
This is a repository copy of Optimizing Direct Convolutions on ARM Multi-Cores.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/202768/

Version: Accepted Version

Proceedings Paper:
Wang, P., Yang, W., Fang, J. et al. (5 more authors) (2023) Optimizing Direct Convolutions
on ARM Multi-Cores. In: Proceedings of SC23: The International Conference for High
Performance Computing, Networking, Storage, and Analysis. SC23: The International
Conference for High Performance Computing, Networking, Storage, and Analysis, 12-17
Nov 2023, Denver, USA. ACM . ISBN 9798400701092

https://doi.org/10.1145/3581784.3607107

This item is protected by copyright. This is an author produced version of a conference
paper accepted for publication in Proceedings of SC23 The International Conference for
High Performance Computing, Networking, Storage, and Analysis, made available under
the terms of the Creative Commons Attribution License (CC-BY), which permits
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Optimizing Direct Convolutions on ARM Multi-Cores

Pengyu Wang1,∗, Weiling Yang1,∗, Jianbin Fang1,†, Dezun Dong1,
Chun Huang1, Peng Zhang1, Tao Tang1, Zheng Wang2

1 College of Computer Science and Technology, National University of Defense Technology, China

2 School of Computing, University of Leeds, United Kingdom

{pengyu_wang, w.yang, j.fang, dong, chunhuang, zhangpeng13a, taotang84}@nudt.edu.cn, z.wang5@leeds.ac.uk

ABSTRACT

Convolution kernels are widely seen in deep learning workloads

and are often responsible for performance bottlenecks. Recent re-

search has demonstrated that a direct convolution approach can

outperform the traditional convolution implementation based on

tensor-to-matrix conversions. However, existing approaches for

direct convolution still have room for performance improvement.

We present nDirect, a new direct convolution approach that tar-

gets ARM-based multi-core CPUs commonly found in smartphones

and HPC systems. nDirect is designed to be compatible with the

data layout formats used by mainstream deep learning frameworks

but offers new optimizations for the computational kernel, data

packing, and parallelization. We evaluate nDirect by applying it

to representative convolution kernels and demonstrating its perfor-

mance on four distinct ARMmulti-core CPU platforms.We compare

nDirect against state-of-the-art convolution optimization tech-

niques. Experimental results show that nDirect gives the best

overall performance across evaluation scenarios and platforms.

CCS CONCEPTS

· Computing methodologies→Machine learning; · Software

and its engineering→ Compilers.

KEYWORDS

Convolution, Direct Algorithm, Neural networks, ARMv8 Multi-

Core, Performance Optimization

1 INTRODUCTION

Convolutional Neural Networks (CNNs) are one of the most popular

deep neural network architectures and are found to be successful

in a wide range of tasks, including image classification [38, 60],

object detection [46, 55, 56], natural language processing [43], and

semantic segmentation [58, 68]. The core component of a CNN is

the convolutional (CONV) operation [23, 35, 51, 63], which is often

responsible for the performance bottleneck of a CNN, accounting

for over 90% of the CNN execution time [28]. As such, there has been

considerable interest in optimizing convolution implementations

to accelerate CNNs [1, 10, 21].

Traditionally, CONV kernels were implemented as general ma-

trix multiplications (GEMM) [1, 3, 9, 10]. This approach maps the

input tensor into a row- or column-major matrix through format

conversion (also known as im2col) to translate CONV operations

into GEMM kernels [18, 52]. By using this matrix format, the convo-

lution operation can be performed as a single matrix multiplication

∗Equal contribution
2Corresponding author

to take advantage of the highly optimized GEMMkernel accelerated

using heavily optimized BLAS (Basic Linear Algebra Subprograms)

libraries [3, 7, 11].

However, im2col can increase the memory footprint and the

tensor-to-matrix conversion can result in an irregular-shaped ma-

trix with sub-optimal performance [31, 53, 66]. As such, more recent

approaches attempt to optimize CONV operations without convert-

ing the input tensors into matrices. This strategy is known as direct

convolution [16, 24, 27, 30ś32, 45, 49, 52, 54, 65, 67, 69]. It works by

sliding a CONV kernel over the input tensor and computing the

dot product between the kernel and a small patch of the input at

each position. This operation is repeated for every input position to

produce a feature map. Direct convolution has two advantages over

im2col. Firstly, direct convolution has lower memory requirements

as it operates directly on the input tensor, avoiding transforming the

input tensor into a larger matrix. This can improve cache locality

and reduce memory usage. Secondly, direct convolution can ex-

ploit the sparsity of the convolution kernel and avoid unnecessary

computations [54], leading to faster computation times.

LIBXSMM is the state-of-the-art library-based solution for imple-

menting direct convolutions on CPUs [5, 6, 31, 33]. It uses a special-

ized data layout and the Batch-Reduce GEMM (BRGEMM) as the

computational kernel [32, 33]. It gives improved performance over

im2col+GEMMon x86 and ARMCPUs.While promising, LIBXSMM

has two fundamental drawbacks. First, its data layout design is in-

compatible with the common data layouts (i.e.,𝑁𝐶𝐻𝑊 or𝑁𝐻𝑊𝐶)1

used in mainstreamed deep learning (DL) frameworks [8, 13, 30].

Therefore, integrating the BRGEMM routines into DL frameworks

requires either code refactoring to the underlying DL framework or

introducing a format conversion stage at the user code when calling

and exiting each CONV operator. The latter requires changes to

the standard user model code and will incur additional overhead.

Second, LIBXSMM still uses a conventional GEMM-based micro-

kernel, which fails to leverage potential data reuse opportunities

in convolutions [9, 52] to improve performance. Other work on

direct convolutions [27, 33, 52, 65, 67, 69] also failed to address

the two aforementioned limitations within a single framework.

These approaches either use a different data layout with integration

issues [33, 52, 67], or sacrificing performance to maintain compati-

bility with standard data layouts [27, 65, 69].

This paper presents nDirect2, a new direct convolution solution

with a focus on providing high performance, high data reusabil-

ity, and DL framework compatibility. Our work explicitly targets

1𝑁𝐶𝐻𝑊 =[Batch Size, Input Channels, Input Height, Input Width]; 𝑁𝐻𝑊𝐶=[Batch
Size, Input Height, Input Width, Input Channels].
2The code and data for this paper are publically available at: https://github.com/
nDIRECT/nDIRECT.

Pengyu Wang, et al.

Table 1: Summary of notations used in the paper

Description Description

𝑁 Batch Size 𝐾 Output Channels
𝐶 Input Channels 𝑅 Kernel Height
𝐻 Input Height 𝑆 Kernel Width
𝑊 Input Width 𝑃 Output Height
𝑄 Output Width 𝑠𝑡𝑟 Stride
𝐼 Input Tensor 𝑂 Output Tensor
𝐹 Filter Tensor

ARM multi-core CPUs widely seen in smartphones and HPC sys-

tems, which are also commonly used for CNN model inference.

nDirect implements new strategies for micro-kernel computation,

data packing and parallelization. nDirect is designed to be com-

patible with mainstreamed DL frameworks and does not require

code refactoring of the underlying CONV implementations or the

user model code. Instead of transforming data between different

data layouts [31, 67], nDirect adheres to the conventional tensor

formats by converting the data layout of filter tensors on the fly,

providing compatibility with existing DL frameworks. It leverages

SIMD instructions to implement a CONV-friendly computation

pattern. Unlike prior work’s sequential data packing method, nDi-

rect overlaps data packing memory accesses with computation

operations to hide the memory access latency.

We demonstrate the benefit of nDirect by applying it to three

HPCmulti-cores and one embedded CPU of the ARMv8 architecture.

We evaluate nDirect by measuring its performance on individual

convolution layers and the end-to-end inference time of represen-

tative CNN models. We compare nDirect against four state-of-the-

art convolution approaches [18, 27, 31, 70]. We show that nDirect

consistently delivers better performance across hardware platforms.

We showcase that, despite being a low-level library-based method

and lacking high-level optimizations like operator fusion, nDirect

is competitive to Ansor, an automated search framework within

TVM, for the end-to-end inference optimization.

This paper makes the following contributions:

• It presents a new direct convolution algorithm that preserves the

conventional data layouts used by mainstream DL frameworks;

• It proposes a new way to implement convolution computation

kernels, which outperforms existing solutions;

• It provides a set of analytical models to derive the optimal algo-

rithmic parameters.

2 BACKGROUND AND PROBLEM SCOPE

Table 1 summarizes the CONV notations used throughout in the

paper.

2.1 Prior Convolution Implementations

Algorithm 1 gives a straightforward, unoptimized implementation

of CONV, which has seven nested loops around a multiply-and-

accumulate statement. The algorithm uses stride (𝑠𝑡𝑟) to determine

how to move the input tensor 𝐼 across the 𝑆 spatial space of the

filter tensor 𝐹 , to generate the output tensor 𝑂 . As there are no

dependencies across the loop iterations, the computation can be

permuted and tiled to improve the performance [45].

Algorithm 1 can be typically improved using four strategies [48],

including the direct convolution targeted in this work, the im2col+GEMM

approach, FFT (Fast Fourier Transform) and Winograd [44]. While

FFT and Winograd can reduce the computation complexity, they

Algorithm 1: Naive Direct Convolution Algorithm

Input: 𝐼 [𝑁] [𝐶] [𝐻] [𝑊]; 𝐹 [𝐾] [𝐶] [𝑅] [𝑆]
Output:𝑂 [𝑁] [𝐾] [𝑃] [𝑄]
1: for 𝑛 = 0 to 𝑁 − 1 do
2: for 𝑐 = 0 to𝐶 − 1 do
3: for 𝑘 = 0 to 𝐾 − 1 do
4: for 𝑜 𝑗 = 0 to 𝑃 − 1 do
5: for 𝑜𝑖 = 0 to𝑄 − 1 do
6: 𝑖 𝑗 = 𝑠𝑡𝑟 · 𝑜 𝑗
7: 𝑖𝑖 = 𝑠𝑡𝑟 · 𝑜𝑖
8: for 𝑟 = 0 to 𝑅 − 1 do
9: for 𝑠 = 0 to 𝑆 − 1 do
10: 𝑂 [𝑛] [𝑘] [𝑜 𝑗] [𝑜𝑖] +=

𝐼 [𝑛] [𝑐] [𝑖 𝑗 + 𝑟] [𝑖𝑖 + 𝑠] ∗ 𝐹 [𝑘] [𝑐] [𝑟] [𝑠]

have limited applications [41, 50]. This is because the two meth-

ods can increase the memory pressure and reduce the prediction

accuracy [42]. Since our work focuses on optimizing CONV with-

out compromising prediction accuracy, direct convolution and

im2col+GEMM are the most relevant methods.

2.2 Im2col+GEMM Approach

The process of lowering the CONV kernel to GEMM is known as

im2col. A GEMM computation generally contains three dimensions,

referred to as𝑀′, 𝑁 ′ and 𝐾 ′ in this paper. Given a convolution size,

this process involves flattening and patching images according to

columns and then arranging these columns into a concatenated

matrix. The convolution kernels are stored in matrix format ahead

of time and called upon by a GEMM routine to execute convolu-

tions. While using optimized GEMMs can speed up convolutions,

this method has additional memory overhead, and the available

hardware memory bandwidth can restrict its performance. This is

a particular problem for the parallel execution of CONV on multi-

core CPUs with large batch sizes because the available bandwidth

to each core may be insufficient to achieve optimal GEMM perfor-

mance.

2.3 Direct Convolution

There have been several attempts to optimize direct convolutions

with varying degrees of success. For example, the ARM Compute

Library (ACL) [1] supports direct convolution implementation, but

it gives a poor performance on our evaluation platform and only

works for very limited configurations. LIBXSMM [5, 31] is most

closely relevant to nDirect, but it uses a new storage format so as to

enhance data locality and utilizes SIMD instructions. Additionally,

it tiles loops to accommodate small matrix multiplications as the in-

nermost micro-kernel, which is generated by just-in-time (JIT) [39]

compilation. In this process, the filter with a data layout of 𝐾𝐶𝑅𝑆 is

converted into a tensor with dimensions ⌈𝐾
𝑘
⌉ · ⌈𝐶𝑐 ⌉ ·𝑅 · 𝑆 · 𝑐 ·𝑘 , and

the 𝑁𝐶𝐻𝑊 input tensor is converted into a tensor with dimensions

𝑁 · ⌈𝐶𝑐 ⌉ · 𝐻 ·𝑊 · 𝑐 .

2.4 Search-based Code Optimization

There is also a body of work on auto-tuning the DNN back-end code

generation [15, 19, 20, 47, 64, 71]. The Ansor [70] in the TVM DL

compiler [19] employs evolutionary search with a predictive model

to search an optimized code schedule by looking at optimizations

like loop tiling and instruction scheduling. The code schedule is then

Optimizing Direct Convolutions on ARM Multi-Cores

Table 2: Comparing nDirect against prior conv. solutions

im2ol+
XNNPACK LIBXSMM Ansor nDirect

GEMM

Approach Library Library JIT Search Library
Required
format
conver-
sion?

✓ ✓ ✗ ✓ ✓

Low
memory
foot-
print?

✗ ✓ ✓ ✓ ✓

High
perfor-
mance?

8 88 88 88 888

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Layer ID

20

40

60

80

100

%
 o

f
R

u
n

ti
m

e

im2col

transform

packing

micro-kernel (LIBXSMM)

micro-kernel (OpenBLAS)

(a) Percentage of running time for each step

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Geo
Layer ID

20

40

60

80

%
 o

f
P

e
a

k

LIBXSMM

im2col+GEMM

XNNPACK

ACL_GEMM

ACL_DIRECT

Ansor

(b) 64-cores CONV Performance on Phytium 2000+

Figure 1: CONV performance of (a) breakdown and (b) multi-

core on the ARMv8-based Phytium 2000+ processor.

passed to the back-end code generator (e.g., the LLVM compiler) to

emit machine instructions. Ansor supports auto-tuning for direct

convolution with the 𝑁𝐶𝐻𝑊 data layout. Ansor also leverages

the operator fusion technique from Relay [57] into computational

subgraphs for code optimizations.

2.5 Positioning Our Work

Table 2 summarizes prior work in format conversion, memory

footprint, and performance. LIBXSMM requires format conver-

sion, requiring code refactoring or will incur conversion overhead.

Im2col+GEMM could increase memory pressure. All prior methods

also leave much room for performance improvement. Therefore,

nDirect aims to fill this gap by preserving the mainstream DL

formats and achieving high performance.

3 MOTIVATION AND OVERVIEW

Our work is motivated by the observation that current convolution

optimization methods have room for performance optimization or

have compatibility issues with mainstreamed DL frameworks (Ta-

ble 2). These methods include im2col+ OpenBLAS GEMM [11, 18],

LIBXSMM [5, 6, 31, 33], XNNPACK [14, 27], tuned direct convolu-

tion by Ansor [70], direct and GEMM-based methods provided by

ACL [1].

To illustrate these points, consider optimizing CONV operator

on Phytium 2000+, a 64-core ARMv8 multi-core CPU [29]. We

employ ResNet-50, a popular CNN utilized for object detection

[38] and set the batch size to match the number of physical cores

available [31], while executing various CONV layers of different

sizes from ResNet-50 (see Table 4).

3.1 Motivation Results

Figure 1 shows the convolution performance of representative im-

plementations, and we normalize the throughput (GFLOPS) relative

to the theoretical peak performance of Phytium 2000+ with 64 cores.

Breakdown of overhead. Figure 1a gives a breakdown of the

runtime overheads for each part of im2col+GEMM and LIBXSMM’s

direct convolution approaches. In the case of im2col+GEMM, the

runtime overheads arise from data packing, im2col transformation

and micro-kernel calls. Convolutions with 𝑅 > 1 and 𝑆 > 1 require

im2col transformation, which causes expensive data duplication

cost. Additionally, the overhead of data packing can not be ignored,

accounting for up to 40% of total expenses for CONV layer 17. For

LIBXSMM, assuming the adoption of conventional data formats

𝑁𝐶𝐻𝑊 , the runtime overheads originate from data format trans-

formation and micro-kernel calls. As presented in Figure 1a, the

cost of data format transformation accounts for the majority of

overall overhead, with up to 90% of total execution time for CONV

layer 5.

Parallel execution. Figure 1b displays the performance of indi-

vidual CONV layers from ResNet-50 when executed using a batch

size of 64 on 64 cores. It is worth noting that we only measure the

performance of LIBXSMM’s micro-kernels to observe the benefits

of using a cache-friendly data format. Despite performing the best,

LIBXSMM only delivers an average 50% of the theoretical CPU peak

performance. In addition, we observe that im2col+GEMM achieves

40% of the peak performance. For convolutions without im2col

transformation, such as CONV layers 19 and 20, GEMM methods

achieve close to 50% of the peak performance.

3.2 Opportunities for Improvement

After closely examining the results and the implementation of prior

work, we have identified three opportunities for improvement,

described as follows.

First of all, compatibility with the mainstream data layout used in

DL frameworks is important for the adoption of these approaches.

While LIBXSMM has achieved promising convolution performance,

it introduces new data layouts designed to improve cache local-

ity and exploit vectorization. However, incorporating such new

data layouts into mainstream DL applications would require signif-

icant redevelopment of existing frameworks and entail substantial

engineering efforts. This is challenging for processors like ARM

CPUs, which often lack DL software support compared to x86 and

GPUs. Alternatively, without changing the underlying DL frame-

work, data format conversion will need to be performed by the user

code before and after calling each CONV operator. This not only

requires user code refactoring but the expensive overhead of format

Pengyu Wang, et al.

Algorithm 2: nDirect Convolution

Input: 𝐼 [𝑁] [𝐶] [𝐻] [𝑊]; 𝐹 [𝐾] [𝐶] [𝑅] [𝑆]
Output:𝑂 [𝑁] [𝐾] [𝑃] [𝑄]
1: L1: for (𝑛 = 0;𝑛 < 𝑁 ;𝑛 + +) do
2: L2: for (ℎ𝑡 = 0;ℎ𝑡 < 𝐻 ;ℎ𝑡+ = 𝑇ℎ) do
3: L3: for (𝑐𝑡 = 0;𝑐𝑡 < 𝐶 ;𝑐𝑡+ = 𝑇𝑐) do
4: L4: for (𝑘𝑡 = 0;𝑘𝑡 < 𝐾 ;𝑘𝑡+ = 𝑇𝑘) do

/*Transform the filter’s layout𝑇𝑘𝑇𝑐𝑅𝑆 to ⌈ 𝑇𝑘
𝑉𝑘
⌉𝑇𝑐𝑅𝑆𝑉𝑘 */

5: transform_filter();

6: L5: for (ℎ𝑣 = ℎ𝑡 ;ℎ𝑣 < 𝑇ℎ ;ℎ𝑣 + +) do
7: L6: for (𝑤𝑣 = 0;𝑤𝑣 <𝑊 ;𝑤𝑣+ = 𝑉𝑤) do
8: Input_Buffer B← Pack_Micro-kernel();

9: L7: for (𝑘𝑣 = 𝑘𝑡 +𝑉𝑘 ;𝑘𝑣 < 𝑘𝑡 +𝑇𝑘 ;𝑘𝑣+ = 𝑉𝑘) do
10: Main_Micro-kernel(B);

conversion can also outweigh the benefit of im2col. For instance,

the conversion time for CONV layers 1 in Figure 1a is around 4×
of the actual computation time. Therefore, a better scheme should

minimize the disruption to the existing DL software systems, mak-

ing integrating them into existing DL frameworks easier without

significant redevelopment effort.

Secondly, we identified opportunities to enhance the perfor-

mance of GEMM-based convolution methods. Although LIBXSMM

uses optimized micro-kernels and a cache-friendly data format to

achieve fast direct convolution, we found that its loop tile sizes are

too small to fully utilize the multi-level caches and fused multiply-

accumulate (FMA) units available in modern ARMv8 multi-cores.

And the sequential load instructions generated by LIBXSMM’s JIT

compiler can cause pipeline stall hazards.

Moreover, we noticed that the im2col transformation and se-

quential data packing utilized in the im2col+GEMM approach can

also hamper performance by generating significant memory load

and store operations. This can result in slowdowns when multiple

threads are competing for memory bandwidth. Therefore, an ideal

micro-kernel for convolution should have high performance and

no additional memory access overhead.

Thirdly, we observed that existing parallelization strategies are

coarse-grained, contributing to the poor convolution performance

onARMmulti-cores. For example, ACL’s direct convolution achieves

only 5% of the multi-core peak performance on Phytium 2000+.

This is because of the strategy’s naive naïve parallelization of the

𝐾 dimension without considering the convolution workloads char-

acteristics, such as the batch size 𝑁 and input shape 𝐻 ×𝑊 . As a

result, the computations are performed sequentially over multiple

batches, resulting in linear cost accumulation. Further optimization

is needed to overcome this problem.

To summarize, these findings indicate that there is still consid-

erable potential for performance improvement when optimizing

convolution operations on ARM multi-core CPUs.

3.3 Overview

nDirect exploits the opportunities identified in Section 3.2. We

achieve this by redesigning direct convolution with compatible data

layouts, new micro-kernels and suitable parallelization strategies

optimized for multi-core CPUs.

Data layout. To be compatible with mainstream DL frameworks

(e.g., Tensorflow [13] and MXNet [8]), nDirect preserves the con-

ventional 𝑁𝐶𝐻𝑊 and 𝑁𝐻𝑊𝐶 data layouts. In this paper, we ex-

plain nDirect using the 𝑁𝐶𝐻𝑊 data layout as an example.

Algorithm implementations. Algorithm 23 outlines the nDirect

convolution for the 𝑁𝐶𝐻𝑊 data format, inspired by the GEMM

block algorithm [34].We tile the filter and input tensors at two levels

to improve spatial data locality. The first level of tiling exploits cache

usage (lines 2ś4) and determines the tile size based on the capacity

of each level of cache, as described in Section 4. The second tiling

level uses vector registers (lines 6ś9) with a tile size that maximizes

floating-point arithmetic intensity (𝐹𝐴𝐼), as detailed in Section 5.

We use the outer-product method to update the output tensor 𝑂

since its 𝐹𝐴𝐼 is higher than the inner-product method, allowing us

to access elements of the filter tensor 𝐹 more continuously. This is

also the reason for focusing on the format conversion of the tensor

𝐹 (line 5). Figure 2 illustrates that the input tensor’s spatial data

locality is poor, and the processor can only continuously access𝑉𝑤
elements at each iteration. To address this, we map its elements to

a continuous buffer (line 8).

Road map. In the upcoming sections, we will delve into three

essential optimizations that we have implemented in nDirect to

minimize data movements when permuting loops (Section 4), in-

troduce a novel micro-kernel that is optimized for convolution

(Section 5), and outline our parallelization strategy (Section 6). Our

current implementation supports single floating-point (FP32) as this

is the most commonly used data type for CNN, but our techniques

can be applied to other data types, including FP16, FP64 and INT16.

4 NDIRECT DESIGN

Algorithm 2 shows the main computation kernel of nDirect, de-

scribed in the following subsections. nDirect follows the design

principle of the classical Goto algorithm for matrix multiplica-

tions [34, 62].

4.1 Loop Ordering

Since a CONV operator can be considered a high-dimensional

GEMM, we map the CONV’s dimensions to Goto’s loop ordering as

outlined in Algorithm 2. Specifically, we map the CONV dimensions

to the GEMM (𝑖 .𝑒 .,𝑀′, 𝑁 ′, and 𝐾 ′) computation dimensions of the

input tensor 𝐼 , the filter tensor 𝐹 , and the output tensor 𝑂 , as 𝐾 →
𝑀′, 𝑁 ×𝐻 ×𝑊 → 𝑁 ′, and 𝑅 × 𝑆 ×𝐶 → 𝐾 ′. The specific mapping

method and data flow scenarios are as follows.

In Algorithm 2, we use loops 𝐿2 and 𝐿3 to partition 𝐼 into sub-

blocks that can fit into the last-level cache (LLC). Unlike the Goto

algorithm, we choose not to pack the elements of 𝐼 between these

two levels of loops. This is because the CNN tensor is often irregular-

shaped, i.e., one of the tensor dimensions can be much smaller than

the others. Prior studies [67] have shown that data packing can

introduce additional memory operations that cannot be amortized

by the improved performance for irregularly shaped GEMMs [66].

Loops 𝐿3 and 𝐿4 partition the 𝐹 into a series of sub-blocks that

can fit into the L2 cache. Here, we choose to transform elements of

filter 𝐹 into continuous memory space on the fly. This is because

the size of 𝐹 is typically much smaller than that of the 𝐼 , i.e., 𝐾 <<

𝑁 ×𝐻 ×𝑊 . During the packing step, the processor accesses filter 𝐹

in a pipelined manner, where the packing overhead can be hidden.

Moving to loops 𝐿5 and 𝐿6, we further divide the sub-blocks of

3To simplify the presentation, we set 𝑠𝑡𝑟 = 1 in the algorithm.

Optimizing Direct Convolutions on ARM Multi-Cores

Algorithm 3:Main_Micro-kernel

Input: Input_Buffer IB; Transformed_Filter TF

1: L8: for (𝑐𝑣 = 𝑐𝑡 ;𝑐𝑣 < 𝑐𝑡 +𝑇𝑐 ;𝑐𝑣 + +) do
2: L9: for (𝑟 = 0; 𝑟 < 𝑅; 𝑟 + +) do
3: 𝐼𝑏 ← 14 × (3 × (𝑐𝑣 − 𝑐𝑡))
4: (𝑉 2 − 𝑉 5) ← 𝐼𝐵 [𝐼𝑏 : 𝐼𝑏 + 14]

/*Fully unroll loop with upper bound 𝑆 , e.g., a 3 × 3 convolution kernel*/
5: 𝐹𝑏 ← 8 × (9 × (𝑐𝑣 − 𝑐𝑡) + 3 × 𝑟)
6: (𝑉 0 − 𝑉 1) ← 𝑇𝐹 [𝐹𝑏 : 𝐹𝑏 + 8]

/*scalar-vector multiply*/
7: (𝑉 8 − 𝑉 19) ← 𝐹𝑀𝐴((𝑉 2[0] − 𝑉 4[3]),𝑉 0)
8: (𝑉 20 − 𝑉 31) ← 𝐹𝑀𝐴((𝑉 2[0] − 𝑉 4[3]),𝑉 1)
9: (𝑉 0 − 𝑉 1) ← 𝑇𝐹 [𝐹𝑏 + 8 : 𝐹𝑏 + 16]
10: (𝑉 8 − 𝑉 19) ← 𝐹𝑀𝐴((𝑉 2[1] − 𝑉 5[0]),𝑉 0)
11: (𝑉 20 − 𝑉 31) ← 𝐹𝑀𝐴((𝑉 2[1] − 𝑉 5[0]),𝑉 1)
12: (𝑉 0 − 𝑉 1) ← 𝑇𝐹 [𝐹𝑏 + 16 : 𝐹𝑏 + 24]
13: (𝑉 8 − 𝑉 19) ← 𝐹𝑀𝐴((𝑉 2[2] − 𝑉 5[1]),𝑉 0)
14: (𝑉 20 − 𝑉 31) ← 𝐹𝑀𝐴((𝑉 2[2] − 𝑉 5[1]),𝑉 1)
15: Store to Output

input 𝐼 into data slices that fit in the L1 data cache. Similarly, loop

𝐿7 partitions the sub-blocks of 𝐹 into data slices.

At the first iteration of loop 𝐿4, the elements from the 𝐼 are

fetched from the main memory into vector registers in a non-

streaming manner. For subsequent iterations of this level of the

loop, the sub-block of 𝐼 will reside in the LLC. Since the data block

of filter 𝐹 is preloaded into the L2 cache (line 5 of Algorithm 2), it

keeps in the L2 cache when iterating loops 𝐿5 and 𝐿6. In the pack-

ing micro-kernel, elements of 𝐼 are fetched from the main memory

to vector registers. Section 5.3 describes the design of this micro-

kernel in detail. When iterating over loop 𝐿7, elements of 𝐼 will be

used by the packing micro-kernel residing in the L1 data cache.

4.2 Determine the Tiling Size

Loop tiling is key to improving cache data locality. In this subsec-

tion, we explain how to determine the sizes of 𝑇ℎ , 𝑇𝑐 , and 𝑇𝑘 in

Algorithm 2. Note that we will discuss the block size of the micro-

kernel in Section 5. Our design aims to take advantage of the vector

FMA units while leveraging the memory hierarchy of caches and

vector registers.

To optimize the L1 data cache utilization, each 𝑅×𝑇𝑐×(𝑉𝑤+𝑆−1)
slice of the input 𝐼 should be kept in the L1 cache during each

iteration of loop 𝐿7. Furthermore, the L1 cache should also hold

two𝑉𝑘 ×𝑇𝑐 × 𝑅 × 𝑆 slices of 𝐹 at this loop level. Therefore,𝑇𝑐 must

satisfy the following constraints:

𝑅 ×𝑇𝑐 × (𝑉𝑤 + 𝑆 − 1) + 2 ×𝑉𝑘 ×𝑇𝑐 × 𝑅 × 𝑆 < 𝐶𝐿1 (1)

Section 5.2.3 show that the optimal value of 𝑉𝑘 and 𝑉𝑤 are 8 and

12 respectively on our evaluation platforms. Then we can obtain𝑇𝑐
with Equation 1.

Similarly, we would like the L2 cache to keep one𝑇𝑘 ×𝑇𝑐 ×𝑅 × 𝑆
block of filter 𝐹 during each iteration of loop 𝐿6, and two 𝑅 ×𝑇𝑐 ×
(𝑉𝑤 + 𝑆 − 1) slices of input 𝐼 at loop 𝐿6. Because the L2 cache on
ARM CPUs often holds both data and instructions simultaneously,

the cache needs to reserve some space for the instructions being

executed and data elements of𝑂 . Therefore,𝑇𝑘 and𝑇𝑐 must satisfy:

𝑇𝑘 ×𝑇𝑐 × 𝑅 × 𝑆 + 2 × 𝑅 ×𝑇𝑐 × (𝑉𝑤 + 𝑆 − 1) < 𝐶𝐿2 (2)

With Equations 1 and 2, we can obtain 𝑇𝑘 and 𝑇𝑐 . Likely, we can

derive𝑇ℎ in a similar way by considering the capacity constraint of

the L3 cache (should this be available on the underlying hardware).

5 MICRO-KERNEL DESIGN

nDirect incorporates two micro-kernels that are specifically cus-

tomized to maximize 𝐹𝐴𝐼 and minimize data access latency. The

first micro-kernel is designed to accelerate convolutions, corre-

sponding to line 10 of Algorithm 2. The second micro-kernel is

responsible for packing input tensor 𝐼 and performing calculations

in the first iteration of loop 𝐿7 (line 8 of Algorithm 2).

5.1 Design Overview

nDirect aims to improve the data reuse of direct convolution and

leverage the ARMNEON SIMD extensions to boost instruction level

parallelism. Specifically, we utilize the 32 128-bit-wide vector regis-

ters (𝑉 0−𝑉 31) and the arithmetic fused multiply-accumulate (FMA)

unit available on ARMv8 CPUs. The challenge is to select suitable

vector parameters (𝑉𝑘 and 𝑉𝑤) to maximize register multiplexing

and 𝐹𝐴𝐼 . To this end, we use analytical methods to guide our opti-

mization. As a working example, we use FP32 tensor datatype and a

3×3 convolution kernel to explain our approach in this section, but

our techniques can be applied to other datatype and convolution

kernels by adjusting the parameters of the analytical models.

5.2 Main Micro-kernel

5.2.1 Optimization constraints. Figure 2 depicts convolution work-

flows of nDirect, where it applies ⌈𝑉𝑤+𝑆−14 ⌉, 𝑉𝑘4 and
𝑉𝑤×𝑉𝑘

4 vector

registers to store single-precision floating elements from input, fil-

ter and output tensors, respectively. To make sure that the required

data can fit into the available vector registers, 𝑉𝑤 and 𝑉𝑘 have to

satisfy:

{

⌈𝑉𝑤+𝑆−14 ⌉ + 𝑉𝑘4 +
𝑉𝑤×𝑉𝑘

4 ≤ 32

𝑉𝑘%4 = 0
(3)

Since each vector register can hold 4 FP32 elements, the vector

length,𝑉𝑘 is set to be a multiple of 4 to fully utilize the vector units.

5.2.2 Optimization goal. Algorithm 3 outlines the micro-kernel

implementation in nDirect. Here, we unroll the loop with an upper

bound of 𝑆 for a convolution kernel size of 𝑆 (lines 5-14). Our

objective is to maximize 𝐹𝐴𝐼 in one iteration of loop 𝐿9. To illustrate

the algorithm workflow, we use a 3 × 3 convolution kernel as an

example.

During each iteration of loop 𝐿9, we initially load 𝑉𝑤 + 𝑆 − 1

input and 𝑉𝑘 filter tensor elements into vector registers. We then

use scalar-vector multiplication with FMA instructions to compute

𝑉𝑤 ×𝑉𝑘 output elements, resulting in 2 ×𝑉𝑤 ×𝑉𝑘 floating-point

operations. Note that each FMA instruction includes an addition

operation and an multiplication operation. Figure 2(a) illustrates

the first round of the calculation. After completing the first round

of calculation, we update the vector registers that store the filter

elements. At the same time, the input data related to the convolution

operation requires an offset of step size 1 in the vector registers.

We perform similar operations at the end of the second round of

calculation (Figure 2(b)). Finally, we formulate the average 𝐹𝐴𝐼 in

one iteration of loop 𝐿8 as follows:

𝐹𝐴𝐼 =
2 × 3 ×𝑉𝑤 ×𝑉𝑘

𝑉𝑤 + 𝑆 − 1 + 𝑆 ×𝑉𝑘
(4)

Pengyu Wang, et al.

(a) (b) (c)
Vw+S-1

Filter

Output

Input

Vw

Vk

Vk

FMA

128-bit vector

FMA FMA

Figure 2: The nDirect convolution workflow in one iteration of loop 𝐿9 in Algorithm 3 (lines 3 to 14). The input, output and

nontransparent filter blocks are held in vector registers. Arrows from input to output represent FMA operations.

Input Input Buffer

Packing

3×Tc

Vw+S-1

TC

3

H

W

Vw+S-1

Figure 3: nDirect packing example. Here, nDirect packs

3× (𝑉𝑤 +𝑆−1) elements from each of the𝑇𝐶 continuous input

channels into a linear buffer.

5.2.3 Solving equations. To optimize nDirect, we consider the

constraints defined in Equation 3 and the goal defined in Equa-

tion 4. To maximize the 𝐹𝐴𝐼 , we adopt the Lagrange multipliers

method [36] to find the optimal values of 𝑉𝑤 and 𝑉𝑘 for CPU archi-

tectures used in our evaluation.

5.3 Micro-kernel for Packing

Conventional im2col+GEMM uses a sequential packing strategy

by mapping the discontinuous input matrix elements into a linear

buffer before performing computation. This strategy can reduce

memory access latency during computation but introduces addi-

tional overhead as can be seen from Figure 1a. nDirect also aims

to pack discontinuous input tensor elements into a linear buffer,

which is smaller than the L1 cache, but it tries to hide the packing

latency. Note that the input tensor elements used are identical in

each iteration of loop 𝐿7 in Algorithm 2. nDirect performs data

packing in the first iteration (line 8 of Algorithm 2).

Figure 3 shows how nDirect packs tensor elements. Generally,

𝑇𝑐×3×(𝑉𝑤+𝑆−1) input elements accessed in loop 𝐿7 in Algorithm 2

are initially distributed in 𝑇𝑐 continuous channels of input tensor 𝐼 .

In the first iteration of loop 𝐿7, nDirect calls Pack_Micro-kernel

to pack discontinuous 𝑇𝑐 × 3 × (𝑉𝑤 + 𝑆 − 1) input elements into

a linear buffer named 𝐵 (line 8 in Algorithm 2). Since sequential

write operations with data dependencies can incur pipeline stall

hazards, nDirect places store (st) instructions immediately after

FMA instructions to hide packing overheads by utilizing the out-of-

order instruction execution of modern CPUs. In each subsequent

iteration, input data are fetched from linear buffer 𝐵, designed to

improve the L1 data cache hit rate.

6 PARALLELIZATION STRATEGIES

We use OpenMP with static work partitioning to parallelize CONV

operations on shared-memorymulti-core CPUs. To utilize hardware

parallelism, we use all available CPU cores, meaning that we will

spawn 𝑃𝑇 parallel threads for a CPU with 𝑃𝑇 cores. Ideally, all

the cores would start and finish the work simultaneously, thus

not having any core idling at any point in time. However, this is

not always possible due to memory access latency and application

workloads. As such, we need to carefully determine how many

threads are used to parallelize each of the parallel dimensions.

6.1 Model Thread Mapping

nDirect parallelizes the 𝑁 ,𝐾 ,𝐻 and𝑊 dimensions in Algorithm 2.

We do not parallelize the reduction dimensions of 𝐶 , 𝑅 and 𝑆 , be-

cause doing so can result in write conflicts since all participating

threads would write to the same location in the𝑂 . While these con-

flicts can be eliminated using locks or additional memory buffers,

the associated runtime overhead can be high [45].

Tomap threads onto computation dimensions, we use 𝑃𝑇𝑘 threads

to parallelize the 𝐾 dimension and 𝑃𝑇𝑛 threads to parallelize the

𝑁 , 𝐻 and𝑊 dimensions, where 𝑃𝑇𝑘 × 𝑃𝑇𝑛 = 𝑃𝑇 . At runtime, each

thread performs 𝐾 ·𝑁 ·𝐻 ·𝑊 ·𝐶 ·𝑅 ·𝑆
𝑃𝑇 ·𝑠𝑡𝑟 2 numbers of arithmetic operations.

Similarly, the number of memory accesses to filter 𝐹 within each

parallel thread is 𝐾 ·𝐶 ·𝑅 ·𝑆𝑃𝑇𝑘
, which is accessed in a streaming manner

meaning that the memory accesses are performed on continuous

addresses. Additionally, memory access to input tensor 𝐼 required

by each parallel thread is 𝑁 ·𝐶 ·𝐻 ·𝑊
𝑃𝑇𝑛 ·𝑠𝑡𝑟 2 , which is accessed in a non-

streaming manner. To model the difference in accessing latency

between streaming and non-streaming memory accesses, we intro-

duce a coefficient 𝛼 to memory accesses to 𝐼 . Therefore, the 𝐹𝐴𝐼

for each thread is:

𝐹𝐴𝐼 =

𝐾 ·𝑁 ·𝐻 ·𝑊 ·𝐶 ·𝑅 ·𝑆
𝑃𝑇 ·𝑠𝑡𝑟 2

𝐾 ·𝐶 ·𝑅 ·𝑆
𝑃𝑇𝑘

+ 𝛼 · 𝑁 ·𝐶 ·𝐻 ·𝑊
𝑃𝑇𝑛 ·𝑠𝑡𝑟 2

=

1

𝑃𝑇𝑛 ·𝑠𝑡𝑟 2
𝑁 ·𝐻 ·𝑊 +

𝛼
𝐾 ·𝑅 ·𝑆 ·𝑃𝑇𝑛

(5)

Our objective is tomaximize 𝐹𝐴𝐼 , whichmeansminimizing 𝑃𝑇𝑛 ·𝑠𝑡𝑟
2

𝑁 ·𝐻 ·𝑊 +
𝛼

𝐾 ·𝑅 ·𝑆 ·𝑃𝑇𝑛 .

Optimizing Direct Convolutions on ARM Multi-Cores

Table 3: Hardware platforms used in evaluation

Phytium 2000+ KP920 ThunderX2 RPi 4

Number of Cores 64 64 32 4
Peak FP32 GFLOPS 1126.4 2662.4 1279.7 56.8
Frequency 2.2 GHz 2.6 GHz 2.5 GHz 1.8 GHz
Max Bandwidth 143.1 GiB/s 190.7 GiB/s 158.95 GiB/s 16.8 GiB/s
L1 cache 32 KB 64 KB 32 KB 32 KB
L2 cache 2 MB 512 KB 256 KB 1 MB
L3 cache None 64 MB 32 MB None

6.2 Solving the Equation

By applying the inequality of arithmetic and geometricmeanmethod

to Equation 6, we have:

𝐹𝐴𝐼 ≤
√
𝑁 · 𝐻 ·𝑊 · 𝐾 · 𝑅 · 𝑆

2 ·
√
𝛼 · 𝑠𝑡𝑟

(6)

where both sides of the equation will equal if 𝑃𝑇𝑛 ·𝑠𝑡𝑟
2

𝑁 ·𝐻 ·𝑊 =
𝛼

𝐾 ·𝑅 ·𝑆 ·𝑃𝑇𝑛 .

In other words, when 𝑃𝑇𝑛 =
√︃

𝛼 ·𝑁 ·𝐻 ·𝑊
𝐾 ·𝑅 ·𝑆 ·𝑠𝑡𝑟 2 , 𝐹𝐴𝐼 would reach its

maximum value. Since the micro-kernel for packing (Section 5.3)

has little overhead, we take the up-bound value of 𝑃𝑇𝑛 , i.e, 𝑃𝑇𝑛

= ⌈
√︃

𝛼 ·𝑁 ·𝐻 ·𝑊
𝐾 ·𝑅 ·𝑆 ·𝑠𝑡𝑟 2 ⌉. Note for dimensions of 𝑁 , 𝐻 and𝑊 , the prior-

ity of parallelization is 𝑁 , 𝐻 and𝑊 . Specifically, if 𝑃𝑇𝑛𝑁 > 1, we

will use 𝑁 threads to parallelize dimension 𝑁 , and 𝑃𝑇𝑛
𝑁 threads to

parallelize dimension 𝐻 . For the targeting hardware platform, we

use microbenchmarks to determine 𝛼 by accessing the memory

space in a streaming and non-streaming manner. Since the value

is determined offline and is a one-off cost, it does not affect the

runtime performance.

7 EXPERIMENTAL SETUP

We evaluate nDirect by comparing it against four existing con-

volution implementations described in Section 7.3. Our evaluation

includes layer-wise performance comparison and end-to-end infer-

ence of the entire CNN network.

7.1 Hardware Platforms

Our experiments were performed on three HPC systems and one

embedded system with ARM multi-cores. Our evaluation plat-

forms include Phytium 2000+ [62], Kunpeng 920 (KP920) [4], Thun-

derX2 [37], and a Raspberry Pi 4 (RPi 4) [12]. Table 3 provides an

overview of the specifications for these platforms. It is worth noting

that the L2 cache on Phytium 2000+ is shared between a cluster

of four cores, while it is private to a processor core on KP920 and

ThunderX2.

7.2 Convolution Workloads

We use convolution layers from two representative CNNs: ResNet-

50 [38] and VggNet-16 [60]. They are widely used for large-scale

image recognition. Table 4 gives the experimental parameters used

for each layer. We set the batch size to match the number of physical

cores to evaluate the performance of multi-batch CONV operations

and CNNs end-to-end inference.

7.3 Baseline Implementations

We compare nDirect against the following baselines:

Table 4: Configurations of convolution operators in ResNet-

50 (IDs 1-23) and VGG-16 (IDs 24-28)

ID C K H/W R/S str ID C K H/W R/S str

1 3 64 224 7 2 15 512 14 3 3 2
2 128 128 56 3 2 16 256 14 3 3 1
3 64 64 56 3 1 17 1024 2048 14 1 2
4 256 512 56 1 2 18 256 1024 14 1 1
5 64 64 56 1 1 19 1024 512 14 1 1
6 64 256 56 1 1 20 1024 256 14 1 1
7 256 64 56 1 1 21 512 512 3 3 1
8 256 128 56 1 1 22 512 2048 7 1 1
9 256 256 28 3 2 23 2048 512 7 1 1
10 128 128 28 3 1 24 64 64 224 3 1
11 512 1024 28 1 2 25 128 128 112 3 1
12 512 256 28 1 1 26 256 256 56 3 1
13 512 128 28 1 1 27 512 512 28 3 1
14 128 512 28 1 1 28 512 512 14 3 1

im2col+GEMM. We use the im2col implementation from MXNet

and the OpenBLAS GEMM routine [11], and OpenMP for multi-

threading parallelization. Besides, we useMXNetwith im2col+GEMM

as the baseline when evaluating the end-to-end inference. We use

MXNet 1.6.0.

LIBXSMM. The direct convolution provided by LIBXSMM utilizes

small GEMM-based micro-kernel generated by JIT. It requires con-

verting the input tensor into a specified format. We excluded this

transformation time from the execution time for a fair comparison.

We use LIBXSMM 1.17.

XNNPACK. Google’s XNNPACK is a highly optimized solution for

neural network inference and frequently utilized in mobile systems.

It provides the indirect convolution algorithm, a modification of

GEMM-based convolution algorithms but with a smaller memory

footprint and elimination of im2col transformation cost.

Ansor. This optimizer [70] is part of the TVM DL compilation

framework [19]. To generate high-performance tensor program,

Ansor searches in a large search space to find the optimal computa-

tional subgraphs. We use Ansor in TVM version 0.12.0 and deploy

it to tune convolution layers and CNN models. We use the default

number of executed trials of Ansor. Specifically, we use the number

of executed trials to 1,000, 15,000 and 20,000 when tuning a single

layer, VggNet and ResNet variants, respectively. We exclude the

tuning overhead from our measurement.

For layer-wise evaluation, we compare nDirect against multiple

schemes: im2col+GEMM, LIBXSMM, XNNPACK and Ansor. We

also integrated nDirect with MXNet and evaluated the end-to-

end performance of CNN models by comparing our approach with

im2col+GEMM used by MXNet and CNN models tuned by Ansor

and the TVM back-end code generator.

7.4 Evaluation Methodology

To ensure a fair comparison, we adopt the same experimental setups

used in the source publications or utilize the default settings of the

baseline methods. Specifically, we use 𝑁𝐻𝑊𝐶 and 𝐾𝑅𝑆𝐶4 data

formats for XNNPACK’s indirect convolution and 𝑁𝐶𝐻𝑊𝑐5 for

LIBXSMM’s direct convolution. For other methods, we use 𝑁𝐶𝐻𝑊

for input tensors and 𝐾𝐶𝑅𝑆6 for filters. Additionally, we include all

the layout transformation overhead of nDirect when measuring

4𝐾𝑅𝑆𝐶=[Output Channels, Kernel Height, Kernel Width, Input Channels].
5𝑁𝐶𝐻𝑊𝑐=[Batch Size, Input Channels/𝑐 , Input Height, Input Width, 𝑐], where 𝑐
refers to the vector length.
6𝐾𝐶𝑅𝑆=[Output Channels, Input Channels, Kernel Height, Kernel Width].

Pengyu Wang, et al.

its performance. We run each experiment 20 times and report the

geometric mean GFLOPS. We found the variances across different

runs to be minor, less than 5%.

8 EXPERIMENTAL RESULTS

8.1 Multi-core Convolutions

Figure 4 reports the multi-core convolution throughput (measured

in GFLOPS) on each of the evaluation platforms. The x-axis corre-

sponds to layer ids given in Table 4. The line chart shows nDirect’s

performance with respect to the hardware’s theoretical peak per-

formance (see the y-axis on the right).

Compared with the best-performing baseline, nDirect improves

the throughput by 1.32×, 1.34× and 1.07× respectively, on average,

on Phytium 2000+, KP920 and ThunderX2, which highlights the

effectiveness of our new convolution computation mode. For most

layers with 𝑠𝑡𝑟 = 1 (Section 2.1), nDirect delivers 70%-80% of the

CPU peak performance. For example, on layers with𝑅 = 3 and 𝑆 = 3,

nDirect achieves up to ≈ 80% of the peak performance, exceeding

layers with 𝑅 = 1 and 𝑆 = 1 because it can utilize more vector

registers to achieve a higher 𝐹𝐴𝐼 according to Equation 3. For 𝑠𝑡𝑟 =

2, each time the micro-kernel is called, the amount of data fetched

into the vector registers is consistent with when 𝑠𝑡𝑟 = 1, but the

quantity of computation is reduced by half, resulting in a decrease

in 𝐹𝐴𝐼 . Hence, there is a partial performance penalty. Nonetheless,

nDirect performs best overall and consistently outperforms the

baseline methods across CONV layers and platforms.

Figure 5 quantifies our packing optimization to the end perfor-

mance improvement using five convolution layers from VggNet.

The technique demonstrates different levels of performance bene-

fits on different architectures. This is because the cache-replacing

policy on Phytium 2000+ is pseudo-random, differing from the

other two platforms, which utilize the Least Recently Used (LRU)

replacement policy.

8.2 Direct Convolution Tuned by Ansor

In this experiment, we take the throughput of individual convo-

lutional layers tuned by Ansor as the baseline and report the per-

formance improvement of nDirect over Ansor. The results are

given in Figure 6. We found that the Ansor auto-tuning for each

convolution layer can coverage in 1,000 execution trials, suggesting

that we have given a sufficient search budget to Ansor.

nDirect outperforms Ansor-tuned direct convolution on indi-

vidual layers across evaluation platforms, giving an average perfor-

mance improvement of 1.92×, 1.82×, and 1.51× on Phytium 2000+,

KP920, ThunderX2 respectively. On some layers like layer 10, Ansor

delivers comparable performance to nDirect. However, nDirect

still outperforms Ansor on all individual layers by offering better

data packing and parallelization strategies.

8.3 End-to-end Inference Time

We evaluate the end-to-end inference performance of nDirect

under different ResNet and VGGNet variants on Phytium 2000+

and ThunderX2. We choose to compare with Ansor as LIBXSMM

and XNNPACK are not compatible with MXNet to run the entire

network.

As shown in Figure 7, we normalized the inference performance

to that of Ansor. nDirect, as a library-based approach, can de-

liver comparable performance to Ansor, but without the expensive

search overhead of Ansor. Specifically, on Phytium 2000+, nDirect

delivers a speedup of 1.19× to 1.45× over Ansor. On ThunderX2,

nDirect delivers slightly lower performance for the end-to-end

inference compared to Ansor, with a speedup of 0.88× to 0.98×. The
better performance of Ansor on the whole CNN is due to its ability

to optimize across CNN layers through operator fusion [67, 72]. This

technique can write back operations for intermediate results and

fetch operations in the CNNs pipeline, further reducing memory

access latency and bandwidth pressure to improve CNNs end-to-

end performance. Because ThunderX2 has a lower bandwidth than

Phytium 2000+, such optimization becomes more important. As

nDirect is designed to optimize individual CONV operators, it

does not support operator fusion. Our future work will look into

integrating nDirect into TVM to take advantage of the higher-

level operator fusion optimization. Nonetheless, nDirect delivers

comparable performance to Ansor despite lacking operator fusion

optimizations.

8.4 Embedded Platform

We now evaluate nDirect on an embedded system with lower com-

putation capabilities than HPC systems. Figure 8 reports the results

of nDirect and alternative implementations on RPi 4. nDirect

outperforms the alternatives both in single-threaded and multi-

thread scenarios. Specifically, the best-performing baselines are

XNNPACK for single-core execution and LIBXSMM for multi-core

executions. However, nDirect delivers a geometric mean speedup

of 1.15× and 1.19× over XNNPACK and LIBXSMM, respectively,

confirming the effectiveness of our optimization.

8.5 Impact of Hyper-threading

Our evaluation was conducted by turning off the hardware hyper-

threading (HT). In this experiment, we enable HT on ThunderX2 to

exploit HT hardware parallelism. Here, we run 4 threads per core

and set the batch size to match the number of logical cores. The

results are given in Figure 9. nDirect outperforms XNNPACK, the

best-performing baseline, by delivering a geometric mean speedup

of 1.28×.

9 RELATED WORK

The DL stack often relies on vendor-specific libraries to take advan-

tage of hardware performance. Existing strategies for optimizing

convolution operators can be broadly categorized into three ap-

proaches. The first involves customizing cache- and vector-friendly

data layouts [24, 31ś33, 42, 52, 61, 67]. The second approach in-

volves transforming loops with efficient search strategies [19, 25,

45, 70]. The third approach involves generating innermost micro

kernels [16, 17, 26, 27, 45, 52, 54, 69].

Specialized data layouts. Many prior works have sought to opti-

mize convolution operations by introducing specialized data for-

mats that allow for continuous memory accesses and direct use

of SIMD instructions and FMA units [24, 31, 61, 67, 69]. These ap-

proaches have demonstrated promising convolution performance

Optimizing Direct Convolutions on ARM Multi-Cores

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Geo
Phytium 2000+

200

400

600

800

1000

G
F

L
O

P
S

 (
F

P
3

2
)

im2col+GEMM XNNPACK LIBXSMM NDIRECT efficiency of this work

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Geo
KP920

400

800

1200

1600

2000

G
F

L
O

P
S

 (
F

P
3

2
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Geo
ThunderX2

200

400

600

800

1000

1200

G
F

L
O

P
S

 (
F

P
3

2
)

20

40

60

70

80

%
 o

f
p

e
a

k

20

40

60

80

100

%
 o

f
p

e
a

k

20

40

60
70
80

100

%
 o

f
p

e
a

k

Figure 4: Convolution algorithms performance on three representative ARMv8multi-cores. Top: Phytium 2000+, Middle: KP920,

Bottom: ThunderX2. The x-axis is indexed based on the layer ids in Table 4.

24 25 26 27 28

Phytium 2000+

200

400

600

800

1000

G
F

L
O

P
S

 (
F

P
3
2
)

24 25 26 27 28

KP920

400

800

1200

1600

2000

2400

24 25 26 27 28

ThunderX2

200

400

600

800

1000

1200
micro-kernel + packing

Figure 5: Quantification of packing optimization.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Layer ID

1.0

1.5

2.0

2.5

3.0

3.5

N
o

rm
a
li
z
e
d

 S
p

e
e
d

u
p

Phytium 2000+ KP920 ThunderX2

Figure 6: Performance comparison for convolution operators

with respect to Ansor.

Res50 Res101 VGG16 VGG19
Phytium 2000+

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 S
pe

ed
up

Res50 Res101 VGG16 VGG19
ThunderX2

0.0

0.5

0.8
1.0

MXNet+NDIRECT Ansor MXNet+OpenBLAS

Figure 7: End-to-End inference evaluations on Phytium 2000+

(𝑁 = 64) and ThunderX2 (𝑁 = 32).

by enabling stride-1memory access and hardware-specific optimiza-

tions. However, one significant drawback is that they often require

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20avg
Layer ID

2
4
6
8

10
12

G
FL

O
PS

 (F
P3

2)

im2col+GEMM XNNPACK LIBXSMM NDIRECT

(a) Single-core Convolution Performance on RPi 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20avg
Layer ID

10
20
30
40

G
FL

O
PS

 (F
P3

2)

(b) 4-cores Convolution Performance on RPi 4

Figure 8: Convoltion performance of (a) single-core and (b)

multi-core on the ARMv8-based RPi 4.

new, specialized data formats that cannot be easily integrated into

mainstream DL frameworks that use conventional formats. This

limitation either requires changing the underlying DL frameworks

or the user code that can also result in additional computation over-

head for format conversion when invoking the standard CONV

operator. nDirect is designed to avoid this pitfall by operating on

the standard data layouts used by mainstreamed DL frameworks.

Loop transformations. Developing appropriate loop-tiling strate-

gies in explosive search space can effectively enhance data reusabil-

ity [25, 45]. Ansor [70] constructs a hierarchical search space using

efficient pruning techniques and employs evolutionary search with

a learned cost model to generate optimized programs. As nDirect

Pengyu Wang, et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 avg

Layer ID

200

400

600

800

1000

1200

G
F

L
O

P
S

 (
F

P
3
2
) im2col+GEMM XNNPACK LIBXSMM NDIRECT

Figure 9: Convolution performance with enabling Hyper-

Threading technique.

offers a lower-level, library-based optimization for individual CONV

operators, it can benefit from the high-level tensor-graph schedule

optimization like operator fusion.

Micro-kernel implementations. GEMM-based micro kernels are

widely used for innermost computations, with examples in [16, 17,

26, 27, 45, 52, 54, 69]. LIBXSMM’s direct convolution [31] employs

JIT compilation to generate small GEMM code and exploit paral-

lelism through instruction-level optimizations. However, the load

instructions of the generated micro-kernels are sequentially ar-

ranged, leading to suboptimal performance. Though existing highly

optimized BLAS libraries (e.g., OpenBLAS and Intel’s MKL) have

successfully accelerated GEMM, we have empirically confirmed

that the limited 𝐹𝐴𝐼 bound in GEMM mode requires redesigning

micro-kernels for convolution operations. nDirect avoids this pit-

fall by carefully overlapping the memory access operations with

computation instructions.

10 DISCUSSION

Our work specifically targets ARMv8 multi-cores. In this section,

we discuss how to extend our techniques to other architectures and

convolution kernels.

10.1 Architecture Portability

Our approach is generally applicable and can be easily migrated

to other architectures. All our discussions so far target the ARMv8

architecture with 128-bit vector register. The latest ARM Scalable

Vector Extension(SVE) [2] provides a variable vector length, which

is any multiple of 128 bits between 128 and 2048 bits. Our tech-

niques can be applied to this extension with modified 𝑉𝑤 and 𝑉𝑘
according to the available length and number of vector registers.

In addition to ARM-based CPUS, our techniques are also applica-

ble to modern CPU architectures with SIMD extensions, like Intel

AVX-512. Porting our techniques to other hardware architectures

requires modifying the micro-kernels according to the constraints

defined in Equation 3. These constraints can vary depending on the

data type and the vector register width of the target architecture.

Furthermore, our approach can be combined with auto-tuning to

search for tile sizes and permutation orders to match different cache

hierarchies.

10.2 Integrating with Other Kernels

Our techniques can be directly applied to standard convolution

kernels commonly used in mainstream applications without requir-

ing any modifications to the user code. Here, we discuss how our

approach can be integrated with Depthwise Separable Convolu-

tion (DSC) [59] and 3D Convolution. DSC, consisting of Depthwise

Convolution and Pointwise Convolution, is the building block for

two representative CNN models, Xception [40] and MobileNet [22].

nDirect can be directly called to compute the Pointwise Convo-

lution since it can be seen as the 1 × 1 convolution kernel with

vectorizable dimension 𝐾 . To support Depthwise Convolution, we

only needs removing the reduction operations of dimension C in

micro-kernels. Since 3D Convolution can be seen as 2D Convolu-

tion with additional reduction dimensions, we can directly use the

micro-kernels of nDirect for acceleration and further optimize the

outer loops for better cache locality.

11 CONCLUSIONS

We have presented nDirect, a new direct convolution solution to

provide high performance, high data reusability, and deep learning

(DL) framework compatibility on ARM multi-core CPUs. nDirect

complies with the conventional data formats used by mainstream

DL framework but offers new optimizations for micro-kernel de-

sign, data packing and parallelization. We evaluate nDirect by

testing its performance on individual convolution layers and the

end-to-end inference time of representative CNN models. We con-

duct our evaluation on four platforms: three HPC multi-cores and

one embedded CPU of the ARMv8 architecture. We also compare

nDirect against state-of-the-art convolution libraries and a DL

tuning framework. Experimental results show that nDirect out-

performs the competing baselines on most test cases, achieving

better overall performance across all hardware platforms.

ACKNOWLEDGMENT

This work was funded in part by the National Key Research and

Development Program of China under Grant No. 2021YFB0300101,

the National Natural Science Foundation of China under Grant No.

61972408, and a UK Royal Society International Exchange Program.

For the purpose of open access, the author has applied a Creative

Commons Attribution (CCBY) licence to any Author Accepted

Manuscript version arising from this submission.

REFERENCES
[1] Acl. https://github.com/ARM-software/ComputeLibrary.
[2] Armv9. https://www.arm.com/company/news/2021/03/arms-answer-to-the-

future-of-ai-armv9-architecture.
[3] cublas. https://developer.nvidia.com/cublas.
[4] Kunpeng-920. https://www.hisilicon.com/cn/products/Kunpeng/Huawei-

Kunpeng/Huawei-Kunpeng-920.
[5] Libxsmm. https://github.com/libxsmm/libxsmm.
[6] libxsmm-dnn. https://github.com/libxsmm/libxsmm-dnn.
[7] Mkl. https://software.intel.com/content/www/us/en/develop/tools/oneapi/

components/onemkl.
[8] Mxnet. https://github.com/apache/mxnet.
[9] ncnn. https://github.com/Tencent/ncnn.
[10] onednn. https://github.com/oneapi-src/oneDNN.
[11] Openblas. https://github.com/xianyi/OpenBLAS.
[12] Raspberry-pi-4-model-b. https://www.raspberrypi.com/products/raspberry-pi-

4-model-b/.
[13] Tensorflow. https://github.com/tensorflow/tensorflow.
[14] Xnnpack. https://github.com/google/XNNPACK.
[15] Adams, A., Ma, K., Anderson, L., Baghdadi, R., Li, T., Gharbi, M., Steiner, B.,

Johnson, S., Fatahalian, K., Durand, F., and Ragan-Kelley, J. Learning to
optimize halide with tree search and random programs. ACM Trans. Graph. 38, 4
(2019), 121:1ś121:12.

[16] Amir, O., and Gil, B. Smm-conv: Scalar matrix multiplication with zero packing
for accelerated convolution. In IEEE/CVF Conference on Computer Vision and

Optimizing Direct Convolutions on ARM Multi-Cores

Pattern Recognition Workshops, CVPR Workshops 2022, New Orleans, LA, USA,
June 19-20, 2022 (2022), IEEE, pp. 3066ś3074.

[17] Barrachina, S., Castelló, A.,Dolz, M. F., Low, T. M., Martínez, H.,Quintana-
Ortí, E. S., Sridhar, U., and Tomás, A. E. Reformulating the direct convolution
for high-performance deep learning inference on ARM processors. J. Syst. Archit.
135 (2023), 102806.

[18] Chellapilla, K., Puri, S., and Simard, P. High performance convolutional
neural networks for document processing. In Tenth international workshop on
frontiers in handwriting recognition (2006), Suvisoft.

[19] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E. Q., Shen, H., Cowan, M.,
Wang, L., Hu, Y., Ceze, L., Guestrin, C., and Krishnamurthy, A. TVM: an
automated end-to-end optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad,
CA, USA, October 8-10, 2018 (2018), A. C. Arpaci-Dusseau and G. Voelker, Eds.,
USENIX Association, pp. 578ś594.

[20] Chen, T., Zheng, L., Yan, E. Q., Jiang, Z., Moreau, T., Ceze, L., Guestrin, C., and
Krishnamurthy, A. Learning to optimize tensor programs. InAdvances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada
(2018), S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., pp. 3393ś3404.

[21] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro,
B., and Shelhamer, E. cudnn: Efficient primitives for deep learning. CoRR
abs/1410.0759 (2014).

[22] Chollet, F. Xception: Deep learning with depthwise separable convolutions. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017),
pp. 1800ś1807.

[23] Cong, J., and Xiao, B. Minimizing computation in convolutional neural net-
works. In Artificial Neural Networks and Machine Learning - ICANN 2014 - 24th
International Conference on Artificial Neural Networks, Hamburg, Germany, Sep-
tember 15-19, 2014. Proceedings (2014), S. Wermter, C. Weber, W. Duch, T. Honkela,
P. D. Koprinkova-Hristova, S. Magg, G. Palm, and A. E. P. Villa, Eds., vol. 8681 of
Lecture Notes in Computer Science, Springer, pp. 281ś290.

[24] de Limas Santana, A., Armejach, A., and Casas, M. Efficient direct convo-
lution using long SIMD instructions. In Proceedings of the 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Programming, PPoPP 2023,
Montreal, QC, Canada, 25 February 2023 - 1 March 2023 (2023), M. M. Dehnavi,
M. Kulkarni, and S. Krishnamoorthy, Eds., ACM, pp. 342ś353.

[25] Demmel, J., and Dinh, G. Communication-optimal convolutional neural nets.
CoRR abs/1802.06905 (2018).

[26] Dolz, M. F., Martínez, H., Alonso, P., and Quintana-Ortí, E. S. Convolution
operators for deep learning inference on the fujitsu a64fx processor. In 2022 IEEE
34th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD) (2022), pp. 1ś10.

[27] Dukhan, M. The indirect convolution algorithm. arXiv preprint arXiv:1907.02129
(2019).

[28] Fang, J., Fu, H., Zhao, W., Chen, B., Zheng, W., and Yang, G. swdnn: A library
for accelerating deep learning applications on sunway taihulight. In 2017 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando,
FL, USA, May 29 - June 2, 2017 (2017), IEEE Computer Society, pp. 615ś624.

[29] Fang, J., Liao, X., Huang, C., and Dong, D. Performance evaluation of memory-
centric armv8 many-core architectures: A case study with phytium 2000+. J.
Comput. Sci. Technol. 36, 1 (2021), 33ś43.

[30] Ferrari, V., Sousa, R., Pereira, M., de Carvalho, J. P., Amaral, J. N., Moreira,
J., and Araujo, G. Advancing direct convolution using convolution slicing
optimization and isa extensions. arXiv preprint arXiv:2303.04739 (2023).

[31] Georganas, E., Avancha, S., Banerjee, K., Kalamkar, D. D., Henry, G., Pabst,
H., and Heinecke, A. Anatomy of high-performance deep learning convolutions
on SIMD architectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX,
USA, November 11-16, 2018 (2018), IEEE / ACM, pp. 66:1ś66:12.

[32] Georganas, E., Banerjee, K., Kalamkar, D. D., Avancha, S., Venkat, A., An-
derson, M. J., Henry, G., Pabst, H., and Heinecke, A. Harnessing deep learning
via a single building block. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), New Orleans, LA, USA, May 18-22, 2020 (2020),
IEEE, pp. 222ś233.

[33] Georganas, E., Kalamkar, D. D., Avancha, S., Adelman, M., Anderson, C.,
Breuer, A., Bruestle, J., Chaudhary, N., Kundu, A., Kutnick, D., Laub, F.,
Md, V., Misra, S., Mohanty, R., Pabst, H., Ziv, B., and Heinecke, A. Tensor
processing primitives: a programming abstraction for efficiency and portability
in deep learning workloads. In International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2021, St. Louis, Missouri, USA,
November 14-19, 2021 (2021), B. R. de Supinski, M. W. Hall, and T. Gamblin, Eds.,
ACM, p. 14.

[34] Goto, K., and van de Geijn, R. A. Anatomy of high-performance matrix
multiplication. ACM Trans. Math. Softw. 34, 3 (2008), 12:1ś12:25.

[35] Hadjis, S., Abuzaid, F., Zhang, C., and Ré, C. Caffe con troll: Shallow ideas to
speed up deep learning. In Proceedings of the Fourth Workshop on Data analytics

in the Cloud, DanaC 2015, Melbourne, VIC, Australia, May 31 - June 4, 2015 (2015),
A. Katsifodimos, Ed., ACM, pp. 2:1ś2:4.

[36] Haeser, G., Hinder, O., and Ye, Y. On the behavior of lagrange multipliers in
convex and nonconvex infeasible interior point methods. Math. Program. 186, 1
(2021), 257ś288.

[37] Hammond, S. D., Hughes, C., Levenhagen, M. J., Vaughan, C. T., Younge, A. J.,
Schwaller, B., Aguilar, M. J., Pedretti, K. T., and III, J. H. L. Evaluating the
marvell thunderx2 server processor for HPC workloads. In 17th International
Conference on High Performance Computing & Simulation, HPCS 2019, Dublin,
Ireland, July 15-19, 2019 (2019), IEEE, pp. 416ś423.

[38] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016 (2016), IEEE Computer Society,
pp. 770ś778.

[39] Heinecke, A., Henry, G., Hutchinson, M., and Pabst, H. LIBXSMM: acceler-
ating small matrix multiplications by runtime code generation. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2016, Salt Lake City, UT, USA, November 13-18, 2016
(2016), J. West and C. M. Pancake, Eds., IEEE Computer Society, pp. 981ś991.

[40] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M., and Adam, H. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. ArXiv abs/1704.04861 (2017).

[41] Huang, X., Wang, Q., Lu, S., Hao, R., Mei, S., and Liu, J. Evaluating fft-based al-
gorithms for strided convolutions on armv8 architectures? SIGMETRICS Perform.
Evaluation Rev. 49, 3 (2022), 28ś29.

[42] Jia, Z., Zlateski, A., Durand, F., and Li, K. Optimizing n-dimensional, winograd-
based convolution for manycore cpus. In Proceedings of the 23rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 2018, Vienna,
Austria, February 24-28, 2018 (2018), A. Krall and T. R. Gross, Eds., ACM, pp. 109ś
123.

[43] Kim, Y. Convolutional neural networks for sentence classification. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL (2014), A. Moschitti, B. Pang, and W. Daelemans, Eds.,
ACL, pp. 1746ś1751.

[44] Lavin, A., and Gray, S. Fast algorithms for convolutional neural networks. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016 (2016), IEEE Computer Society, pp. 4013ś4021.

[45] Li, R., Xu, Y., Sukumaran-Rajam, A., Rountev, A., and Sadayappan, P. Ana-
lytical characterization and design space exploration for optimization of cnns.
In ASPLOS ’21: 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Virtual Event, USA, April 19-23,
2021 (2021), T. Sherwood, E. D. Berger, and C. Kozyrakis, Eds., ACM, pp. 928ś942.

[46] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C., and Berg,
A. C. SSD: single shot multibox detector. In Computer Vision - ECCV 2016
- 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part I (2016), B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.,
vol. 9905 of Lecture Notes in Computer Science, Springer, pp. 21ś37.

[47] Liu, Y., Wang, Y., Yu, R., Li, M., Sharma, V., and Wang, Y. Optimizing CNN
model inference on cpus. In 2019 USENIX Annual Technical Conference, USENIX
ATC 2019, Renton, WA, USA, July 10-12, 2019 (2019), D. Malkhi and D. Tsafrir,
Eds., USENIX Association, pp. 1025ś1040.

[48] Mittal, S., and Vaishay, S. A survey of techniques for optimizing deep learning
on gpus. J. Syst. Archit. 99 (2019).

[49] Mogers, N., Radu, V., Li, L., Turner, J., O’Boyle, M. F. P., and Dubach, C.
Automatic generation of specialized direct convolutions for mobile gpus. In
GPGPU@PPoPP ’20: 13th Annual Workshop on General Purpose Processing using
Graphics Processing Unit colocated with 25th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, San Diego, California, USA, February
23, 2020, A. Jog, O. Kayiran, and A. Pattnaik, Eds., ACM, pp. 41ś50.

[50] Pan, J., and Chen, D. Accelerate non-unit stride convolutions with winograd
algorithms. In ASPDAC ’21: 26th Asia and South Pacific Design Automation
Conference, Tokyo, Japan, January 18-21, 2021 (2021), ACM, pp. 358ś364.

[51] Park, H., Kim, D., Ahn, J., and Yoo, S. Zero and data reuse-aware fast convolution
for deep neural networks on GPU. In Proceedings of the Eleventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthe-
sis, CODES 2016, Pittsburgh, Pennsylvania, USA, October 1-7, 2016 (2016), ACM,
pp. 33:1ś33:10.

[52] Park, J., Bin, K., and Lee, K. mgemm: low-latency convolution with minimal
memory overhead optimized for mobile devices. InMobiSys ’22: The 20th Annual
International Conference on Mobile Systems, Applications and Services, Portland,
Oregon, 27 June 2022 - 1 July 2022 (2022), N. Bulusu, E. Aryafar, A. Balasubrama-
nian, and J. Song, Eds., ACM, pp. 222ś234.

[53] Qin, E., Samajdar, A., Kwon, H., Nadella, V., Srinivasan, S., Das, D., Kaul, B.,
and Krishna, T. Sigma: A sparse and irregular gemm accelerator with flexible
interconnects for dnn training. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA) (2020), IEEE, pp. 58ś70.

Pengyu Wang, et al.

[54] Rajbhandari, S., He, Y., Ruwase, O., Carbin,M., andChilimbi, T.M. Optimizing
cnns on multicores for scalability, performance and goodput. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017
(2017), Y. Chen, O. Temam, and J. Carter, Eds., ACM, pp. 267ś280.

[55] Redmon, J., and Farhadi, A. Yolov3: An incremental improvement. CoRR
abs/1804.02767 (2018).

[56] Ren, S., He, K., Girshick, R. B., and Sun, J. Faster R-CNN: towards real-time
object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach.
Intell. 39, 6 (2017), 1137ś1149.

[57] Roesch, J., Lyubomirsky, S., Kirisame, M., Pollock, J., Weber, L., Jiang, Z.,
Chen, T., Moreau, T., and Tatlock, Z. Relay: A high-level IR for deep learning.
CoRR abs/1904.08368 (2019).

[58] Shelhamer, E., Long, J., and Darrell, T. Fully convolutional networks for
semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 4 (2017),
640ś651.

[59] Sifre, L., and Mallat, S. Rigid-motion scattering for texture classification.
ArXiv abs/1403.1687 (2014).

[60] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-
scale image recognition. In 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), Y. Bengio and Y. LeCun, Eds.

[61] Sridhar, U., Tukanov, N., Binder, E., Low, T. M., McMillan, S., and Schatz,
M. D. Small: A software framework for portable machine learning libraries. CoRR
abs/2303.04769 (2023).

[62] Su, X., Liao, X., Jiang, H., Yang, C., and Xue, J. SCP: shared cache partitioning
for high-performance GEMM. ACM Trans. Archit. Code Optim. 15, 4 (2019),
43:1ś43:21.

[63] Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., and
LeCun, Y. Fast convolutional nets with fbfft: A GPU performance evaluation. In
3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings (2015), Y. Bengio and
Y. LeCun, Eds.

[64] Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses,
W. S., Verdoolaege, S., Adams, A., and Cohen, A. Tensor comprehensions:

Framework-agnostic high-performance machine learning abstractions. CoRR
abs/1802.04730 (2018).

[65] Wang, Q., Mei, S., Liu, J., and Gong, C. Parallel convolution algorithm using
implicit matrix multiplication on multi-core cpus. In International Joint Confer-
ence on Neural Networks, IJCNN 2019 Budapest, Hungary, July 14-19, 2019 (2019),
IEEE, pp. 1ś7.

[66] Yang, W., Fang, J., and Dong, D. Characterizing small-scale matrix multiplica-
tions on armv8-based many-core architectures. In 35th IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2021, Portland, OR, USA, May 17-21,
2021 (2021), IEEE, pp. 101ś110.

[67] Zhang, J., Franchetti, F., and Low, T. M. High performance zero-memory
overhead direct convolutions. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018 (2018), J. G. Dy and A. Krause, Eds., vol. 80 of Proceedings of Machine
Learning Research, PMLR, pp. 5771ś5780.

[68] Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. Pyramid scene parsing network.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017 (2017), IEEE Computer Society, pp. 6230ś6239.

[69] Zhao, T., Hu, Q., He, X., Xu, W., Wang, J., Leng, C., and Cheng, J. ECBC:
efficient convolution via blocked columnizing. IEEE Trans. Neural Networks
Learn. Syst. 34, 1 (2023), 433ś445.

[70] Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-Ali, A., Wang, Y., Yang, J.,
Zhuo, D., Sen, K., Gonzalez, J. E., and Stoica, I. Ansor: Generating high-
performance tensor programs for deep learning. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2020, Virtual Event, November
4-6, 2020 (2020), USENIX Association, pp. 863ś879.

[71] Zheng, S., Liang, Y., Wang, S., Chen, R., and Sheng, K. Flextensor: An automatic
schedule exploration and optimization framework for tensor computation on
heterogeneous system. In ASPLOS ’20: Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, March 16-20, 2020
(2020), J. R. Larus, L. Ceze, and K. Strauss, Eds., ACM, pp. 859ś873.

[72] Zheng, Z., Zhao, P., Long, G., Zhu, F., Zhu, K., Zhao, W., Diao, L., Yang, J.,
and Lin, W. Fusionstitching: Boosting memory intensive computations for deep
learning workloads. CoRR abs/2009.10924 (2020).

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND PROBLEM SCOPE
	2.1 Prior Convolution Implementations
	2.2 Im2col+GEMM Approach
	2.3 Direct Convolution
	2.4 Search-based Code Optimization
	2.5 Positioning Our Work

	3 MOTIVATION AND OVERVIEW
	3.1 Motivation Results
	3.2 Opportunities for Improvement
	3.3 Overview

	4 nDirect DESIGN
	4.1 Loop Ordering
	4.2 Determine the Tiling Size

	5 MICRO-KERNEL DESIGN
	5.1 Design Overview
	5.2 Main Micro-kernel
	5.3 Micro-kernel for Packing

	6 PARALLELIZATION STRATEGIES
	6.1 Model Thread Mapping
	6.2 Solving the Equation

	7 EXPERIMENTAL SETUP
	7.1 Hardware Platforms
	7.2 Convolution Workloads
	7.3 Baseline Implementations
	7.4 Evaluation Methodology

	8 EXPERIMENTAL RESULTS
	8.1 Multi-core Convolutions
	8.2 Direct Convolution Tuned by Ansor
	8.3 End-to-end Inference Time
	8.4 Embedded Platform
	8.5 Impact of Hyper-threading

	9 RELATED WORK
	10 DISCUSSION
	10.1 Architecture Portability
	10.2 Integrating with Other Kernels

	11 CONCLUSIONS
	References

