when building a premodel based on the Model
Selection Algorithm configurations shown.

While we hypothesized a CNN model to be effective, the results are disappointing given its high
runtime overhead. A KNN model has an overhead that is comparable to the DT and the SVM, but has
a higher accuracy. It is clear that our chosen premodel architecture (KNN.KNN.KNN) was the best
choice, it achieves the highest top-1 accuracy (87.4%) and the fastest running time (0.20 second).
One of the benefits of using a KNN model in all levels is that the neighbouring measurement only
needs to be performed once as the results can be shared among models in different levels; i.e. the
runtime overhead is nearly constant if we use the KNN across all hierarchical levels. The accuracy
for each of our KNN models in our premodel is 95.8%, 80.1%, 72.3%, respectively.

7.1.2 Machine Translation. Figure 11b shows the F1 measure and inference time for different
architectures of premodel when applied to the machine translation problem. In this instance, we
are predicting whether to use gnmt_2_layer, gnmt_8_layer, or gnmt_3_layer for translating an
input sentence. Our premodel can also predict that all these translators will fail, making a total
of 4 labels to choose from. We evaluated single and multiple architectures, across KNN, DT, SVM, and
NB classifiers. For multiple classifier architectures we carried out a less exhaustive search compared
to Section 7.1.1; we discovered that best performance was often achieved by using the same classifier
for each component. Finally, we compare an alternate approach named feature stacking [42]. Using
feature stacking we split classification into two classifiers, one using the BoW features, the other
using our remaining features, we then use a probability measure choose the predicted model.
For this problem we can see that the single classifier architecture always outperforms its

multiple classifier alternative. This is likely as a result of our high dimensional feature space, with
a comparatively low training set. Feature stacking also had a poor performance for this problem, in
fact it performs worse than all other architectures, indicating that our features work better
together. Overall, there is little variance in the runtime of each approach, every model achieves a
runtime between 1100ms and 1140 ms. Our chosen approach, a single NB classifier, achieves the
highest F1 measure overall, with very similar runtime to all other approaches.
7.2 Sensitivity Analysis for Model Selection Algorithm
In Section 3.3, we describe the algorithmwe created to decidewhich DNNs to include in our premodel.
In this section we will analyze how changing the parameters given to the Model Selection Algorithm
effect our premodel, and the resultant end-to-end performance. We will perform a case study using
image classification, but the results for machine translation are very similar. We consider the
performance if we were able to create a perfect predictor as a premodel, this is to prevent our
premodel accuracy from introducing any noise and allowing us to evaluate the Model Selection
Algorithm in isolation. a total of 12 parameter configurations – our three available choices for
SelectionMethod (defined in Section 3.3), and 4 different choices for θ (5.0, 2.0, 1.0, and 0.5). We take
every combination of these parameters.
Notation. Our parameter configuration is SelectionMethod-θ , where SelectionMethod is either
Accuracy, Optimal, or Alternate; and θ is our threshold parameter. For example, the notation
Accuracy-5.0, means we always select the most accurate model in each iteration of our algorithm,
and we stop once our accuracy improvement is less than 5.0%.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:17

n _ k e y p o i n t s

a s p e c t _ r a t i o
c o n t r a s t h u e 1

a r e a _ b y _ p e r i m

a v g _ p e r c e i v e d _ b r i g h t n e s s

e d g e _ l e n g t h 1 h u e 7

e d g e _ a n g l e 5

e d g e _ l e n g t h 3

e d g e _ a n g l e 3

e d g e _ a n g l e 6

e d g e _ a n g l e 4

e d g e _ a n g l e 7

e d g e _ a n g l e 1

e d g e _ l e n g t h 2

e d g e _ a n g l e 20
5

1 0
1 5
2 0

Im
po

rta
nc

e (
%)

Fig. 13. Image Classification – Accuracy loss if a
feature is not used.

5 6 7 8 9

0 . 0

0 . 1

0 . 2

0 . 3

To
p-1

 Ac
cu

rac
y (

%)

Ex
tra

ctio
n T

im
e (

s)

F e a t u r e s

 E x t r a c t i o n T i m e (s) T o p - 1 A c c u r a c y (%)

0
2 0
4 0
6 0
8 0
1 0 0

Fig. 14. Image Classification – The impact of
premodel feature count on premodel runtime and
overall top-1 score.

n _ w o r d s
a v g _ a d j

a v g _ s a t _ a d j

a v g _ a d v e r b
a v g _ n o u n

a v g _ w o r d _ l e n
a v g _ v e r b

a v g _ b p e
a v g _ p u n c

0
2 0
4 0
6 0

Ac
cu

rac
y L

os
s (

%)

Fig. 15. Machine Translation – Accuracy loss if
a certain feature is not used.

5 0 0 0 4 0 0 0 3 5 0 0 3 0 0 0 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0 5 0 0
0
2
4
6
8

Ac
cu

rac
y L

os
s (

%)
K

Fig. 16. Machine Translation – Accuracy loss for
different values of k using Bag of Words. k=2000 is
our baseline.

7.2.1 Results. Figure 12 shows the effect of different parameters on our final premodel results. As
we decrease θ , our Model Selection Algorithm will select more models to include in our premodel,
e.g. The premodel of Alternate-5.0 to Alternate-0.5 is made up of 3, 4, 5, and 7 DNN classifiers,
respectively. Including more DNNs results in a higher overall top-1 accuracy, however there are also
some drawbacks. More DNNs means more classes for our premodel to choose between, therefore
making the job of the premodel harder. It also means that we need to hold more DNNs in memory,
which could be an issue for devices with limited memory (We discuss resource usage in more detail
in Section 7.6.2). It is worth noting that there is no change in DNN selection from Optimal-2.0 to
Optimal-1.0, as the next model that we can add only brings an accuracy improvement of 0.488.
Finally, we can see that each SelectionMethod has its own ’profile’, that is, each has its own

positive and negative impact. Figure 12 shows that Optimal results in an overall faster runtime,
however, it has a lower top-1 accuracy. Accuracy is able to achieve the highest possible top-1 score,
but this comes at the cost of speed, achieving 1.26x slowdown for a 2% accuracy increase. Alternate
attempts to find a balance between the other two approaches, it is able to achieve and accuracy and
runtime in between Optimal and Accuracy.

7.3 Feature Importance
7.3.1 Image Classification. Our feature selection process (described in Section 3.5) resulted in

using 7 features to represent each image to our premodel. In Figure 13 we show the importance of
all of the chosen features along with other considered ones (given in Tables 3 and 4). The first 7
chosen features are the most important; there is a sudden drop in feature importance at feature 8
(hue7). Furthermore, Figure 14 shows the impact on premodel execution time and top-1 accuracy
when we change the number of features used. By decreasing the number of features there is a
dramatic decrease top-1 accuracy, with very little change in extraction time. To reduce overhead,
we would need to reduce our feature count to 5, however this comes at the cost of a 13.9% decrease
in top-1 accuracy. By increasing the feature count it can be seen that there is minor changes in
overhead, but, surprisingly, there is actually also a small decrease in top-1 accuracy of 0.4%. From
this we can conclude that using 7 features is ideal.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:18 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

0 2 4 6 8 1 05 5
6 0
6 5
7 0
7 5
8 0
8 5

To
p-1

 (%
)

R a d i u s
Fig. 17. The top-1 score when changing the radius of our image classification premodel.

7.3.2 Machine Translation. As with image classification above, in this section we will evaluate
our feature selection process on the machine translation problem. We will evaluate our BoW feature
separately so clearly show the importance of all feature choices. Figure 15 shows the importance
of all our features which were not removed during our correlation check (See Table 8). As we
discussed in Section 5.1.2, n_words and avg_adj are essential to premodel accuracy, it is clear that
removing either of them severely deteriorates our premodel. If we were to keep avg_sat_adj, we
would see a 2.9% increase in premodel accuracy, however we choose to leave this out as it provides
negligible improvements in the presence of BoW.
Bag of words. We found that including BoW as a feature in our premodel brought improvements
in accuracy for little overhead (See Figure 9b). We use the chi-squared test to evaluate each row of
our BoW vector, and choose the top k features. In Figure 16 we show the accuracy loss by choosing
different values of k , as a baseline we use our chosen value k=2000. It is clear that choosing a value
greater than 2000 results in a dramatic loss in accuracy (nearly 4%), which quickly increases as k
increases. Setting k=1500 results in a small loss in accuracy, but reducing it further leads to much
bigger losses in accuracy. e.g. k=500 results in a 5.75% loss in accuracy. This indicates that k>2000
results in our premodel that is prone to overfitting, while k<1500 is unable to capture all of the
information required for accurate predictions, therefore the optimal value of k sits around the
2000-1500 mark. We chose k=2000 as we achieved the highest accuracy with this value, and the
overhead of increasing k is negligible.

7.4 Training and Deployment Overhead
Training the premodel is a one-off cost, and is dominated by the generation of training data which
takes, in total, less than a day (see Section 3.4). We can speed this up by using multiple machines.
Compared to the training time of a typical DNN, our training overhead is negligible. Because our
approach trades RAM space for improved accuracy and reduced inference time, we provide an
evaluation of resource utilization in Section 7.6.2. In addition to our case studies, we have evaluated
our premodel overhead for object detection, using the COCO dataset [41], where the runtime
overhead is similar to image classification, under 13.5%.
Image classification. The runtime overhead of our premodel is minimal, as depicted in Figure 8a.
Out of a total average execution time of <1 second to classify an image, our premodel accounts for
28%. In comparison, this is 12.9% and 71.7% of the average execution time of the most
(ResNet_v1_152) and least (MobileNet_v1_100) expensive models, respectively. Furthermore, our
energy footprint is smaller, making up 11% of the total cost. Comparing this to the most and least
expensive models, gives an overhead of 7% and 25%, respectively.
Machine translation. Feature extraction costs are much smaller in this domain, hence the
overheads of our premodel are negligible: <6ms overall, which accounts for 0.5% of the end-to-end
cost when translating a sentence. Similarly, the energy cost of our premodel accounts for 0.48% of
the overall energy cost. The memory footprint of our premodel is also insignificant.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:19

7.5 Soundness Analysis
It is possible that our premodel will provide an incorrect prediction. That is, it could choose either
a DNN that gives an incorrect result, or a more expensive DNN. Theoretical proof of soundness
guarantee of machine learning models is an outstanding challenge and is out of the scope of
the paper [4]. Nonetheless, there are two possible ways to empirically estimate the prediction
confidence: (1) using the distance on the feature space as a soundness measurement, or (2) using
statistical assessments. We described both methods as follows.
Distance measurement. Figure 17 shows how the accuracy of image classification (under the
top-1 score) changes as the permissible distance for choosing the nearest training images changes.
Recall that each training image is associated with an optimal model for that image and by choosing
the nearest training images to the input, we can then use a voting scheme to determine which
of the associate DNNs to use for the input image. Here, the distance is calculated by computing
the Euclidean distance between the input testing image and a training image on the feature space.
The results are averaged across our testing images using cross-validation. When the permissible
distance increases from 0 to 2, we see an increase in the inference accuracy. This is because using a
short distance reduces the chance of finding a testing image that is close enough. However, we
observe that when the permissible distance is greater than 2, the inference accuracy drops as the
distance increases. This is because when the permissible distance goes beyond this point, we are
more likely to choose a testing image (and the associated optimal model) that is not similar enough
to the input. This example shows that the permissible distance can be empirically determined and
used as a proxy for the accuracy confidence.
Statistical assessments. Another method for soundness guarantee is to combine probabilistic
and statistical assessments. This can be done by using a Conformal Predictor (CP) [62] to determine
to what degree a new, unseen input conforms to previously seen training samples. The CP is a
statistical assessment method for quantifying how much we could trust a model’s prediction. This
is achieved by learning a nonconformity function from the model’s training data. This function
estimates the “strangeness" from input features, x , to a prediction output, y, by looking at the input
and the probability distribution of the model prediction. Specifically, we learn a nonconformity
function, f , from our premodel training dataset, which produces a non-conformity score for the
premodel’s input xi and output yi :

f (xi ,yi) = 1 − P̂h (yi |xi)

Here, P̂h is the statistical distribution of the premodel’s probabilistic output, calculated as:

p
yi
xi =

|{zj ∈ Z : aj > a
yi
i }|

q + 1
+ θ
|{zj ∈ Z : aj = a

yi
i }| + 1

q + 1
,θ ∈ [0, 1]

where Z is part of the training dataset chosen by the CP, q is the length of Z , ai is the calibration
score learned from training data, ayii is the statistical score for premodel prediction yi , and θ is a
calibration factor learned by the CP.

The learned function f produces a non-conformity score between 0 and 1 for every class for each
given input. The closer the score to 0, the more likely the input is to conform to the premodel’s
output, i.e. it is similar to training samples of that class. By choosing a threshold, we can predict
whether our premodel gives an incorrect DNN for a given input. By implementing an SVM based
conformal predictor for image classification, and using a threshold value of 0.5, we can correctly
predict when our premodel will choose an incorrect DNN 87.4% of the time, with a false positive
rate of 5.5%. This experiment shows that we can use the CP to estimate if the premodel’s output
can be trusted to provides a certain degree of soundness guarantee.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

1 2 3 4 50 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

Inf
ere

nc
e T

im
e (

s)

I n f e r e n c e M o d e l s

 I n f e r e n c e T i m e (s)

0
2 0
4 0
6 0
8 0
1 0 0 T o p - 1 a c c u r a c y

 To
p-1

 Ac
cu

rac
y (

%)

Fig. 18. Overhead and achieved performance when
using a different number of DNN models. The range
of inference time across testing images is shown
using min-max bars.

M . n e t _ v 1 _ 1 0 0
I n c e p t i o n _ v 4

R e s n e t _ v 1 _ 1 5 2 F a i l u r e
0

2 0
4 0
6 0
8 0

1 0 0

Pe
rce

nta
ge

 (%
)

Fig. 19. The utilization of each DNN included in our
premodel.

i n c e p t i o n _ v 1

i n c e p t i o n _ v 2

i n c e p t i o n _ v 4

r e s n e t _ v 1 _ 5 0

r e s n e t _ v 1 _ 1 0 1

r e s n e t _ v 1 _ 1 5 2

r e s n e t _ v 2 _ 5 0

r e s n e t _ v 2 _ 1 0 1

r e s n e t _ v 2 _ 1 5 2

m o b i l e n e t _ v 1

m o b i l e n e t _ v 1 _ 0 7 5

m o b i l e n e t _ v 1 _ 0 5 0

m o b i l e n e t _ v 1 _ 0 2 5

O u r a p p r o a c h
0

2 0
4 0
6 0
8 0

1 0 0

CP
U (

%)

i n c e p t i o n _ v 1

i n c e p t i o n _ v 2

i n c e p t i o n _ v 4

r e s n e t _ v 1 _ 5 0

r e s n e t _ v 1 _ 1 0 1

r e s n e t _ v 1 _ 1 5 2

r e s n e t _ v 2 _ 5 0

r e s n e t _ v 2 _ 1 0 1

r e s n e t _ v 2 _ 1 5 2

m o b i l e n e t _ v 1

m o b i l e n e t _ v 1 _ 0 7 5

m o b i l e n e t _ v 1 _ 0 5 0

m o b i l e n e t _ v 1 _ 0 2 5

O u r a p p r o a c h
0

2 0
4 0
6 0
8 0

1 0 0
GP

U (
%)

i n c e p t i o n _ v 1

i n c e p t i o n _ v 2

i n c e p t i o n _ v 4

r e s n e t _ v 1 _ 5 0

r e s n e t _ v 1 _ 1 0 1

r e s n e t _ v 1 _ 1 5 2

r e s n e t _ v 2 _ 5 0

r e s n e t _ v 2 _ 1 0 1

r e s n e t _ v 2 _ 1 5 2

m o b i l e n e t _ v 1

m o b i l e n e t _ v 1 _ 0 7 5

m o b i l e n e t _ v 1 _ 0 5 0

m o b i l e n e t _ v 1 _ 0 2 5

O u r a p p r o a c h
0

2 0
4 0
6 0
8 0

1 0 0

Me
m.

 us
ag

e (
%)

(a) CPU Utilization (b) GPU Utilization (c) Memory Utilization

Fig. 20. The average CPU, GPU, and Memory utilization per model. Compared against our approach.

7.6 Further In-Depth Analysis
This section contains an in-depth analysis using image classification as a case study. The results
are similar when we apply the same analysis to the machine translation case study.

7.6.1 Changing the premodel Size. In Section 3.3 we describe the method we use to chose which
DNN models to include. Using the Accuracy method, and temporarily ignoring the model selection
threshold θ in Algorithm 1, we constructed Figure 18, where we compare the top-1 accuracy and
execution time using up to 5 KNN models. As we increase the number of inference models, there
is an increase in the end to end inference time as expensive models are more likely to be chosen.
At the same time, however, the top-1 accuracy reaches a plateau of (≈87.5%) by using three KNN
models. We conclude that choosing three KNN models would be the optimal solution for our case,
as we are no longer gaining accuracy to justify the increased cost. This is in line with our choice of
a value of 0.5 for θ . Additionally, Figure 19 shows the utilization percentage of each model by our
approach. Our approach can also choose to not select any model for an image if it deems none of
the available models as suitable for it. We use Failure to represent this in the Figure. Overall, 87.5 %
of the time a model is selected, leaving 12.5 % of the time Failure is selected.
In Section 3.3 we describe the method we use to chose which DNN models to include. Using the

Accuracy method, and temporarily ignoring the model selection threshold θ in Algorithm 1, we
constructed Figure 18, where we compare the top-1 accuracy and execution time using up to 5
KNN models. As we increase the number of inference models, there is an increase in the end to end
inference time as expensive models are more likely to be chosen. At the same time, however, the
top-1 accuracy reaches a plateau of (≈87.5%) by using three KNNmodels. We conclude that choosing
three KNN models would be the optimal solution for our case, as we are no longer gaining accuracy
to justify the increased cost. This is in line with our choice of a value of 0.5 for θ . Additionally,
Figure 19 shows the utilization percentage of each model by our approach. Our approach can also
choose to not select any model for an image if it deems none of the available models as suitable for
it. We use Failure to represent this in the Figure. Overall, 87.5 % of the time a model is selected,
leaving 12.5 % of the time Failure is selected.

7.6.2 Resource Utilization. Figure 20 shows the average CPU, GPU and memory utilization of a
selection of image classification DNNs. We recorded the utilization of each resource during inference
on every image in the ImageNet ILSVRC 2012 validation dataset, and report the average.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:21

Table 9. The change in model size when using
compression on Resnet_v2_152

Model Size (MB)

Without Compression 691
Deep Compression 317.12
Quantization 473.42
Both Compression Methods 226.22

N o C o m p r e s s i o n

D e e p C o m p r e s s i o n
Q u a n t i z a t i o n B o t h

O u r A p p r o a c h
0

5 0 0
1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0 I n f e r e n c e T o p - 1 T o p - 5

Inf
ere

nc
e (

ms
)

0
2 0
4 0
6 0
8 0
1 0 0

Accuracy (%)

Fig. 21. The inference time, top-1, and top-5
performance using compression on a single DNN.

CPU. Figure 20a shows the CPU utilization. All DNNs primarily run on the GPU, therefore we see a
low CPU utilization overall; no DNN has a utilization higher than 30%. Our approach is one of the
most expensive, using 28.11% of the CPU, it is only cheaper than MobileNet_v1 and Inception_v4,
which use 32.63% and 29.42%, respectively. In this category, our approach is expensive as we include
the two most expensive models.
GPU. GPU utilization is shown in Figure 20b. As expected, this is much higher than CPU utilization,
with the majority of DNNs using between 70-90% of the GPU. In contrast, our approach has a much
lower utilization of 37.46%; 52.18% lower than the most expensive model, ResNet_v2_152. We
achieve this by making use of MobileNet_v1 whenever possible, which has a utilization of 10.57%.
Memory. Figure 20c compares the memory utilization. Our approach keeps the selected DNNs in
memory, therefore it is the most expensive in this category. However, our approach only requires
16% more memory than the most expensive model, a small cost to pay for reduced CPU and GPU
load, and a faster inference time with higher accuracy.
7.6.3 Compression. So far we have shown the ability of our approach to utilize multiple DNNs,

however, this is not always possible. In some cases only a single trained DNN is available, this could
be caused by a number of reasons, e.g. limited training time. This section shows how our approach
can still be utilized in this case, by making use of compression. We use two different compression
algorithms: Deep Compression [24] and Quantization [33]. By first applying Deep Compression
followed by Quantization, we effectively have a third compression "algorithm". Compression is
designed to make a DNN lighter – it has a faster inference time and a smaller size (See Table 9) –
however, as a consequence the model accuracy also degrades.

We chose Resnet_v2_152 as a starting model. It is the most complex model we consider with the
highest accuracy, unfortunately, as a consequence it also has the longest runtime at 2026ms. By
applying each of our three compression algorithms, we generate a total of 4 different models. Using
the 4 distinct DNNs, we apply our method to create a new premodel.
Figure 21 shows the performance of each compressed model and our approach. There is a

clear trend, applying compression reduces accuracy while reducing inference time. Applying both
compression methods in practice would result in an unacceptable accuracy drop, reducing top-1
accuracy by 34.32%. However, it makes sense in this scenario as our approach is able to make use
of a model compressed by both methods when it can meet the accuracy constraint. Our approach
is able to achieve a minor drop in accuracy (1.76% for top-1, and 0.31% for top-5), while reducing
inference time by 1.52x. Effectively, we are able to utilize the positive of compression (reduced
runtime) while keeping the accuracy of the original model.

8 DISCUSSION
Feature extraction. The majority of our image classification overhead is caused by feature
extraction for our premodel. Our prototype feature extractor is written in Python; by re-writing
this tool in a more efficient language can reduce the overhead. There are also hotshots in our code
which would benefit from parallelism.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

Premodel training. There is room for improvement for our machine translation premodel. We
were unable to reach the full potential shown by the Oracle. To aid the premodel in reaching
its full potential would require improving its accuracy. We believe we require more training data.
There was only 5K sentences available for machine translation, in comparison to 50k images for
image classification.
Computation Offloading. This work focuses on accelerating inference on the current device.
Future work could involve an environment with the opportunity to offload some of the computation
to either cloud servers, or other devices at the edge [15]. Accomplishing this would require a method
to measure and predict network latency, allowing an educated decision to be made at runtime. ML
techniques are shown to be effective in learning a cost function for profitability analysis [22]. This
can be integrated with our current learning framework.
Processor choice. By default, inference is carried out on a GPU, but this may not always be the
best choice. Previous work has already shown ML techniques to be successful at selecting the
optimal computing device [67]. This can be integrated into our existing learning framework.
Model size. Our approach uses multiple pre-trained DNN models for inference, in comparison, the
default method is to simply use a single model. Therefore, our approach requires more storage
space. A solution for this would involve using model compression techniques to generate multiple
compressed models from a single, highly accurate model. We have shown that our approach is
effective at choosing between compressed models. The result of this is numerous models sharing
many weights in common, which allows us to amortize the cost of using multiple models.
9 RELATEDWORK
Methods have been proposed to reduce the computational demands of a deep model by trading
prediction accuracy for runtime, compressing a pre-trained network [9, 25, 53], training small
networks directly [19, 54], or a combination of both [30]. Using these approaches, a user now needs
to decide when to use a specific model. Making such a crucial decision is a non-trivial task as the
application context (e.g. the model input) is often unpredictable and constantly evolving. Our work
alleviates this user burden by automatically selecting an appropriate model to use.
Neurosurgeon [35] identifies when it is beneficial (e.g. in terms of energy consumption and

end-to-end latency) to offload a DNN layer to be computed on the cloud. Unlike Neurosurgeon, we
aim to minimize on-device inference time without compromising prediction accuracy. The work
presented by Rodríguez et al. [57] trains a model twice; once on shared data and again on personal
data, in an attempt to prevent personal data being sent outside the personal domain. In contrast
to the latter two works, our approach allows having a diverse set of networks, by choosing the
most effective network to use at runtime. They, however, are complementary to our approach, by
providing the capability to fine-tune a single network structure.
Recently, a number of software-based approaches have been proposed to accelerate CNNs on

embedded devices. They aim to accelerate inference time by exploiting parameter tuning [40],
computational kernel optimization [5, 26], task parallelism [47, 52], and trading precision for
time [31] etc. Since a single model is unlikely to meet all the constraints of accuracy, inference
time and energy consumption across inputs [23], it is attractive to have a strategy to dynamically
select the appropriate model to use. Our work provides exactly such a capability and is thus
complementary to these prior approaches.
Off-loading computation to the cloud can accelerate DNN model inference [69], but this is not

always applicable due to privacy, latency or connectivity issues. The work presented by Ossia et al.
partially addresses the issue of privacy-preserving when offloading DNN inference to the cloud [50].
Our adaptive model selection approach allows one to select which model to use based on the input,
and is also useful when cloud offloading is prohibitively.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:23

Machine learning has been employed for various optimization tasks, including code
optimization [7, 8, 10, 11, 22, 48, 49, 67, 70, 74–79, 81], task scheduling [12, 16, 20, 21, 45, 55, 56],
cloud deployment [59, 60], network management [72], etc. Our approach is closely related to
ensemble learning where multiple models are used to solve an optimization problem. This
technique is shown to be useful on scheduling parallel tasks [17], wireless sensing [80], and
optimize application memory usage [46]. This work is the first attempt in applying this technique
to optimize deep inference on embedded devices.

Many significantly notable improvements have been made for machine translation over the last
few years, including Google Neural Machine Translation [18], and the introduction of the Attention
architecture [73]. A commonmethod to improvemachine translation accuracy is ensembling [61, 65],
where multiple models are used during one translation. Our approach is able to see improvements
in accuracy without the added cost of ensembling; we only run one translator model for each
translation task. In recent years CNNs have become the norm for sentence classification. [37] shows
that even simple CNNs can be used classify sentences with high accuracy, however running a CNN on
embedded systems is expensive. Joulin et al. [34] explore a simple, fast text classifier. Unfortunately,
this classifier leads to poor performance on our data.

10 CONCLUSION
We have presented a novel approach for efficient deep learning inference for embedded systems.
Our approach leverages multiple DNNs through the use of a premodel that dynamically selects the
optimal model to use, depending on the model input and evaluation criterion. We developed an
automatic approach for premodel generation as well as feature selection and tuning. We apply
our approach to two deep learning domains: image classification and machine translation, which
involve convolutional and recurrent neural network architectures. Experiment results show that
our approach deliver portable good performance across application domains and neural network
architectures. For image classification, our approach achieves an overall top-1 accuracy of above
87.44%, which translates into an improvement of 7.52% and 1.8x reduction in inference time when
compared to the most-accurate single deep learning model. For machine translation, our approach
is able to reduce inference time by 1.34x than the single most capable model, without significantly
effecting accuracy. With more training data we could achieve the same reduction in accuracy while
increasing F1 measure by 20.51%.

ACKNOWLEDGEMENT
This work was partly supported by the UK EPSRC under grants EP/M015734/1 (Dionasys) and
EP/M01567X/1 (SANDeRs). For any correspondence, please contact Zheng Wang (E-mail:
z.wang5@leeds.ac.uk).

REFERENCES
[1] JJ Allaire, Dirk Eddelbuettel, Nick Golding, and Yuan Tang. 2016. TensorFlow for R. https://tensorflow.rstudio.com/
[2] Dario Amodei et al. 2016. Deep Speech 2: End-to-End Speech Recognition in English and Mandarin. In ICML.
[3] Dzmitry Bahdanau et al. 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473 (2014).
[4] Jiawang Bai et al. 2019. Rectified Decision Trees: Towards Interpretability, Compression and Empirical Soundness.

(2019). arXiv:1903.05965
[5] Sourav Bhattacharya and Nicholas D Lane. 2016. Sparsification and separation of deep learning layers for constrained

resource inference on wearables. In SenSys.
[6] Alfredo Canziani et al. 2016. An Analysis of Deep Neural Network Models for Practical Applications. CoRR (2016).
[7] Donglin Chen et al. 2019. Characterizing Scalability of Sparse Matrix-Vector Multiplications on Phytium FT-2000+.

International Journal of Parallel Programming (2019).
[8] Shizhao Chen et al. 2018. Adaptive Optimization of Sparse Matrix-Vector Multiplication on Emerging Many-Core

Architectures. In HPCC ’18.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://tensorflow.rstudio.com/
http://arxiv.org/abs/1903.05965

1:24 Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib

[9] Wenlin Chen et al. 2015. Compressing Neural Networks with the Hashing Trick. In ICML.
[10] Chris Cummins et al. 2017. End-to-end Deep Learning of Optimization Heuristics. In PACT.
[11] Chris Cummins et al. 2017. Synthesizing Benchmarks for Predictive Modeling. In CGO.
[12] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient and QoS-aware Cluster Management.

In ASPLOS.
[13] Jeff Donahue et al. 2014. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In ICML.
[14] Yehia Elkhatib. 2015. Building Cloud Applications for Challenged Networks. In Embracing Global Computing in

Emerging Economies. Communications in Computer and Information Science, Vol. 514.
[15] Yehia Elkhatib et al. 2017. On Using Micro-Clouds to Deliver the Fog. Internet Computing 21, 2 (March 2017), 8–15.
[16] Murali Krishna Emani et al. 2013. Smart, adaptive mapping of parallelism in the presence of external workload. In

CGO ’13.
[17] Murali Krishna Emani and Michael O’Boyle. 2015. Celebrating Diversity: A Mixture of Experts Approach for Runtime

Mapping in Dynamic Environments. In PLDI.
[18] Yonghui Wu et al. 2016. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine

Translation. CoRR abs/1609.08144 (2016).
[19] Petko Georgiev et al. 2017. Low-resource Multi-task Audio Sensing for Mobile and Embedded Devices via Shared

Deep Neural Network Representations. ACM Interact. Mob. Wearable Ubiquitous Technol. (2017).
[20] Dominik Grewe et al. 2011. A workload-aware mapping approach for data-parallel programs. In HiPEAC ’11.
[21] Dominik Grewe et al. 2013. OpenCL task partitioning in the presence of GPU contention. In LCPC ’13.
[22] Dominik Grewe et al. 2013. Portable mapping of data parallel programs to OpenCL for heterogeneous systems. In

CGO.
[23] Tian Guo. 2017. Towards Efficient Deep Inference for Mobile Applications. CoRR abs/1707.04610 (2017).
[24] Song Han et al. 2015. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and

Huffman Coding. CoRR (2015).
[25] Song Han et al. 2015. Learning both weights and connections for efficient neural network. In NIPS.
[26] Song Han et al. 2016. EIE: efficient inference engine on compressed deep neural network. In ISCA.
[27] M Hassaballah et al. 2016. Image features detection, description and matching. In Image Feature Detectors and

Descriptors.
[28] Kaiming He et al. 2016. Deep residual learning for image recognition. In CVPR.
[29] Kaiming He et al. 2016. Identity mappings in deep residual networks. In ECCV.
[30] Andrew G. Howard et al. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications.

arXiv preprint arXiv:1704.04861 (2017).
[31] Loc N. Huynh et al. 2017. DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision Applications.

In MobiSys.
[32] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In ICML.
[33] Benoit Jacob et al. 2018. Quantization and training of neural networks for efficient integer-arithmetic-only inference.

In CVPR.
[34] Armand Joulin et al. 2017. Bag of Tricks for Efficient Text Classification. In EACL.
[35] Yiping Kang et al. 2017. Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge. In ASPLOS.
[36] Yuval Marom Anthony Khoo and David Albrecht. 2006. Experiments with sentence classification. In The Australasian

Language Technology Workshop.
[37] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014).
[38] Aaron Klein et al. 2016. Fast bayesian optimization of machine learning hyperparameters on large datasets. arXiv

preprint arXiv:1605.07079 (2016).
[39] Nicholas D Lane and Pete Warden. 2018. The deep (learning) transformation of mobile and embedded computing.

Computer 51, 5 (2018), 12–16.
[40] Seyyed Salar Latifi Oskouei et al. 2016. Cnndroid: GPU-accelerated execution of trained deep convolutional neural

networks on android. In Multimedia Conference.
[41] Tsung-Yi Lin et al. 2014. Microsoft coco: Common objects in context. In ECCV.
[42] Marco Lui. 2012. Feature stacking for sentence classification in evidence-based medicine. In The Australasian Language

Technology Association Workshop.
[43] Minh-Thang Luong et al. 2017. Neural Machine Translation (seq2seq) Tutorial. https://github.com/tensorflow/nmt

(2017).
[44] Walid Magdy et al. 2017. Fake it till you make it: Fishing for Catfishes. In ASONAM.
[45] Vicent Sanz Marco et al. 2017. Improving spark application throughput via memory aware task co-location: a mixture

of experts approach. In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Optimizing Deep Learning Inference on Embedded Systems 1:25

[46] Vicent Sanz Marco et al. 2017. Improving Spark Application Throughput via Memory Aware Task Co-location: A
Mixture of Experts Approach. In Middleware.

[47] Mohammad Motamedi et al. 2017. Machine Intelligence on Resource-Constrained IoT Devices: The Case of Thread
Granularity Optimization for CNN Inference. ACM Trans. Embed. Comput. Syst. (2017).

[48] William F Ogilvie et al. 2014. Fast automatic heuristic construction using active learning. In LCPC ’14.
[49] William F Ogilvie et al. 2017. Minimizing the cost of iterative compilation with active learning. In CGO ’17.
[50] Seyed Ali Ossia et al. 2017. A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics. CoRR

abs/1703.02952 (2017).
[51] Omkar M Parkhi et al. 2015. Deep Face Recognition. In BMVC.
[52] Sundari K. Rallapalli et al. 2016. Are Very Deep Neural Networks Feasible on Mobile Devices? Technical Report. University

of Southern California.
[53] Mohammad Rastegari et al. 2016. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks.

CoRR abs/1603.05279 (2016).
[54] Sujith Ravi. 2015. ProjectionNet: Learning Efficient On-Device Deep Networks Using Neural Projections.

arXiv:1708.00630 (2015).
[55] Jie Ren et al. 2017. Optimise web browsing on heterogeneous mobile platforms: a machine learning based approach. In

INFOCOM.
[56] Jie Ren et al. 2018. Proteus: Network-aware Web Browsing on Heterogeneous Mobile Systems. In CoNEXT ’18.
[57] Sandra Servia Rodríguez et al. 2017. Personal Model Training under Privacy Constraints. CoRR abs/1703.00380 (2017).
[58] Olga Russakovsky et al. 2015. ImageNet Large Scale Visual Recognition Challenge. In IJCV.
[59] Faiza Samreen et al. 2016. Daleel: Simplifying Cloud Instance Selection Using Machine Learning. In NOMS.
[60] Faiza Samreen et al. 2019. Transferable Knowledge for Low-cost Decision Making in Cloud Environments. (2019).

arXiv:1905.02448
[61] Danielle Saunders et al. 2018. Multi-representation ensembles and delayed SGD updates improve syntax-based NMT.

arXiv (2018).
[62] Glenn Shafer and Vladimir Vovk. 2008. A tutorial on conformal prediction. Journal of Machine Learning Research 9,

Mar (2008), 371–421.
[63] Nathan Silberman and Sergio Guadarrama. 2013. TensorFlow-slim image classification library.

https://github.com/tensorflow/models/tree/master/research/slim. (2013).
[64] Mingcong Song et al. 2017. Towards pervasive and user satisfactory CNN across GPU microarchitectures. In HPCA.
[65] Felix andothers Stahlberg. 2018. The University of Cambridge’s Machine Translation Systems for WMT18. arXiv

(2018).
[66] Yi Sun et al. 2014. Deep learning face representation by joint identification-verification. In NIPS.
[67] Ben Taylor et al. 2017. Adaptive optimization for OpenCL programs on embedded heterogeneous systems. In LCTES.
[68] Ben Taylor et al. 2018. Adaptive deep learning model selection on embedded systems. In LCTES. ACM, 31–43.
[69] Surat Teerapittayanon et al. 2017. Distributed deep neural networks over the cloud, the edge and end devices. In

ICDCS.
[70] Georgios Tournavitis et al. 2009. Towards a Holistic Approach to Auto-parallelization: Integrating Profile-driven

Parallelism Detection and Machine-learning Based Mapping. In PLDI ’09.
[71] EMNLP 2015 TENTH WORKSHOP ON STATISTICAL MACHINE TRANSLATION. [n. d.]. Shared Task: Machine

Translation. ([n. d.]). https://www.statmt.org/wmt15/translation-task.html
[72] Muhammad Usama et al. 2017. Unsupervised Machine Learning for Networking: Techniques, Applications and

Research Challenges. CoRR abs/1709.06599 (2017).
[73] Ashish Vaswani et al. 2017. Attention is all you need. In Advances in Neural Information Processing Systems.
[74] Zheng Wang et al. 2014. Automatic and Portable Mapping of Data Parallel Programs to OpenCL for GPU-Based

Heterogeneous Systems. ACM TACO (2014).
[75] Zheng Wang et al. 2014. Integrating profile-driven parallelism detection and machine-learning-based mapping. ACM

TACO (2014).
[76] Zheng Wang and Michael O’Boyle. 2018. Machine Learning in Compiler Optimisation. Proc. IEEE (2018).
[77] ZhengWang and Michael F.P. O’Boyle. 2009. Mapping Parallelism to Multi-cores: A Machine Learning Based Approach.

In PPoPP ’09.
[78] Zheng Wang and Michael FP O’Boyle. 2010. Partitioning streaming parallelism for multi-cores: a machine learning

based approach. In PACT ’10.
[79] Zheng Wang and Michael FP O’boyle. 2013. Using machine learning to partition streaming programs. ACM TACO

(2013).
[80] Jie Zhang et al. 2018. CrossSense: Towards Cross-Site and Large-Scale WiFi Sensing. In MobiCom ’18.
[81] Peng Zhang, , et al. 2018. Auto-tuning Streamed Applications on Intel Xeon Phi. In IPDPS ’18.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://arxiv.org/abs/1905.02448
https://www.statmt.org/wmt15/translation-task.html

	Abstract
	1 Introduction
	2 Motivation
	2.1 Image Classification
	2.2 Machine Translation
	2.3 Summary of Motivation Experiments

	3 Our Approach
	3.1 Overview
	3.2 Premodel Design
	3.3 Inference Model Selection
	3.4 Training the Premodel
	3.5 Features
	3.6 Runtime Deployment

	4 Evaluation Setup
	4.1 Hardware and Software
	4.2 Evaluation Methodology

	5 Case Study 1: Image Classification
	5.1 Premodel for Image Classification
	5.2 Overall Performance of Image Classification

	6 Case Study 2: Machine Translation
	6.1 Premodel for Machine Translation
	6.2 Overall Performance for Machine Translation

	7 Analysis
	7.1 Alternative Techniques for Premodel
	7.2 Sensitivity Analysis for Model Selection Algorithm
	7.3 Feature Importance
	7.4 Training and Deployment Overhead
	7.5 Soundness Analysis
	7.6 Further In-Depth Analysis

	8 Discussion
	9 Related Work
	10 Conclusion
	References

