
2

Integrating Profile-Driven Parallelism Detection
and Machine-Learning-Based Mapping

ZHENG WANG, Lancaster University, United Kingdom
GEORGIOS TOURNAVITIS, Intel Barcelona Research Center, Spain
BJÖRN FRANKE and MICHAEL F. P. O’BOYLE, University of Edinburgh, United Kingdom

Compiler-based auto-parallelization is a much-studied area but has yet to find widespread application.
This is largely due to the poor identification and exploitation of application parallelism, resulting in disap-
pointing performance far below that which a skilled expert programmer could achieve. We have identified
two weaknesses in traditional parallelizing compilers and propose a novel, integrated approach resulting
in significant performance improvements of the generated parallel code. Using profile-driven parallelism
detection, we overcome the limitations of static analysis, enabling the identification of more application
parallelism, and only rely on the user for final approval. We then replace the traditional target-specific
and inflexible mapping heuristics with a machine-learning-based prediction mechanism, resulting in better
mapping decisions while automating adaptation to different target architectures. We have evaluated our
parallelization strategy on the NAS and SPEC CPU2000 benchmarks and two different multicore platforms
(dual quad-core Intel Xeon SMP and dual-socket QS20 Cell blade). We demonstrate that our approach not
only yields significant improvements when compared with state-of-the-art parallelizing compilers but also
comes close to and sometimes exceeds the performance of manually parallelized codes. On average, our
methodology achieves 96% of the performance of the hand-tuned OpenMP NAS and SPEC parallel bench-
marks on the Intel Xeon platform and gains a significant speedup for the IBM Cell platform, demonstrating
the potential of profile-guided and machine-learning- based parallelization for complex multicore platforms.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers, Optimiza-
tion; D.1.3 [Programming Techniques]: Concurrent Programming—Parallel Programming

General Terms: Experimentation, Languages, Measurement, Performance

Additional Key Words and Phrases: Auto-parallelization, profile-driven parallelism detection, machine-
learning-based parallelism mapping, OpenMP

ACM Reference Format:
Zheng Wang, Georgios Tournavitis, Björn Franke, and Michael F. P. O’Boyle. 2014. Integrating profile-
driven parallelism detection and machine-learning-based mapping. ACM Trans. Architec. Code Optim. 11,
1, Article 2 (February 2014), 26 pages.
DOI: http://dx.doi.org/10.1145/2579561

1. INTRODUCTION

Multicore computing systems are widely seen as the most viable means of deliver-
ing performance with increasing transistor densities [Asanovic et al. 2009]. However,
this potential cannot be realized unless the application has been well parallelized.

This article extends Tournavitis et al. [2009] published in PLDI’09.
Work conducted in part while Z. Wang and G. Tournavitis were with the University of Edinburgh.
Authors’ addresses: Z. Wang (corresponding author), School of Computing and Communications, Lancaster
University, UK; email: z.wang@lancaster.ac.uk; G. Tournavitis, Intel Barcelona Research Center, Intel Labs
Barcelona, Spain; B. Franke and M. F. P. O’Boyle, School of Informatics, the University of Edinburgh, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1544-3566/2014/02-ART2 $15.00

DOI: http://dx.doi.org/10.1145/2579561

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

http://dx.doi.org/10.1145/2579561
http://dx.doi.org/10.1145/2579561

2:2 Z. Wang et al.

Unfortunately, efficient parallelization of a sequential program is a challenging and
error-prone task. It is widely acknowledged that manual parallelization by expert pro-
grammers results in the most efficient parallel implementation but is a costly and
time-consuming approach. Parallelizing compiler technology, on the other hand, has
the potential to greatly reduce this cost. As hardware parallelism increases in scale
with each generation and programming costs increase, parallelizing technology be-
comes extremely attractive. However, despite the intense research interest in the area,
it has failed to deliver outside niche domains.

Automatic parallelism extraction is certainly not a new research area [Lamport
1974]. Progress was achieved in the 1980s to 1990s on restricted DOALL and
DOACROSS loops [Burke and Cytron 1986; Lim and Lam 1997; Kennedy and Allen
2002]. In fact, this research has resulted in a whole range of parallelizing research
compilers, for example, Polaris [Padua et al. 1993], SUIF-1 [Hall et al. 1996], and,
more recently, Open64 [Open64 2013]. Complementary to the ongoing work in auto-
parallelization, many high-level parallel programming languages, such as Cilk [Frigo
et al. 1998], OpenMP, UPC [Husbands et al. 2003], and X10 [Saraswat et al. 2007], and
programming models, such as STAPL [Rauchwerger et al. 1998] and Galois [Kulkarni
et al. 2007], have been proposed. Interactive parallelization tools [Irigoin et al. 1991;
Kennedy et al. 1991; Brandes et al. 1997; Ishihara et al. 2006] provide a way to actively
involve the programmer in the detection and mapping of application parallelism but
still demand great effort from the user. While these approaches make parallelism ex-
pression easier than in the past [Gordon 2010], the effort involved in discovering and
mapping parallelism is still far greater than that of writing an equivalent sequential
program.

This article argues that the lack of success in auto-parallelization has occurred for
two reasons. First, traditional static parallelism detection techniques are not effective
in finding parallelism due to lack of information in the static source code. Second, no
existing integrated approach has successfully brought together automatic parallelism
discovery and portable mapping. Given that the number and type of processors of
a parallel system are likely to change from one generation to the next, finding the
right mapping for an application may have to be repeated many times throughout an
application’s lifetime, hence making automatic approaches attractive.

Approach. Our approach integrates profile-driven parallelism detection and
machine-learning-based mapping into a single framework. We use profiling data to
extract actual control and data dependence and enhance the corresponding static anal-
ysis with dynamic information. Subsequently, we apply an offline trained machine-
learning-based prediction mechanism to each parallel loop candidate and decide if and
how the parallel mapping should be performed.1 Finally, we generate parallel code
using standard OpenMP annotations. Our approach is semiautomated; that is, we
only expect the user to finally approve those loops where parallelization is likely to be
beneficial, but correctness cannot be proven automatically by the compiler.

Results. We have evaluated our parallelization strategy against the NAS and SPEC
CPU2000 benchmarks and two different multicore platforms (Intel Xeon SMP and
IBM Cell blade). We demonstrate that our approach not only yields significant improve-
ments when compared with state-of-the-art parallelizing compilers but also comes close
to and sometimes exceeds the performance of manually parallelized codes. We show
that profiling-driven analysis can detect more parallel loops than static techniques. A

1In this article, we are interested in determining whether it is profitable to parallelize a loop and how the
loop should be scheduled if a parallel execution is profitable.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:3

Fig. 1. Static analysis is challenged by sparse array reduction operations and the inner while loop in the
SPEC equake benchmark.

surprising result is that all loops classified as parallel by our technique are correctly
identified as such, despite the fact that only a single, small data input is considered for
parallelism detection. Furthermore, we show that parallelism detection in isolation is
not sufficient to achieve high performance, nor are conventional mapping heuristics.
Our machine-learning-based mapping approach provides the adaptivity across plat-
forms that is required for a genuinely portable parallelization strategy. On average,
our methodology achieves 96% of the performance of the hand-parallelized OpenMP
NAS and SPEC parallel benchmarks on the Intel Xeon platform, and a significant
speedup for the Cell platform, demonstrating the potential of profile-guided machine-
learning-based auto-parallelization for complex multicore platforms.

Overview. The remainder of this article is structured as follows. We provide the mo-
tivation for our work based on simple examples in Section 2. This is followed by a
presentation of our parallelization framework in Sections 3, 4, and 5. Section 6 pro-
vides further discussions about the safety and scalability issues of our framework. Our
experimental methodology and results are discussed in Sections 7 and 8, respectively.
We establish a wider context of related work in Section 9 before we summarize and
conclude in Section 10.

2. MOTIVATION

In this section, we first show that static analysis can be overly conservative in detect-
ing parallelism; then, we demonstrate that the parallelism mapping decision has a
significant impact on performance and the right mapping may vary across different
architectures.

2.1. Parallelism Detection

Figure 1 shows a short excerpt of the smvp function from the SPEC equake seismic wave
propagation benchmark. This function implements a general-purpose sparse matrix-
vector product and takes up more than 60% of the total execution time of the equake
application. Conservative, static analysis fails to parallelize both loops due to sparse
matrix operations with indirect array indices and the inner while loop. In fact, w is

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

2:4 Z. Wang et al.

Fig. 2. Despite its simplicity, mapping of this parallel loop taken from the NAS cg benchmark is nontrivial
and the best-performing scheme varies across platforms.

passed as a pointer argument, and it accesses memory allocated at the same program
point with v. In addition, the indirect array access (a common programming technique),
for example, the index of w is col (line 21 in Figure 1) that is determined by Acol[Anext]
(line 13 of Figure 1), makes most of the static dependence tests inconclusive for deter-
mining data dependence.

Profiling-based dependence analysis, on the other hand, provides us with the addi-
tional information that no actual data dependence inhibits parallelization for a given
sample input. This is useful for auto-parallelizing programs with data-independent
parallelism, which is difficult to discover using static compiler analysis. By instru-
menting every dynamic memory access, one can discover that all the read and write
statements of array w are in fact commutative and associative for the specific input.
Hence, the iterations of the inner and outer loops can be executed in parallel given
that the partial sum values will be accumulated to w after the execution of the loop.
While we still cannot prove absence of data dependence for every possible input, we can
classify both loops as candidates for parallelization (reduction) and, if profitably par-
allelizable, present it to the user for approval. This example demonstrates that static
analysis is overly conservative. Profiling-based analysis, on the other hand, can provide
accurate dependence information for a specific input. When combined, we can select
candidates for parallelization based on empirical evidence and, hence, can eventually
extract more potential application parallelism than purely static approaches.

2.2. Parallelism Mapping

In Figure 2, a parallel reduction loop originating from the parallel NAS conjugate-
gradient cg benchmark is shown. Despite the simplicity of the code, mapping decisions
are nontrivial. For example, parallel execution of this loop is not profitable for the Cell
Broadband Engine (BE) platform due to high communication costs between processing
elements. In fact, parallel execution results in a massive slowdown over the sequential
version for the Cell for any number of threads. On the Intel Xeon platform, however,
parallelization can be profitable, but this depends strongly on the specific OpenMP
scheduling policy. The best scheme (STATIC) results in a speedup of 2.3 over the
sequential code and performs 115 times better than the worst scheme (DYNAMIC)
that slows the program down to 2% of its original, sequential performance.

This example illustrates that selecting the correct mapping scheme has a significant
impact on performance. However, the mapping scheme varies not only from program to
program but also from architecture to architecture. Therefore, we need an automatic
and portable solution for parallelism mapping.

3. OVERVIEW OF THE FRAMEWORK

This section provides an overview of our parallelization framework, which combines
profiling-driven parallelism detection and a machine-learning-based mapping model
to generate optimized parallel code.

As shown in Figure 3, a sequential C program is initially extended with plain
OpenMP annotations for parallel loops and reductions as a result of our profiling-based

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:5

Fig. 3. A two-staged parallelization approach.

Fig. 4. Our parallelization framework comprises IR-level instrumentation and profiling stages, followed by
static and dynamic dependence analyses driving loop-level parallelization and a machine-learning-based
mapping stage where the user may be asked for final approval before parallel OpenMP code is generated.
Platform-specific code generation is performed by the native OpenMP-enabled C compiler.

dependence analysis. In addition, data scoping for shared and private data also takes
place at this stage. Our implementation targets data-parallel loops. Other types of
parallelism (e.g., task parallelism) are not currently supported.

In a second step, we add further OpenMP work allocation clauses to the code if the
loop is predicted to benefit from parallelization, or otherwise remove the parallel anno-
tations. Parallelism annotations are also removed for loop candidates where correctness
cannot be proven conclusively (based on static analysis) and the user disapproves of
the suggested parallelization decision. Our model currently evaluates each candidate
loop in isolation. Finally, the parallel code is compiled with a native OpenMP compiler
for the target platform. A complete overview of our tool chain is shown in Figure 4.

In the following two sections, we describe our novel framework in detail. We first
introduce the use of profiling information to detect parallelism and generate code. This
is followed by a description of the machine-learning-based mapping model.

4. PARALLELISM DETECTION AND CODE GENERATION

We propose a profile-driven approach for parallelism detection where the traditional
static compiler analysis is not replaced, but enhanced with dynamic information. To
achieve this, we have devised an instrumentation scheme operating at the intermediate
representation (IR) level of the compiler. Unlike, for example, Rul et al. [2008], we do
not need to deal with low-level artifacts of any particular instruction set, but obtain
dynamic control and dataflow information relating to IR nodes immediately. This al-
lows us to back-annotate the original IR with the profiling information and resume
compilation/parallelization. The four stages involved in parallelism detection are:

(1) IR instrumentation and profile generation
(2) CDFG construction

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

2:6 Z. Wang et al.

(3) Parallelism detection
(4) Parallel code generation

We describe the profiling-driven approach by following these four stages in turn.

4.1. Instrumentation and Profile Generation

Our primary objective is to enhance the static analysis of a traditional parallelizing
compiler using precise, dynamic information. The main obstacle here is correlating the
low-level information gathered during program execution—such as specific memory
accesses and branch operations—to the high-level data and control flow information.
Debug information embedded in the executable is usually not detailed enough to en-
able this reconstruction. To bridge this information gap, we perform instrumentation
at the IR level of the compiler (CoSy [CoSy 2009]). For each variable access, additional
code is inserted that emits the associated symbol table reference as well as the actual
memory address of the data item. All data items including arrays, structures, unions,
and pointers are covered in the instrumentation. This information is later used to
disambiguate memory accesses that static analysis fails to analyze. Similarly, we in-
strument every control flow instruction with the IR node identifier and insert code to
record the actual, dynamic control flow. Eventually, a plain C representation close to
the original program, but with additional instrumentation code inserted, is recovered
using an IR-to-C translation pass and compiled with a native compiler. Because the
available parallelism is often only dependent on the program itself, the profiling and
analysis can be done on any general-purpose platforms. In this work, the sequential
program was profiled on each target platform.

The program resulting from this process is still sequential and functionally equiva-
lent to the original code, but it emits a trace of data access and control flow items.

4.2. CDFG Construction

The instrumented program is now run and the profile data generated. Using this pro-
filing information, our framework automatically constructs a global Control and Data
Flow Graph (CDFG) on which parallelism detection is performed. Since the subsequent
dependence analysis stage consumes one item of the profiling trace at a time, the CDFG
can be constructed incrementally. Hence, it is not necessary to store the entire trace if
the tools are chained up appropriately.

The profiling information (i.e., trace) is processed by Algorithm 1 that performs
dependence analysis. This algorithm distinguishes between control flow and dataflow
items and maintains various data structures supporting dependence analysis. The con-
trol flow section (lines 4–13) constructs a global control flow graph of the application in-
cluding call stacks, loop nest trees, and normalized loop iteration vectors. The dataflow
section (lines 14–25) is responsible for mapping memory addresses to specific high-level
dataflow information. For this we keep a hash table (lines 16–17) where data items are
traced at byte-level granularity. Data dependences are recorded as data edges in the
CDFG (lines 18–25). These edges are further annotated with the specific data sections
(e.g., array indices) that cause the dependence. For loop-carried data dependency, an ad-
ditional bit vector relating the dependence to the surrounding loop nest is maintained.

As soon as the complete trace has been processed, the constructed CDFG with all its
associated annotations is imported back into the compiler and added to the internal,
statically derived dataflow and control flow structures. This is only possible because
the dynamic profile contains references to IR symbols and nodes in addition to actual
memory addresses.

The profiling-based CDFG is the basis for the further detection of parallelism. However,
there is the possibility of incomplete dependence information, for example, if a may data
dependence has not materialized in the profiling run. In this case, we treat such a loop

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:7

ALGORITHM 1: Algorithm for CDFG construction.
Data
· CDFG(V, EC , ED): graph with control (EC) anddata-flow (ED) edges
· loop carriede[]: bitset ∀e ∈ ED: loop carriede[i] = 1 if e loop-carried in loop-level i
· sete[]: address-range array ∀e ∈ ED, indexed by the loop-carried level i
· ita[]: iteration vector of address a
· M[A, {V, ita}]: hash table: memory addr. a → {V, ita}
· I(k): extract field k from instruction I
· GD: global memory address-range tree
· Df : memory address-range tree of function f
· it0[]: current normalized iteration vector
· u ∈ V : current node
· f ∈ V : current function
· l ∈ V : current loop
· c ∈ V : current component

1 Procedure IR instruction handler
2 while trace not finished do
3 I ← next instruction;
4 if I is a control instruction then
5 if I(id) /∈ c then
6 create node v for I(id) in c;

7 if edge (u, v) /∈ EC then
8 add (u, v) in CDFG ;

9 switch I do
10 case bb u ← v;
11 case func f ← v;
12 case loop l ← v;
13 case iter it0[depth(l)] ← it0[depth(l)] + 1;

14 else if I is a memory instruction then
15 a ← I(addr);
16 if I is a def then
17 update last writer of a in M ;

18 else if use then
19 w ← find last-writer of a from M;
20 if u → w edge e /∈ CDFG then
21 add e in ED;

22 foreach i : ita[i] �= it0[i] do
23 loop carriede[i] ← true;
24 sete[i] ← sete[i] ∪ {a};
25 ita ← it0;

26 else if I is an allocation instruction then
27 a ← I(addr);
28 if I is local then
29 add {I(id), [a, a + I(size)]} in Df ;

30 else if i is global ∨ alloc then
31 add {I(id), [a, a + I(size)]} in GDf ;

as potentially parallelizable but present it to the user for final approval if parallelization
is predicted to be profitable.

4.3. Parallelism Detection

Based on the dependence information provided by the constructed CDFG, we are able
to efficiently detect parallelism. There are several particular issues that need to be

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

2:8 Z. Wang et al.

addressed in the parallelism detection stage, including detection of parallel loops,
privatizable variables, and reduction operations using standard analysis.

Parallel Loops. Parallel loops are discovered by traversing the loop nest trees of the
CDFG in a top-down fashion. For each loop, all the data dependence edges that flow
between nodes of the specific loop are processed. Each dependence edge is annotated
with a bit vector that specifies which loop level a loop-carried dependence corresponds
to. Based on this information and the level of the current loop, we can determine
whether this particular edge prohibits parallelization or otherwise we proceed with
the next edge.

Privatizable Variables. We maintain a complete list of true, anti-, and output depen-
dence as these are required for parallelization. Rather than recording all the readers of
each memory location, we keep a map of the normalized iteration index of each memory
location that is read/written at each level of a loop nest. This allows us to efficiently
track all memory locations that cause a loop-carried anti- or output dependence. A
scalar x is privatizable within a loop if and only if every path from the beginning of the
loop body to a use of x passes from a definition of x before the use [Kennedy and Allen
2002]. Hence, we can determine the privatizable variables by inspecting the incoming
and outgoing data dependence edges of the loop. An analogous approach applies to
privatizable arrays.

Reduction Operations. Reduction recognition for scalar variables is based on the
algorithm presented in Pottenger [1995]. We validate statically detected reduction
candidates using profiling information.

4.4. Parallel Code Generation

Once the parallelism has been detected, our tool generates parallel code using OpenMP
annotations. We use OpenMP for parallel code generation due to the low complexity
of generating the required code annotations and the widespread availability of native
OpenMP compilers. Currently, we only target parallel FOR loops and translate these
into corresponding OpenMP annotations (i.e., omp parallel for (reduction)).

Privatization Variables. After determining that a variable requires privatization
and it is permitted to be privatized, we add a special private OpenMP clause with the
list of these variables at the end of the parallel loop directive (clause private(var1,
var2, . . .)). The discovery of firstprivate and lastprivate variables is currently not
supported by our analysis framework. In the case of a global variable, however, there
are two cases that require different handling. If there is no function called within the
loop body that accesses this variable, we can still use the private clause. Otherwise,
we add a threadprivate construct after its definition to make this variable globally
private. If the thread-private global variable is not privatizable in all the parallel loops
in which this variable is accessed, it should be renamed in this loop and any functions
that are accessed within the loop body.

Reduction Operations. We use a simplified code generation stage where it is suffi-
cient to emit an OpenMP reduction annotation for each recognized reduction loop. We
validate statically detected reduction candidates using profiling information and use
an additional reduction template library to enable reductions on array locations such
as that shown in Figure 1.

Limitations of Code Generation. In this article, our approach to code generation is
relatively simple and, essentially, relies on OpenMP code annotations alongside minor

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:9

Fig. 5. This diagram shows the optimal classification (sequential/parallel execution) of all parallel candi-
dates considered in our experiments for the Intel Xeon machine. Linear models and static features such
as the iteration count and size of the loop body in terms of IR statements are not suitable for separating
profitably parallelizable loops from those that are not.

code transformations. This framework does not perform high-level code restructuring,
which might help expose or exploit more parallelism or improve data locality. While
OpenMP is a compiler-friendly target for code generation, it imposes a number of
limitations. Our recent work extends this framework to generate code for task and
pipeline parallelism, demonstrating the effectiveness of profiling analysis in exploiting
automatic parallelization [Tournavitis and Franke 2010].

5. MACHINE-LEARNING-BASED MAPPING

The mapping stage decides if a parallel loop candidate may be profitably parallelized
and, if so, selects a scheduling policy from the four options offered by OpenMP: CYCLIC
(i.e., OpenMP clause schedule(static,1)), DYNAMIC, GUIDED, and STATIC. As the
example in Figure 2 demonstrates, this is a nontrivial task and the best solution
depends on both the particular properties of the loop under consideration and the
target platform. To provide a portable but automated mapping approach, we use a
machine-learning technique to construct a predictor that, after some initial training,
will replace the highly platform-specific and often inflexible mapping heuristics of
traditional parallelization frameworks.

Building and using such a model follows the well-known three-step process
[Bishop 2007]: (i) selecting a model and features, (ii) training a predictive model, and
(iii) deploying the model.

5.1. Model and Features

Separating profitably parallelizable loops from those that are not is a challenging task.
Incorrect classification will result in missed opportunities for profitable parallel exe-
cution or even a slowdown due to an excessive synchronization overhead. Traditional
parallelizing compilers such as SUIF-1 [Hall et al. 1996] employ simple heuristics
based on the iteration count and the number of operations in the loop body to decide
whether or not a particular parallel loop candidate should be executed in parallel.

Empirical data, as shown in Figure 5, suggests that such a naı̈ve scheme is likely to
fail and that misclassification occurs frequently. Figure 5 plots loop bodies as a function

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

2:10 Z. Wang et al.

Fig. 6. Support vector machines for nonlinear classification.

Table I. Features Used

Static Features Dynamic Features
IR Instruction Count L1/L2 D Cache Miss Rate
IR Load/Store Count Instruction Count
IR Branch Count Branch Miss Prediction Rate
Loop Iteration Count Synchronization Count

of the number of iterations of a loop and the number of instructions it contains. A simple
work-based scheme would attempt to separate the profitably parallelizable loops by a
diagonal line as indicated in the diagram in Figure 5. Independent of where exactly the
line is drawn, there will always be loops misclassified and, hence, potential performance
benefits wasted. What is needed is a scheme that (i) takes into account a richer set of
(possibly dynamic) loop features, (ii) is capable of nonlinear classification, and (iii) can
be easily adapted to a new platform.

In this article, we propose a predictive modeling approach based on machine-learning
classification. In particular, we use support vector machines (SVMs) [Boser et al. 1992] to
decide (i) whether or not to parallelize a loop candidate and (ii) how it should be sched-
uled. The SVM classifier is used to construct hyperplanes in the multidimensional space
of program features—as discussed in the following paragraph—to identify profitably
parallelizable loops. The classifier implements a multiclass SVM model with a radial
basis function (RBF) kernel capable of handling both linear and nonlinear classification
problems [Boser et al. 1992]. The details of our SVM classifier are provided in Figure 6.

Program Features. The SVM model predicts which loops can be profitably parallelized
as a function of the essential characteristics or program features of the loops. We extract
such features that sufficiently describe the relevant aspects of a program and present
it to the SVM classifier. An overview of these features is given in Table I. The static
features are derived from the internal code representation. Essentially, these features
characterize the amount of work carried out in the parallel loop similar to Ziegler and
Hall [2005]. The dynamic features capture the dynamic data access and control flow
patterns of the sequential program and are obtained from the same profiling execution
that has been used for parallelism detection.

We select features that are important for performance from a programmer’s point of
view and shown to be crucial for performance in other work. For example, the number
of instructions and the loop iteration count implicitly capture the amount of work to be
performed within the loop body. Similarly, the load and store count and the cache miss
rate strongly correlate to the communication, and we thus include them in the feature
set. The branch miss rate is important for evaluating the profitability on the Cell
processor. Finally, as the cost of synchronization can be expensive on some platforms,
we also include this feature in Table I.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:11

Fig. 7. Finding suitable SVM model parameters using grid search. In this contour map, each curve connects
points of a pair of the two parameters that gives a particular prediction accuracy. The parameter setting
that leads to the best prediction accuracy is chosen as the final model parameter.

5.2. Training

We use an offline supervised learning scheme whereby we present the machine-learning
component with pairs of program features and desired mapping decisions. These are
generated from a library of known parallelizable loops through repeated, timed execu-
tion of the sequential and parallel code with the different available scheduling options
and recording the actual performance on the target platform. Once the prediction model
has been built using all the available training data, no further learning takes place.

The training task here is to construct hyperplanes on the program feature space so
that the trained SVM classifier can accurately predict mappings for unseen programs.
Before constructing any separating hyperplanes, we need to set up the SVM model
parameters. There are two parameters to be determined for an SVM model with the
RBF kernel: C and γ (see Figure 6). It is not known beforehand what values of these
parameters are best for the problem; hence, some kind of parameter search must be
performed. We perform the parameter search as follows. Initially, we generate many
pairs of the two parameters, (C; γ). For each pair of the parameters, we first randomly
split the training data into two different sets: one is used for building hyperplanes
with a particular parameter pair and the other is used for evaluating the effectiveness
of the parameter pair. Then, we train an SVM model using the hyperplane building
dataset, evaluate performance of the trained model using the parameter evaluation
set, and record the prediction accuracy. For each pair of model parameters, we repeat
this procedure (i.e., randomly partitioning the whole training data into two sets) several
times and calculate the average prediction accuracy of the SVM models. As a result, we
pick the pair of parameters that gives the best average accuracy and use it to train a
final model by using the whole training dataset. Note that during the training process,
the training algorithm only performs on the training dataset.

The process of parameter search is exemplified in the contour map shown in Figure 7.
In this figure, a contour line is a curve that joins different value pairs of the two model
parameters, (C; γ), which are shown as the x- and y-axis. Different curves represent
different prediction accuracy for SVM models with specific parameter settings. As can
be seen from this figure, there are actually many parameter settings that give high
prediction accuracy (i.e., 93% of accuracy in Figure 7). In other words, the accuracy of
the model is not very sensitive to particular parameter values.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

2:12 Z. Wang et al.

5.3. Deployment

Once we have determined the right model parameters and built the model from the
training data, we can now use the model to predict the mapping of a new, unseen pro-
gram. For a new, previously unseen application with parallel annotations, the following
steps are carried out:

(1) Feature extraction. This involves collecting the features shown in Table I from the
sequential version of the program and is accomplished in the profiling stage already
used for parallelism detection.

(2) Prediction. For each parallel loop candidate, the corresponding feature set is pre-
sented to the SVM predictor and it returns a classification indicating if parallel
execution is profitable and which scheduling policy to choose. For a loop nest, we
start with the outermost loop, ensuring that we settle for the most coarse-grained
piece of work.

(3) User Interaction. If parallelization appears to be possible (according to the initial
profiling) and profitable (according to the previous prediction step) but correctness
cannot be proven by static analysis, we ask the user for his or her final approval.

(4) Code Generation. In this step, we extend the existing OpenMP annotation with the
appropriate scheduling clause or delete the annotation if parallelization does not
promise any performance improvement or has been rejected by the user.

6. SAFETY AND SCALABILITY ISSUES

This section provides detailed discussions about the safety and scalability issues of our
profiling-driven parallelism detection approach.

6.1. Safety

Unlike static analysis, profile-guided parallelization cannot conclusively guarantee the
absence of control and data dependences for every possible input. One simple approach
regarding the selection of the “representative” inputs is based on control flow coverage
analysis. This is driven by the empirical observation that for the vast majority of
the cases, the profile-driven approach might have a false positive (“there is a flow
dependence but the tool suggests the contrary”) due to a control flow path that the data
input set did not cover. This provides a straightforward way to select representative
workloads (in terms of data dependency) just by executing the applications natively
and recording the resulting code coverage. Of course, there are many counterexamples
where an input-dependent data dependence appears with no difference in the control
flow. The latter can be verified by the user.

For this current work, we have chosen a “worst-case scenario” and used the smallest
dataset associated with each benchmark for profiling but evaluated against the largest
of the available datasets. Surprisingly, we have found that this naive scheme has
detected almost all parallelizable loops in the NAS and SPEC CPU2000 benchmarks
while not misclassifying any loop as parallelizable when it is not. Furthermore, with
the help of our tools, we have been able to identify three incorrectly shared variables
in the original NAS benchmarks that should in fact be privatized. This illustrates that
manual parallelization is prone to errors and that automating this process contributes
to program correctness.

Alternatively, thread-level speculation provides a rich set of techniques that detect
and recover from incorrect speculation during runtime execution [Rauchwerger and
Padua 1995; Dou and Cintra 2004; Johnson et al. 2012]. These techniques can be used
to ease the burden of user verification, which is the future work of our framework.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:13

Table II. Hardware and Software Configurations

Intel Xeon Server
Dual Socket, 2× Intel Xeon X5450 @ 3.00GHz

Hardware 6MB L2-cache shared/2 cores (12MB/chip)
16GB DDR2 SDRAM

OS 64-bit Scientific Linux with kernel 2.6.9-55 x86_64
Compiler Intel icc 10.1

-O2 -xT -axT -ipo
Cell Blade Server

Dual Socket, 2× IBM Cell processors @ 3.20GHz
Hardware 512KB L2 cache per chip

1GB XDRAM
OS Fedora Core 7 with Linux kernel 2.6.22 SMP
Compiler IBM Xlc single source compiler for Cell v0.9

-O5 -qstrict -qarch=cell -qipa=partition=minute -qipa=overlay

6.2. Scalability

As we process data dependence information at byte-level granularity and effectively
build a whole program CDFG, we may need to maintain data structures growing poten-
tially as large as the entire address space of the target platform. In practice, however,
we have not observed any cases where more than 1GB of heap memory was needed
to maintain the dynamic data dependence structures, even for the largest applications
encountered in our experimental evaluation. In comparison, static compilers that per-
form whole-program analyses need to maintain similar data structures of about the
same size. While the dynamic traces can potentially become very large as every sin-
gle data access and control flow path is recorded, they can be processed online, thus
eliminating the need for large traces to be stored. Other dynamic trace analysis and
compression techniques, such as dynamic tree compression [Ding and Zhong 2003] and
ZDDs [Price and Vachharajani 2010], can be used to further reduce the size of the trace
and to improve the analysis efficiency, which is the future work.

As our approach operates at the IR level of the compiler, we do not need to consider
a detailed architecture state; hence, profiling can be accomplished at speeds close
to native, sequential speed. For dependence analysis, we only need to keep track of
memory and control flow operations and make incremental updates to hash tables and
graph structures. In fact, dependence analysis on dynamically constructed CDFGs has
the same complexity as static analysis because we use the same representations and
algorithms as the static counterparts.

7. EXPERIMENTAL METHODOLOGY

In this section, we summarize our experimental methodology and provide details of the
multicore platforms and benchmarks used throughout the evaluation.

7.1. Platforms

We target both a shared memory (dual quad-core Intel Xeon) and distributed memory
multicore system (dual-socket QS20 Cell blade). A brief overview of both platforms is
given in Table II.

7.2. Benchmarks

For our evaluation we have selected benchmarks—NAS Parallel Benchmarks (NPBs)
and SPEC CPU2000—where both sequential and manually parallelized OpenMP ver-
sions are available. This has enabled us to directly compare our parallelization strat-
egy against parallel implementations from independent expert programmers [omm;
Aslot et al. 2001]. For the NPBs, we used four input classes (i.e., S, W, A, and B) when

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

2:14 Z. Wang et al.

Table III. Benchmark Applications and Datasets

Program Suite Datasets/Xeon Datasets/Cell
BT NPB2.3-OMP-C S, W, A, B NA
CG NPB2.3-OMP-C S, W, A, B S, W, A
EP NPB2.3-OMP-C S, W, A, B S, W, A
FT NPB2.3-OMP-C S, W, A, B S, W, A
IS NPB2.3-OMP-C S, W, A, B S, W, A
MG NPB2.3-OMP-C S, W, A, B S, W, A
SP NPB2.3-OMP-C S, W, A, B S, W, A
LU NPB2.3-OMP-C S, W, A, B S, W, A
art SPEC CFP2000 test, train, ref test, train, ref
ammp SPEC CFP2000 test, train, ref test, train, ref
equake SPEC CFP2000 test, train, ref test, train, ref

possible. Class S is the smallest input, class B is the largest input for a single machine,
and classes W and A are medium-sized inputs. Due to the memory constraint of the
Cell processor, it is impossible to compile some of the programs with classes A and B
and we excluded those input sets. Benchmark BT is also excluded on the Cell platform
because the compiler fails to compile it.

More specifically, we have used the NAS NPB sequential v.2.3 and NPB OpenMP
v.2.3 codes [Bailey et al. 1991] alongside the SPEC CPU2000 benchmarks and their
corresponding SPEC OMP2001 counterparts. However, it should be noted that the
sequential and parallel SPEC codes are not immediately comparable due to some
amount of restructuring of the “official” parallel codes, resulting in a performance
advantage of the SPEC OMP codes over the sequential ones, even on a single-processor
system.

Each program has been executed using multiple different-input datasets (shown in
Table III); however, for parallelism detection and mapping, we have only used the
smallest of the available datasets.2 The resulting parallel programs have then been
evaluated against the larger inputs to investigate the impact of worst-case input on the
safety of our parallelization scheme.

7.3. Methodology

We have evaluated three different parallelization approaches, which are manual, auto-
parallelization using the Intel ICC compiler (just for the Xeon platform), and our
profile-driven approach. For native code generation, all programs (both sequential and
parallel OpenMP) have been compiled using the Intel ICC and IBM single-source XLC
compilers for the Intel Xeon and IBM Cell platforms, respectively. We used the compiler
flags that Intel used for its SPEC performance submission. This gives the best averaged
performance for the compiler version we used. For the Cell platform, the IBM single-
source compiler automatically generates parallel threads to utilize the SPE accelerators
with the SIMD auto-vectorization support. It also comes with an associated runtime
that exploits a software cache to hide the communication latency between the host PPE
and SPEs. Each experiment was repeated 10 times and the median execution time was
recorded. As we found in the experiments, there are small variances in each execution
(less than 5%).

Furthermore, we use “leave-one-out cross-validation” to evaluate our machine-
learning-based mapping technique. This means that for K programs, we remove one,
train a model on the remaining K − 1 programs, and predict the Kth program with the
previously trained model. We repeat this procedure for each program in turn.

2Some of the larger datasets could not be evaluated on the Cell due to memory constraints.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:15

Fig. 8. Speedup over sequential code achieved by the Intel ICC auto-parallelizing compiler.

For the Cell platform, we report parallel speedup over sequential code running on
the general-purpose Power Processor Element (PPE) rather than a single Synergistic
Processing Element (SPE). In all cases, the sequential performance of the PPE exceeds
that of a single SPE, ensuring we report improvements over the strongest baseline
available. The average performance is presented with both arithmetic and geometric
means.

8. EXPERIMENTAL EVALUATION

In this section, we present and discuss our experimental results on the Xeon and
Cell platforms. First, we present the overall results of our framework. Next, we show
that our profiling-driven parallelism detection approach is very efficient in discovering
parallelism. Finally, we compare our machine-learning-based mapping model to fixed
heuristics that use the same profiling information.

8.1. Overall Results

Intel Xeon. Before we evaluate our approach, it is useful to examine the performance
of an existing auto-parallelizing compiler currently available on the Intel Xeon.

ICC. Figure 8 shows the performance achieved by the Intel ICC with two different
parallelization settings: default and runtime. With the default setting, the ICC compiler
uses a default profitability threshold to decide if a loop should be parallelized, while
with the runtime setting, the compiler uses runtime checking to decide the probability
threshold. Overall, ICC fails to exploit any usable levels of parallelism across the
whole range of benchmarks and dataset sizes. In fact, auto-parallelization results in
a slowdown of the BT and LU benchmarks for the smallest and largest dataset sizes,
respectively. ICC gains a modest speedup only for the larger datasets of the IS and SP
benchmarks. Though the ICC (runtime) approach achieves better performance than
the default scheme for some applications, it results in significant slowdown of the BT.S
and SP.S benchmarks due to the overhead of runtime checking. The reason for the
disappointing performance of the Intel ICC compiler is that it typically parallelizes
at the innermost loop level, where significant fork/join overhead negates the potential
benefit from parallelization. On average, both parallelization settings of ICC result in
a 2% of slowdown over the sequential code.

Manual. Figure 9(a) summarizes the performance of our scheme and manually par-
allelized OpenMP programs. The manually parallelized OpenMP programs achieve an
arithmetic mean speedup of 3.5 (a geometric mean speedup of 2.69) across the bench-
marks and data sizes. In the case of EP, a speedup of 8 was achieved for large data
sizes. This is not surprising since this is an embarrassingly parallel program. More sur-
prisingly, LU was able to achieve superlinear speedup (9×) due to improved caching
[Grant and Afsahi 2007]. Some programs (BT, MG, and CG) exhibit lower speedups
with larger datasets (A and B in comparison to W) on the Intel machine. This is a

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

2:16 Z. Wang et al.

Fig. 9. Speedups due to different parallelization schemes.

well-known and documented scalability issue of these specific benchmarks [omm; Grant
and Afsahi 2007].

Profile Driven. For most NAS benchmarks, our profile-driven parallelization achieves
performance levels close to those of the manually parallelized versions. In the manually
parallelized version, parallel loops were put into big parallel sections, leading to better
performance on small inputs due to the reduction of thread spawning overhead. How-
ever, this is not a significant advantage for medium and large inputs where the parallel
execution dominates the whole program execution time. Our profile-driven approach
outperforms the manual version on some benchmarks (EP, IS, and MG). This surpris-
ing performance gain can be attributed to three important factors. First, our approach
parallelizes outer loops, whereas the manually parallelized codes have parallel inner
loops. Second, our approach exploits reduction operations on array locations. Finally,
the machine-learning-based mapping is more accurate in eliminating nonprofitable
loops from parallelization and selecting the best scheduling policy.

The situation is slightly different for the SPEC benchmarks. While profile-driven
parallelization still outperforms the static auto-parallelizer, we do not reach the per-
formance level of the manually parallelized codes. Investigations into the causes of this
behavior have revealed that the SPEC OMP codes are not equivalent to the sequential
SPEC programs, but have been manually restructured [Aslot et al. 2001]. For exam-
ple, data structures have been altered (e.g., from list to vector), and standard memory
allocation (excessive use of malloc) has been replaced with a more efficient scheme.
As shown in Figure 10, the sequential performance of the SPEC OpenMP codes is on
average about two times (and up to 3.34 for art) above that of their original SPEC
counterparts on the Xeon platform. We have verified that our approach parallelizes
the same critical loops for both equake and art as SPEC OMP. For art, we achieve a
speedup of 4, whereas the SPEC OMP parallel version is six times faster than the
sequential SPEC CPU2000 version, of which more than 50% is due to sequential code
optimizations. We also measured the performance of the profile-driven parallelized

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:17

Fig. 10. The sequential performance of the SPEC OMP2001 benchmarks compared to the original SPEC
CPU2000 benchmarks on the Xeon platform. The SPEC OMP benchmarks have better sequential perfor-
mance than the original SPEC CPU2000 counterparts due to the reconstruction of codes.

equake version using the same code modifications and achieved a comparable speedup
of 5.95.

Overall, the results demonstrate that our profile-driven parallelization scheme sig-
nificantly improves on the state-of-the-art Intel auto-parallelizing compiler. In fact,
our approach delivers performance levels close to or exceeding those of manually par-
allelized codes and, on average, we achieve 96% of the performance of hand-tuned
parallel OpenMP codes, resulting in an average arithmetic speedup of 3.45 (a geomet-
ric mean speedup of 2.6) across all benchmarks.

IBM Cell. Figure 9(b) shows the performance resulting from manual and profile-
driven parallelization for the dual Cell platform. Benchmark BT is not included in this
figure because the IBM Cell compiler fails to compile it. Unlike the Intel platform,
the Cell does not deliver high performance on the manually parallelized OpenMP pro-
grams. On average, these codes result in an overall slowdown. For some programs
such as CG and EP, small performance gains could be observed; however, for most
other programs, the performance degradation is disappointing. Given that these are
hand-parallelized programs, this is perhaps surprising and there are essentially two
reasons that the Cell’s performance potential could not be exploited. First, it is clear
that the OpenMP codes have not been developed specifically for the Cell. The program-
mer has not considered the communication costs for a distributed memory machine. By
contrast, our mapping scheme is able to exclude most of the nonprofitable loops for par-
allelization, leading to better performance. Second, in the absence of specific scheduling
directives, the OpenMP runtime library resorts to its default behavior, which leads to
poor overall performance. Given that the manually parallelized programs deliver high
performance levels on the Xeon platform, the results for the Cell demonstrate that
parallelism detection in isolation is not sufficient, but mapping must be regarded as
equally important.

In contrast to the “default” manual parallelization scheme, our integrated paral-
lelization strategy is able to successfully exploit significant levels of parallelism, re-
sulting in an arithmetic mean speedup of 2.0 (which translates to a geometric mean
speedup of 1.60) over the sequential code and up to 6.2 for individual programs (EP).
This success can largely be attributed to the improved mapping of parallelism resulting
from our machine-learning-based approach.

8.2. Parallelism Detection and Safety

Our approach relies on dynamic profiling information to discover parallelism. This
has the obvious drawback that it may classify a loop as potentially parallel when
there exists another dataset that would highlight a dependence, preventing correct

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

2:18 Z. Wang et al.

Table IV. Number of Parallelized Loops and Their Respective Coverage of the
Sequential Execution Time

Profile driven ICC Manual
App. #loops (%cov) FP FN #loops (%cov) #loops (%cov)
BT 205 (99.9%) 0 0 72 (18.6%) 54 (99.9%)
CG 28 (93.1%) 0 0 16 (1.1%) 22 (93.1%)
EP 8 (99.9%) 0 0 6 (<1%) 1 (99.9%)
FT 37 (88.2%) 0 0 3 (<1%) 6 (88.2%)
IS 9 (28.5%) 0 0 8 (29.4%) 1 (27.3%)
LU 154 (99.7%) 0 0 88 (65.9%) 29 (81.5%)
MG 48 (77.7%) 0 3 9 (4.7%) 12 (77.7%)
SP 287 (99.6%) 0 0 178 (88.0%) 70 (61.8%)
equake_SEQ 69 (98.1%) 0 0 29 (23.8%) 11 (98.0%)
art_SEQ 31 (85.6%) 0 0 16 (30.0%) 5 (65.0%)
ammp_SEQ 21 (1.4%) 0 1 43 (<1%) 7 (84.4%)

parallelization. This is a fundamental limit of dynamic analysis and the reason for
requesting the user to confirm uncertain parallelization decisions. It is worthwhile,
therefore, to examine to what extent our approach suffers from false positives (“loop
is incorrectly classified as parallelizable”). Clearly, an approach that suffers from high
numbers of such false positives will be of limited use to programmers.

Column 2 in Table IV shows the number of loops our approach detects as potentially
parallel. The column labeled FP (“false positive”) shows how many of these were in fact
sequential. The surprising result is that none of the loops we considered potentially
parallel turned out to be genuinely sequential. Clearly, this result does not prove that
dynamic analysis is always correct. However, it indicates that profile-based dependence
analysis may be more accurate than generally considered, even for profiles generated
from small datasets. This encouraging result will need further validation on more
complex programs before we can draw any final conclusions.

Column 3 in Table IV lists the number of loops parallelizable by ICC. In some ap-
plications, the ICC compiler is able to detect a considerable number of parallel loops.
In addition, if we examine the coverage (shown in parentheses), we see that in many
cases this covers a considerable part of the program. Therefore, we conclude that it
is less a matter of the parallelism detection that causes ICC to perform so poorly, but
rather how it exploits and maps the detected parallelism (see Section 8.3).

The final column in Table IV eventually shows the number of loops parallelized in
the hand-coded applications. As before, the percentage of sequential coverage is shown
in parentheses. Far fewer loops than theoretically possible are actually parallelized
because the programmers have obviously decided only to parallelize those loops they
considered “hot” and “profitable.” These loops cover a significant part of the sequential
time and effective parallelization leads to good performance, as can be seen for the
Xeon platform.

In total, there are four false negatives (column FN in Table IV), that is, loops not
identified as parallel although safely parallelizable. Three false negatives are contained
in the MG benchmark, and two of these are due to loops that have zero iteration counts
for all datasets and, therefore, are never profiled. The third one is a MAX reduction,
which is contained inside a loop that our machine-learning classifier has decided not
to parallelize.

8.3. Parallelism Mapping

In this section, we evaluate the impact of machine-learning-driven mapping on perfor-
mance. In order to isolate its effect, we examine three mapping schemes—manual, a

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:19

Fig. 11. Impact of different mapping approaches (100% = manually parallelized OpenMP code).

heuristic, and a machine-learning-based predictive model—across the two platforms.3
The heuristic is a typical profitable model that is similar to the one used in SUIF [Hall
et al. 1996] and Open64 [Open64 2013] parallelizing compilers. It uses the profiling
information to calculate the execution time per loop iteration and decides the profitabil-
ity of loops based on a certain threshold. In the experiments, we have tried different
thresholds and used the one that gives the best average performance on a particular
platform.

Intel Xeon. Figure 11(a) compares our machine-learning-based mapping approach
against a scheme that uses the same profiling information but employs a fixed, work-
based heuristic similar to the one implemented in the SUIF-1 parallelizing compiler
(see also Figure 5). This heuristic considers the product of the iteration count and
the number of instructions contained in the loop body and decides against a static
threshold. While our machine-learning approach delivers nearly the performance of
the hand-parallelized codes and in some cases is able to outperform them, the static
heuristic performs poorly and is unable to obtain more than 76% of the performance of
the hand-parallelized code. This translates into a geometric mean speedup of 1.7 rather
than 2.6 for the benchmarks. The main reason for this performance loss is that the fixed
heuristic is unable to accurately determine whether a loop should be parallelized or
not. There are two cases, FT.S and SP.S, where the fixed heuristic achieves slightly
better performance than our machine-learning model. This is because our machine-
learning model is overoptimistic for the two applications with the smallest datasets by
parallelizing several unprofitable loops. This can be improved by adding more training
examples.

IBM Cell. The diagram in Figure 11(b) shows the speedup of our machine-learning-
based mapping approach over the hand-parallelized code on the Cell platform. As

3The results of ICC are not shown in these experiments, because ICC gives little speedup over the sequential
version of the code (see Section 8.1).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

2:20 Z. Wang et al.

Fig. 12. Geometric mean speedups on the two platforms.

before, we compare our approach against a scheme that uses the profiling information
but employs a fixed mapping heuristic.

The manually parallelized OpenMP programs are not specifically “tuned” for the Cell
platform and perform poorly. As a consequence, the profile-based mapping approaches
show high performance gains over this baseline, in particular, for the small-input
datasets. The combination of profiling and machine learning dramatically outperforms
the fixed heuristic counterpart by more than a factor of 2. This, on average, results
in a geometric mean speedup of 3.31 over the hand-parallelized OpenMP programs
across all datasets. There is only one case (i.e., MG.S) in which the fixed heuristic
outperforms the machine-learning model, which is overoptimistic in evaluating the
profitability of some loops for this program. This can be easily improved by using more
training examples when training the machine-learning model.

Summary. Figure 12 shows the average speedups over the sequential code for each
approach on the two platforms. The combined profiling and machine-learning approach
to mapping comes within reach of the performance of hand-parallelized code on the
Intel Xeon platform and in some cases outperforms it. It achieves a geometric mean
speedup of 2.60 over the sequential code, which is very close to the 2.69x speedup
achieved by the manual parallelization code. Fixed heuristics are not strong enough to
separate profitably parallelizable loops from those that are not and perform poorly.
Typically, static mapping heuristics result in performance levels of less than 60%
of the machine-learning approach. This is because the default scheme is unable to
accurately determine whether a loop should be parallelized or not. The situation is
exacerbated on the Cell platform, where accurate mapping decisions are key enablers
to high performance. Existing (“generic”) manually parallelized OpenMP code fails
to deliver any reasonable performance, which actually results in a 50% slowdown in
performance. Static heuristics, even with carefully chosen profitability thresholds, are
unable to match the performance of our machine-learning-based scheme.

8.4. Development Cost

Profiling. The time spent on profiling and analysis depends on the program to be paral-
lelized and the input dataset used for profiling. In our case, we can profile and analyze
all the programs in less than an hour with up to 100x slowdown over the sequential
execution. The potential performance improvement could be a strong incentive for de-
velopers to adopt this automatic approach. There are also techniques, such as Kim
et al. [2010], that can further reduce the profiling and analysis overhead.

Training. The task of generating and collecting training data was done within a
day for both platforms. More specifically, running programs and collecting training
data took 16 hours, and training the machine-learning model took about 10 minutes.
The process of collecting data and training the model is a one-off cost incurred by our
framework. Furthermore, generating and collecting data is a completely automatic

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:21

process and is performed of-line. Therefore, it requires far less effort than constructing
a heuristic for each platform by hand.

Prediction. It takes a few microseconds to evaluate the model and make a prediction.
Thus, the overhead of prediction is negligible, which is included the experimental
results.

9. RELATED WORK

There is a substantial body of literature in automatic parallelization and related areas.
Here we briefly survey some of the large body of related work and discuss recent
developments since Tournavitis et al. [2009] was published.

Parallel Programming Languages. Many approaches have been proposed for new
programming languages to enable easier exploiting of parallelism [Frigo et al. 1998;
Gordon et al. 2002; Saraswat et al. 2007]. While such languages are critical in the long
term, these approaches do not alleviate the problems of porting legacy code.

Automatic Data Parallelization. Automatic parallelism extraction has been achieved
on restricted DOALL and DOACROSS loops [Kuck et al. 1981; Kennedy and Allen
2002; Burke and Cytron 1986; Padua et al. 1993; Lim and Lam 1997]. Unfortunately,
many parallelization opportunities were ignored due to the lack of information at the
source code level. The main problem is that for many programs, it is not compile-time
decidable if there exists a dependence between two references. To guarantee safety, an
overly conservative approach has to be employed limiting parallelization performance.

Dynamic Parallelization. To overcome the limits of static analysis, there has been
considerable work in runtime analysis and parallelization. Dynamic dependence anal-
ysis [Peterson and Padua 1993; Rauchwerger et al. 1995; Chen and Olukotun 2003] and
hybrid data dependence analysis [Rus et al. 2003] make use of dynamic dependence
information, delaying much of the parallelization work to the runtime of the program.
Such approaches record memory access patterns and execute in parallel if there is no
conflict. This, however, comes at considerable runtime cost. In contrast, we employ a
separate profiling stage and incorporate the dynamic information in the usual compiler-
based parallelization without causing any runtime overhead. Rus et al. [2007] applied
sensitivity analysis to automatically parallelize programs whose behaviors may be
sensitive to input datasets. Sensitive analysis uses runtime information (such as loop
bounds) for valid parallelization. In contrast to their approach, our profiling-driven
approach discovers more parallel opportunities and selects parallel candidates and
scheduling policies across multiple architectures.

Speculative Parallelization. In a related area to dynamic parallelization, there
are other approaches to exploiting parallelism in a speculative execution manner
[Rauchwerger and Padua 1995], but these approaches usually require hardware sup-
port for efficient execution. Prabhu and Olukotun [2005] and Bridges et al. [2007] have
manually parallelized the SPECINT-2000 benchmarks with thread-level speculation.
Their approaches rely on the programmer to discover parallelism as well as runtime
support for parallel execution. Decoupled Software Pipelining (DSWP) [Rangan et al.
2004; Ottoni et al. 2005] extracts thread parallelism where the parallel threads com-
municate in a pipelined manner using software or hardware queues. DSWP requires
fine-grain communication between parallel threads, making it infeasible for heteroge-
neous multicores where the communication cost is expensive. Privateer is a compiler
framework [Vachharajani et al. 2007] that targets parallelization of DOALL loops by
providing supports of speculative privatization and reductions. Profiling information

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

2:22 Z. Wang et al.

is also used to identify loop candidates that can benefit from speculative execution [Du
et al. 2004; Chen et al. 2004; Wu et al. 2008]. None of these approaches addresses the
problem of mapping parallelism across different platforms.

Interactive Parallelization. Interactive parallelization tools [Brandes et al. 1997;
Ishihara et al. 2006] provide a way to actively involve the programmer in the detection
and mapping of application parallelism. For example, SUIF Explorer [Liao et al. 1999]
helps the programmer to identify those loops that are likely to be parallelizable and
assists the user in checking for correctness. Similarly, the Software Behavior-Oriented
Parallelization [Ding et al. 2007] system allows the programmer to specify intended
parallelism. In Thies et al. [2007], programmers mark potential parallel regions of the
program, and then the tool uses dynamic profiling information to find a good mapping
of parallel candidates. All these frameworks require the programmer to mark parallel
regions instead of discovering parallelism automatically.

Parallelism Mapping. Prior research in parallelism mapping has mainly focused
on building heuristics and analytical models [Ramanujam and Sadayappan 1989],
runtime adaptation [Corbalán et al. 2000] approaches, and mapping or migrating tasks
on a specific platform. In this article, we aim to develop a compiler-based, automatic,
and portable approach that can adapt to multicore hardware.

Adaptive Compilation. Pouchet et al. [2010] combine iterative compilation and model-
driven search in a single framework. They first formulate a set of loop transformations,
including loop tiling and vectorization, in a static, polyhedral-modeling-based space.
For a given loop, their framework empirically searches over valid transformations in
the space to find the best transformation sequence for the target architecture. They
show that a single-program version does not perform equally well on different platforms
and thus an adaptive optimization scheme is needed. In contrast to prior research, we
built a model that learns how to effectively map parallelism to multicore platforms
with existing compilers and runtime systems. Our auto-parallelization framework is
built on our earlier work [Wang and O’Boyle 2009], where the input program of Wang
and O’Boyle [2009] has to be manually parallelized by programmers.

Recent Research Development. Since the early work of this article was published
[Tournavitis et al. 2009], a significant volume of research work has adopted similar
techniques but develops in different directions. Some of the work uses profiling anal-
ysis to develop interactive parallelization frameworks. Such a framework runs the
sequential program to uncover possibly parallel regions and to help the user select the
most profitable parallel regions with speedup estimation [Garcia et al. 2011]. Other
work applies dynamic analysis to either exploit different types of parallelism or target
different application domains. The Parallax framework [Vandierendonck et al. 2010]
exploits pipeline parallelism using user annotations. To help the programmer anno-
tate the code, it uses profiling information to suggest where an explicit annotation
is required in the source code in order to safely parallelize the sequential program.
Like our approach, Paralax uses static and profiling information to construct a pro-
gram dependence graph to perform dependence analysis. Other examples include the
McFLAT framework, which uses profiling runs to decide what transformations to apply
to Matlab programs [Aslam and Hendren 2010]. In addition to parallelism detection,
techniques are proposed to reduce the profiling overhead. For example, SD3 [Kim
et al. 2010] uses parallel threads to perform the profiling analysis so as to reduce the
runtime overhead. It also performs dependence analysis on the compressed trace to
reduce the memory footprint. Experimental results show that SD3 can greatly reduce
the runtime and memory overhead when profiling the SPEC 2006 benchmark suite.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:23

Dave and Eigenmann [2009] consider the problem of tuning OpenMP programs for
multi-cores. Their approach uses iterative compilation and executions to decide the
granularity of parallelism, which can deliver close and even better performance than
hand-parallelized code. Recently, Wang and O’Boyle [2010, 2013] proposed a machine-
learning-based approach to partitioning StreamIt programs onto shared memory mul-
ticores. This approach predicts the ideal structure of the program graph and then uses
random search to generate a program partition that is closed to the predicted structure.
Predictive modelling has also been used to optimize parallel programs in various set-
tings[Grewe et al. 2011, 2013]. In industrial terms, profile-driven analysis has recently
been adopted by companies like Vector Fabrics [Fabrics 2013] to help programmers to
generate optimized parallel code for multicores.

10. CONCLUSION AND FUTURE WORK

In this article, we have developed a platform-agnostic, profiling-based parallelism de-
tection method that enhances static data dependence analysis with dynamic informa-
tion, resulting in larger amounts of parallelism uncovered from sequential programs.
We have also shown that a close interaction with an adaptive mapping scheme can be
successful. Our mapping scheme is automatically built from training data, which is
portable across different architectures.

Results obtained on two complex multicore platforms (Intel Xeon and IBM Cell) and
two sets of benchmarks (NAS and SPEC) confirm that our profile-driven approach can
discover more parallelization opportunities and the machine-learning-based mapping
scheme is more portable than existing static mapping strategies. Our holistic approach
is able to achieve performance levels close to manually parallelized codes.

Future work will focus on further improvements of the profiling-based data depen-
dence analysis with the ultimate goal of eliminating the need for the user’s approval
for parallelization decisions that cannot be proven conclusively. Furthermore, we will
integrate support for restructuring transformations into our framework and target
parallelism beyond the loop level.

REFERENCES

NAS Parallel Benchmarks 2.3, OpenMP C version. (2004). http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
download/download-benchmarks.html.

Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubiatowicz, Nelson
Morgan, David Patterson, Koushik Sen, John Wawrzynek, David Wessel, and Katherine Yelick. 2009. A
view of the parallel computing landscape. Communications of ACM 52, 10 (2009), 56–67.

Amina Aslam and Laurie Hendren. 2010. McFLAT: A profile-based framework for MATLAB loop analysis
and transformations. In Proceedings of the 23rd International Conference on Languages and Compilers
for Parallel Computing (LCPC’10). 1–15.

Vishal Aslot, Max J. Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B. Jones, and Bodo Parady. 2001.
SPEComp: A New Benchmark Suite for Measuring Parallel Computer Performance. In Proceedings
of the International Workshop on OpenMP Applications and Tools: OpenMP Shared Memory Parallel
Programming (WOMPAT’01). 1–10.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson,
T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. 1991. The
NAS parallel benchmarks—summary and preliminary results. In Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing (Supercomputing’91). 158–165.

Christopher M. Bishop. 2007. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. 1992. A training algorithm for optimal margin
classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory (COLT’92).
144–152.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html
http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html

2:24 Z. Wang et al.

T. Brandes, S. Chaumette, M. C. Counilh, J. Roman, A. Darte, F. Desprez, and J. C. Mignot. 1997. HPFIT:
A set of integrated tools for the parallelization of applications using high performance Fortran. PART I:
HPFIT and the TransTOOL environment. Parallel Comput. 23 (1997), 71–87. Issue 1–2.

Matthew Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, and David August. 2007. Revisiting the se-
quential programming model for multi-core. In Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 40). 69–84.

Michael Burke and Ron Cytron. 1986. Interprocedural dependence analysis and parallelization. In Proceed-
ings of the 1986 SIGPLAN Symposium on Compiler Construction. 162–175.

Michael K. Chen and Kunle Olukotun. 2003. The Jrpm system for dynamically parallelizing Java programs.
In Proceedings of the 30th Annual International Symposium on Computer Architecture (ISCA’03). 434–
446.

Tong Chen, Jin Lin, Xiaoru Dai, Wei-Chung Hsu, and Pen-Chung Yew. 2004. Data dependence profiling for
speculative optimizations. In Compiler Construction. 57–72.

Julita Corbalán, Xavier Martorell, and Jesús Labarta. 2000. Performance-driven processor allocation. In
Proceedings of the 4th Conference on Operating System Design and Implementation (OSDI’00). 5–17.

CoSy. 2009. CoSy compiler development system. Retrieved from http://www.ace.nl/compiler/.
Chirag Dave and Rudolf Eigenmann. 2009. Automatically tuning parallel and parallelized programs. In

Proceedings of the 22nd International Conference on Languages and Compilers for Parallel Computing
(LCPC’09). 126–139.

Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang Zhang. 2007. Software be-
havior oriented parallelization. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’07). 223–234.

Chen Ding and Yutao Zhong. 2003. Predicting whole-program locality through reuse distance analysis. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implemen-
tation (PLDI’03).

Jialin Dou and Marcelo Cintra. 2004. Compiler estimation of load imbalance overhead in dpeculative paral-
lelization. In Proceedings of the 13th International Conference on Parallel Architectures and Compilation
Techniques (PACT’04). 203–214.

Zhao-Hui Du, Chu-Cheow Lim, Xiao-Feng Li, Chen Yang, Qingyu Zhao, and Tin-Fook Ngai. 2004. A cost-
driven compilation framework for speculative parallelization of sequential programs. In Proceedings of
the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDI’04).
71–81.

Vector Fabrics. 2013. Homepage. Retrieved from http://www.vectorfabrics.com/.
Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The implementation of the Cilk-5 multi-

threaded language. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation (PLDI’98). 212–223.

Saturnino Garcia, Donghwan Jeon, Christopher M. Louie, and Michael Bedford Taylor. 2011. Kremlin:
Rethinking and rebooting gprof for the multicore age. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Fesign and Implementation (PLDI’11). 458–469.

Michael I. Gordon. 2010. Compiler Techniques for Scalable Performance of Stream Programs on Multicore
Architectures. Ph.D. Thesis. Massachusetts Institute of Technology.

Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli, Andrew A. Lamb, Chris
Leger, Jeremy Wong, Henry Hoffmann, David Maze, and Saman Amarasinghe. 2002. A stream com-
piler for communication-exposed architectures. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-X). 291–303.

Ryan E. Grant and Ahmad Afsahi. 2007. A comprehensive analysis of OpenMP applications on dual-core Intel
Xeon SMPs. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2007). 1–8.

Dominik Grewe, Zheng Wang, and Michael F.P. O’Boyle. 2013. Portable mapping of data parallel programs
to OpenCL for heterogeneous systems. In CGO’13.

Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. 2011. A workload-aware mapping approach for
data-parallel programs. In Proceedings of the 6th International Conference on High Performance and
Embedded Architectures and Compilers (HiPEAC’11). 117–126.

Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. 2013. OpenCL task partitioning in the presence of
GPU contention. In LCPC’13.

M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, Shih-Wei Liao, and E. Bu. 1996. Maximizing
multiprocessor performance with the SUIF compiler. Computer 29, 12 (1996), 84–89.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

http://www.ace.nl/compiler/
http://www.vectorfabrics.com/

Integrating Profile-Driven Parallelism Detection and Machine-Learning-Based Mapping 2:25

Parry Husbands, Costin Iancu, and Katherine Yelick. 2003. A performance analysis of the Berkeley UPC
compiler. In Proceedings of the 17th Annual International Conference on Supercomputing (ICS’03). 63–
73.

François Irigoin, Pierre Jouvelot, and Rémi Triolet. 1991. Semantical interprocedural parallelization: an
overview of the PIPS project. In Proceedings of the 5th International Conference on Supercomputing
(ICS’91). 244–251.

Makoto Ishihara, Hiroki Honda, and Mitsuhisa Sato. 2006. Development and implementation of an inter-
active parallelization assistance tool for OpenMP: iPat/OMP. IEICE Transactions on Information and
Systems E89-D, 2 (2006), 399–407.

Hanjun Johnson, Nick P. Kim, Prakash Prabhu, Ayal Zaks, and David I. August. 2012. Speculative separation
for Privatization and Reductions. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’12).

Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Modern Architectures: A Dependence-based
Approach. Morgan Kaufmann.

Ken Kennedy, Kathryn McKinley, and Chau-Wen Tseng. 1991. Interactive parallel programming using the
ParaScope editor. IEEE Transactions on Parallel and Distributed Systems 2, 3 (1991).

Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. 2010. SD3: A scalable approach to dynamic data-
dependence profiling. In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’43). 535–546.

D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. 1981. Dependence graphs and compiler opti-
mizations. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’81). 207–218.

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and L. Paul Chew.
2007. Optimistic parallelism requires abstractions. In Proceedings of the 2007 ACM SIGPLAN Confer-
ence on Programming Language Design andImplementation (PLDI’07). 211–222.

Leslie Lamport. 1974. The parallel execution of DO loops. Communications of ACM 17, 2 (1974), 83–93.
Shih-Wei Liao, Amer Diwan, Robert P. Bosch, Jr., Anwar Ghuloum, and Monica S. Lam. 1999. SUIF Explorer:

an interactive and interprocedural parallelizer. In Proceedings of the 7th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP’99). 37–48.

Amy W. Lim and Monica S. Lam. 1997. Maximizing parallelism and minimizing synchronization with affine
transforms. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’97). 201–214.

Open64. 2013. Homepage. Retrieved from http://www.open64.net.
Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. 2005. Automatic thread extraction with

decoupled software pipelining. In MICRO 38. 105–118.
David A. Padua, Rudolf Eigenmann, Jay Hoeflinger, Paul Petersen, Peng Tu, Stephen Weatherford, and Keith

Faigin. 1993. Polaris: A New-Generation Parallelizing Compiler for MPPs. Technical Report. University
of Illinois at Urbana-Champaign.

P. Peterson and David A. Padua. 1993. Dynamic dependence analysis: A novel method for data dependence
evaluation. In Proceedings of the 5th International Workshop on Languages and Compilers for Parallel
Computing. 64–81.

William Morton Pottenger. 1995. Induction Variable Substitution and Reduction Recognition in the Polaris
Parallelizing Compiler. Technical Report. University of Illinois at Urbana-Champaign.

Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam, and P. Sadayappan.
2010. Combined iterative and model-driven optimization in an automatic parallelization framework. In
Conference on Supercomputing (SC’10).

Manohar K. Prabhu and Kunle Olukotun. 2005. Exposing speculative thread parallelism in SPEC2000. In
Proceedings of the 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’05). 142–152.

Graham Price and Manish Vachharajani. 2010. Large program trace analysis and compression with ZDDs.
In Proceedings of the 8th Annual IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO’10).

J. Ramanujam and P. Sadayappan. 1989. A methodology for parallelizing programs for multicomputers and
complex memory multiprocessors. In Proceedings of the 1989 ACM/IEEE Conference on Supercomputing
(Supercomputing’89).

Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. 2004. Decoupled software
pipelining with the synchronization array. In Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques (PACT’04). 177–188.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

http://www.open64.net

2:26 Z. Wang et al.

Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. 1995. Run-time methods for parallelizing
partially parallel loops. In Proceedings of the 9th International Conference on Supercomputing (ICS’95).
137–146.

Lawrence Rauchwerger, Francisco Arzu, and Koji Ouchi. 1998. Standard Templates Adaptive Parallel Li-
brary (STAPL). In Languages, Compilers, and Run-Time Systems for Scalable Computers. Lecture Notes
in Computer Science, Vol. 1511. 402–409.

Lawrence Rauchwerger and David Padua. 1995. The LRPD test: speculative run-time parallelization of loops
with privatization and reduction parallelization. In Proceedings of the ACM SIGPLAN 1995 Conference
on Programming Language Design and Implementation (PLDI’95). 218–232.

Sean Rul, Hans Vandierendonck, and Koen De Bosschere. 2008. A dynamic analysis tool for finding coarse-
grain parallelism. In HiPEAC Industrial Workshop.

Silvius Rus, Maikel Pennings, and Lawrence Rauchwerger. 2007. Sensitivity analysis for automatic paral-
lelization on multi-cores. In Proceedings of the 21st Annual International Conference on Supercomputing
(ICS’07). 263–273.

Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. 2003. Hybrid analysis: Static & dynamic memory
reference analysis. International Journal of Parallel Programming 31, 4 (2003), 251–283.

Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun. 2007. X10: concurrent programming for modern
architectures. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’07). 271–271.

William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. 2007. A practical approach to exploiting
coarse-grained pipeline parallelism in C programs. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 40). 356–369.

Georgios Tournavitis and Björn Franke. 2010. Semi-automatic extraction and exploitation of hierarchical
pipeline parallelism using profiling information. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT’10). 377–388.

Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F. P. O’Boyle. 2009. Towards a holistic ap-
proach to auto-parallelization: Integrating profile-driven parallelism detection and machine-learning
based mapping. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’09). 177–187.

Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guilherme Ottoni, and David I.
August. 2007. Speculative decoupled software pipelining. In PACT’07. 49–59.

Hans Vandierendonck, Sean Rul, and Koen De Bosschere. 2010. The Paralax infrastructure: automatic
parallelization with a helping hand. In Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT’10). 389–400.

Zheng Wang and Michael F. P. O’Boyle. 2009. Mapping parallelism to multi-cores: a machine learning based
approach. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’09).

Zheng Wang and Michael F. P. O’Boyle. 2010. Partitioning streaming parallelism for multi-cores: A machine
learning based approach. In Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT’10).

Zheng Wang and Michael F. P. O’Boyle. 2013. Using machine learning to partition streaming programs. ACM
ACM Transactions on Architecture and Code Optimization 10, 3 (2013), 1–25.

Peng Wu, Arun Kejariwal, and Călin Caşcaval. 2008. Compiler-driven dependence profiling to guide program
parallelization. In Languages and Compilers for Parallel Computing. 232–248.

Heidi Ziegler and Mary Hall. 2005. Evaluating heuristics in automatically mapping multi-loop applications to
FPGAs. In Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-programmable
Gate Arrays (FPGA’05). 184–195.

Received June 2012; revised July 2013; accepted September 2013

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 2, Publication date: February 2014.

