
This is a repository copy of Optimizing MPI Collectives on Shared Memory Multi-cores.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/202767/

Version: Accepted Version

Proceedings Paper:
Peng, J., Fang, J., Liu, J. et al. (5 more authors) (2023) Optimizing MPI Collectives on
Shared Memory Multi-cores. In: Proceedings of SC23: The International Conference for
High Performance Computing, Networking, Storage, and Analysis. SC23: The International
Conference for High Performance Computing, Networking, Storage, and Analysis, 12-17
Nov 2023, Denver, USA. ACM . ISBN 9798400701092

https://doi.org/10.1145/3581784.3607074

This item is protected by copyright. This is an author produced version of a conference
paper accepted for publication in Proceedings of SC23: The International Conference for
High Performance Computing, Networking, Storage, and Analysis , made available under
the terms of the Creative Commons Attribution License (CC-BY), which permits
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Optimizing MPI Collectives on Shared Memory Multi-Cores

Jintao Peng1, Jianbin Fang1,∗, Jie Liu1, Min Xie1, Yi Dai1, Bo Yang1, Shengguo Li1, Zheng Wang2

1 College of Computer Science and Technology, National University of Defense Technology, China
2 School of Computing, University of Leeds, United Kingdom

jintaopengcs@gmail.com, {j.fang, liujie, xiemin, daiyi, yangbo78, nudtlsg}@nudt.edu.cn, z.wang5@leeds.ac.uk

ABSTRACT

Message Passing Interface (MPI) programs often experience perfor-

mance slowdowns due to collective communication operations, like

broadcasting and reductions. As modern CPUs integrate more pro-

cessor cores, running multiple MPI processes on shared-memory

machines to take advantage of hardware parallelism is becoming

increasingly common. In this context, it is crucial to optimize MPI

collective communications for shared-memory execution. However,

existing MPI collective implementations on shared-memory sys-

tems have two primary drawbacks. The first is extensive redundant

data movements when performing reduction collectives, and the

second is the ineffective use of non-temporal instructions to opti-

mize streamed data processing. To address these limitations, this

paper proposes two optimization techniques that minimize data

movements and enhance the use of non-temporal instructions. We

evaluated our techniques by integrating them into the OpenMPI

library and tested their performance using micro-benchmarks and

real-world applications running on two multi-core clusters. Experi-

mental results show that our approach significantly outperforms

existing techniques, yielding a 1.2-6.4x performance improvement.

CCS CONCEPTS

· Software and its engineering ; · Software notations and

tools; · Software libraries and repositories;

KEYWORDS

MPI, Collective Communication, Memory Access, Optimization

1 INTRODUCTION

Many parallel applications in high-performance computing (HPC)

rely on collective operations provided by the Message Passing In-

terface (MPI) for distributed communications, such as broadcasting

and reduction message exchanges. Studies in production HPC envi-

ronments show that MPI collectives can account for over two-thirds

of the MPI application communication time and are often responsi-

ble for the performance bottlenecks [18].

Various efforts have been made to optimize MPI collective com-

munications. Prior works in this area include optimizing the send-

and receive-based collectives across computing nodes [15, 16, 45,

50], exploiting operating system kernel-level optimizations like

"zero-copying" for point-to-point and communication fusion opti-

mizations [14, 17, 30], as well as using shared-memory optimization

directly within a single node [39, 44, 60]. As modern processors in-

creasingly integrate more processor cores with sharedmemory onto

a single chip, it is common to run multiple MPI processes within

a single computing node [21, 22]. Under such settings, optimising

MPI collectives within a single node is increasingly important.

∗ Corresponding author.

This work aims to improve the optimization techniques for intra-

node (shared memory) MPI collective operations. Our techniques

are designed to overcome two prominent limitations observed in the

existing solutions. Firstly, we observe a large amount of redundant

data movements when performing reduction collectives - a key

operation of MPI collectives. Even with shared memory, current

implementations require copying data from the sending buffer to

a shared memory buffer to perform the reduction [13, 34]. We

empirically show that such redundant data movements can account

for 40% of the total data accesses, but many of such data movements

can be eliminated through a better MPI shared-memory reduction

algorithm.

Secondly, we found that the widely used pipelined intra-node col-

lective implementation can lead to substantial cache load overheads

during memory writes, potentially causing wastage of precious

memory bandwidth resources. Specifically, within a write-allocate

cache framework [26, 37, 55, 59], a write instruction incurring a

cache miss triggers a Request For Ownership (RFO) mechanism.

This mechanism requires reading the cache line into the local cache,

invalidating other cached copies, and writing the data to the local

cache. However, this mechanism is ill-suited for performing write

operations on a large sequence of data that exceed the cache capac-

ity and are unlikely to be reused in the immediate future [33, 38, 48].

Under this scenario, the RFO overhead cannot be amortized by the

performance improvement of future cache hits but can waste the

memory bandwidth. Prior work addresses this problem by using

non-temporal (NT) instructions in the memory copy operation to

store the data directly in the memory [33, 38, 47]. Nonetheless, our

findings indicate that this memory copying strategy does not align

well with the data access patterns characteristic of pipelined col-

lectives. Pipelined collectives typically divide substantial messages

into smaller slices or chunks. However, the size of these slices might

not be sufficient to fully leverage the benefits of non-temporal mem-

ory accesses, consequently resulting in suboptimal utilization of

memory bandwidth resources.

Our work thus aims to address the two aforementioned draw-

backs when performing MPI collectives on shared-memory multi-

cores. Firstly, to reduce redundant data movements during the

reduction process, we propose an enhanced reduction algorithm.

This enhancement splits the message buffer and changes the mes-

sage operating order. This step aims to decrease the overhead of

the copy-in data movements. Secondly, we use a twofold strat-

egy to minimize the RFO overhead for pipelined collectives. Our

approach implements memory copy operations employing both

traditional techniques and those incorporating non-temporal in-

structions. Moreover, we develop an analytical model for deciding

when and where to use the two memory copy strategies.

We implemented and integrated our techniques as a collective

library named YHCCL, which is integrated with the widely used

Jintao Peng1 , Jianbin Fang1,∗ , Jie Liu1 , Min Xie1 , Yi Dai1 , Bo Yang1 , Shengguo Li1 , Zheng Wang2

Open MPI library. We evaluate YHCCL on three multi-core clusters

with 64, 48 and 24 cores per node. Experimental results show that

YHCCL provides a significant speedup compared to the state-of-the-

art collective implementations, with improvements ranging from

1.2× to 6.4× on large messages. When applying our optimization

to two real-life workloads, Adaptive Mesh Refinement Mini-App

(MiniAMR) and the training of distributed convolutional neural

networks (CNNs), our approach achieves a speedup of 1.3×-1.7× on

MiniAMR and improves the CNN training throughput by 1.8×-2.0×.

Besides, YHCCL has been deployed onto production supercomputer

systems to support a wide range of MPI workloads.

This paper makes the following contributions:

• It presents a novel intra-node reduction algorithm to elimi-

nate the redundant data movements for MPI collectives.

• It proposes a fine-grained heuristic to better utilize the non-

temporal instructions to optimize pipelined MPI collectives.

• It provides a set of analytical models to guide the optimiza-

tion of intra-node MPI collectives.

2 BACKGROUND AND MOTIVATION

2.1 Background

On shared memory nodes, the performance of MPI collective is

heavily impacted by memory access, as their arithmetic intensity

is typically low [58]. For this reason, our work focuses on opti-

mizing the memory access of intra-node MPI collectives at both

the algorithm and implementation levels, with particular attention

to reduction and pipelined collectives such as reduce-scatter,

reduce, all-reduce, broadcast, and all-gather.

To measure the impact of memory access, we consider two im-

portant metrics: data access volume and data access bandwidth.

Data access volume (DAV) represents the amount of data loaded

and stored during a collective operation on a computing node, while

data access bandwidth (DAB) indicates the data loaded and stored

per unit of time.

Most operating systems implement inter-process address iso-

lation, which isolates the memory space among processes. In this

paper, we use the term local memory to refer to the memory

buffer that is located in a process’s own address space. Conversely,

remote memory refers to memory buffers that are in other pro-

cesses’ address spaces. One approach to enable processes to share

data within their own memory space is to use a shared memory

mechanism provided by the operating system.With sharedmemory,

multiple processes can communicate with each other by reading

from or writing to shared memory locations. In shared memory

collectives, there are terms copy-in and copy-out to describe the

operations of moving data between a process’ local and the shared

memory. Specifically, copy-in refers to the transfer of data from

local memory to shared memory, while copy-out describes the

opposite process of moving data from shared memory back to a pro-

cess’s local memory. We use V to represent the data access volume

of the copy operation, including both copy-ins and copy-outs.

As an alternative to the shared memory approach, the kernel-

assisted single-copy mechanisms (e.g., LiMiC [36], KNEM [27],

Cross Memory Attach (CMA) [54], and XPMEM [56]) have been

investigated to design MPI collective operations. These schemes

use specialized kernel modules to map a process’s address space

① ②

Ra

Rb

Rc

c a

b

+

①: Copy to shared memory

②: Reduction

①

②
Private memory of Ra

Private memory of Rb

Shared memory

Private memory of Rc a+b+cac

(a) RG reduction with three processes (Ra, Rb, and Rc).

+

①: Copy to shared memory

②: Parallel Reduction

Ra

Rb

Rc

a+b+c

a

b

c

a

b

c

(b) DPML reduction with three processes (Ra, Rb, and Rc).

Figure 1: Workflows of MPI reduction collectives.

ሺcሻ A better designሺaሻ DPML design

SHMSHMSHM

𝒂𝟎 𝒃𝟎 𝒄𝟎
Ra:

Ra:SHM

SHM

SHMSHM

Ra:
Ra:SHM

SHMሺbሻ RG design

SHM

Ra:
R𝑏:

SHM

SHM

𝒂𝟎 𝒃𝟎 𝒄𝟎 𝒂𝟎 𝒃𝟎 𝒄𝟎

Figure 2: Different process-reduction binding of the reduc-

tion of slices {𝑎0, 𝑏0, 𝑐0} on shared memory. 𝑅𝑎 : + represents

a reduction operation executed by rank 𝑎. The red arrow rep-

resents a data copy from local memory to shared memory,

the blue dotted arrow represents a data load or store, and the

𝑆𝐻𝑀 denotes the shared memory buffers.

into other processes. In this way, each process can directly access

the address space of other processes. But the privileged installation,

security issues, and registration overhead limit their deployments

on production systems [19, 27, 34]. Thus, we focus on optimizing

collectives based on the shared memory approach.

2.2 Observations and Motivations

Our work is motivated by two observations, the first is the re-

dundant data movements for the commonly used MPI reduction

operation, and the second is the ineffective use of non-temporal

instructions for memory optimizations. The two issues limit the

memory access performance of current state-of-the-art collectives.

Redundant data movements. Reduction operations on shared

memory are used in MPI collective implementations of mainstream

MPI libraries, including MPICH and Open MPI [6, 8]. Before the

reduction calculation, a copy-in procedure is performed to copy data

from the sending buffer to shared memory. For the RG pipelined

tree reduction algorithm [34] shown in Figure 1a, the children

processes copy the entire sending buffers to the shared buffer before

the reduction step. Because the reduction rank 𝑏 cannot directly

access the data in the sending buffers of ranks 𝑎 and 𝑐 , ranks 𝑎

and 𝑐 first have to copy data into shared memory. Similarly, for the

DPML reduction algorithm [13] in Figure 1b, three processes reduce

the data concurrently, each requiring the data from the other two

processes. We find the redundant data copies are caused by the fact

that the reduction processes use the data from the other process’s

sending buffers, and should be minimized whenever possible.

Optimizing MPI Collectives on Shared Memory Multi-Cores

0

40000

80000

120000

160000

200000

256 KB 512 KB 1 MB 2 MB 4 MB

T
im

e
 O

ve
rh

e
a

d
 (

u
s)

Slice Size

mpiicpc (icpc 2021.5) mpicxx (gcc/++ 12.2.0)

Figure 3: The copy-out overhead for reduction (NODEA, 64

cores).

Figure 2 shows the redundant data movements and optimization

opportunities. For three processes shared memory reduction, we

divide each sending buffer 𝑎, 𝑏, and 𝑐 into three slices of size 𝐼 and

show the different reduction orders of the first slice {𝑎0, 𝑏0, 𝑐0}. For

the reduction of other slices, the situation is the same. Figure 2a

represents the DPML parallel reduction [13], where there are three

red arrows for this design, with 𝑉 = 6 · 𝐼 . Figure 2b represents

the pipelined RG tree reduction, where there are two red arrows,

with 𝑉 = 4 · 𝐼 . Figure 2c shows a better design that ranks 𝑏 and 𝑎

collaborate to finish the reduction of the slice 0. In the first step, rank

𝑐 copies the slice 𝑐0 to shared memory, and then rank 𝑏 performs

𝑏0 +𝑐0. As 𝑏0 is suited in the private memory of rank 𝑏, we have not

to copy this slice. After that, rank 𝑎 reads the operands in shared

memory and takes 𝑎0 for reduction. Thus, this design has only one

red arrow, with 𝑉 = 2 · 𝐼 . Our work aims to find a shared memory

reduction algorithm for minimizing the copy-in overhead.

Ineffective use of non-temporal instructions. For pipelined

collectives, a large message is chunked into slices and then moved

from one process to another in a pipelined fashion [14, 25, 50].

On shared-memory multi-cores, the message passing between pro-

cesses depends on the data copy primitive [25], which is typically

implemented as memmove or memcpy in the C library [34, 51].

As we have mentioned, the collective operations based on shared

memory have operations of copy-in and copy-out. For copy-out in all-

reduce, we have to copy the reduction result from shared memory

to receiving buffers [13, 34]. Figure 3 shows the copy-out overhead,

where each rank copies the 256MB data from shared memory to

its private buffer with different slice sizes. We see that, for the slice

smaller than 2MB, the overhead is significantly larger than using a

larger slice with both ICC and GCC compilers due to the copy-out

with memmove does not use non-temporal memory access [38, 46].

For large messages, it is straightforward to use NT stores, but we

note that it is not the case for the copy-in operation. After moving

the data slice onto the shared memory (i.e., copy-in), the data will

be used again in the near future. In this case, bypassing the cache

with NT stores cannot utilize the cache bandwidth when loading

the data again. Therefore, the prior pipelined collectives will suffer

a loss in performance for either small or large data slices. This

performance gap results from the ineffective use of non-temporal

instructions, which motivates us to design a new adaptive strategy

to use them.

2.3 YHCCL Overview

In this work, we redesign the intra-node collectives from the per-

spective of memory access at the algorithm and implementation

level. Figure 4 shows the overall design of YHCCL. At the algo-

rithm level, we minimize the copy overhead of the shared memory

Implementation level optimization:

MPI_Reduce, MPI_Reduce_scatter,

MPI_Allreduce,

MPI_Bcast, MPI_Allgather

Algorithm level optimization:

Non-Temporal data accessTemporal data access

two-level parallel reduction
(socket-aware) Movement-

avoiding reduction
Algorithm Switching

Runtime adaptive-copy

Figure 4: YHCCL overview.

reductions, eliminate the inter-NUMA memory, reduce the impact

of synchronization overhead (Section 3), and switch between al-

gorithms on different cases (Section 5.1). At the implementation

level, we design an adaptive non-temporal hint implementation

for pipelined collective to lower the impact of the RFO overhead

(Section 4). Putting it all together, we integrate the two-level de-

signs into our collective communication library (namely YHCCL)

to improve the MPI collectives.

3 MOVEMENT-AVOIDING REDUCTION
ALGORITHMS

This section addresses the issues of redundant data movements

and expensive inter-socket memory accesses by formalizing the

optimization problem and instantiating our reduction algorithms.

3.1 Sliced Reduction Problem

Assuming there are 𝑝 processes, we formalize a sliced reduction

problem based on shared memory where the sending buffer is

chunked into 𝑝 slices. We define 𝑠𝑖, 𝑗 to represent the 𝑗 th slice within

process 𝑖’s sending buffer, where 𝑖, 𝑗 ∈ {1, 2, ..., 𝑝}, and define a

group of slices 𝐺𝑖 = {𝑠1,𝑖 , 𝑠2,𝑖 , ..., 𝑠𝑝,𝑖 }. Each data slice sizes 𝐼 =

𝑠/𝑝 . The reduction result of the 𝑖th slice is the sum of slices in

𝐺𝑖 . Since the reduction operation has two inputs and one output,

any reduction combination of 𝑝 slices is a binary tree. Thus, any

reduction combination on 𝐺𝑖 can be defined as a reduction tree

𝑇𝑖 = [𝑇𝑖,1,𝑇𝑖,2, ...,𝑇𝑖,𝑝−1]. In 𝑇𝑖 , there are 𝑝 − 1 nodes that represent

a reduction sequence. Node 𝑇𝑖, 𝑗 = [𝑟, 𝑎, 𝑏] is a reduction operation

where 𝑟 ∈ {1, 2, .., 𝑝}, 𝑎, 𝑏 ∈ {1, 2, ..., 𝑗 − 1} ∪ 𝐺𝑖 , and 𝑎 ≠ 𝑏. The

process 𝑟 executes the reduction, 𝑎, 𝑏 represent the operands, and

the reduction result is stored on the shared memory. If 𝑎 ≡ 𝑠𝑥,𝑖 ∈ 𝐺𝑖 ,

it means one operand of the reduction is the 𝑖th slice in the sending

buffer of process 𝑥 . If 𝑎 ∈ {1, 2, .., 𝑗 −1}, it means one operand of the

reduction is the result of the reduction 𝑇𝑖,𝑎 in the shared memory.

Then, the copy data access volume required by 𝑇𝑖, 𝑗 = [𝑟, 𝑎, 𝑏]

can be calculated.

𝑉 (𝑇𝑖,𝑗) =

0 (𝑎 ∉ 𝐺𝑖 |𝑎 = 𝑠𝑟,𝑖) &(𝑏 ∉ 𝐺𝑖 |𝑏 = 𝑠𝑟,𝑖)

2 · 𝐼 (𝑎 ∈ 𝐺𝑖&𝑎 ≠ 𝑠𝑟,𝑖) &(𝑏 ∉ 𝐺𝑖 |𝑏 = 𝑠𝑟,𝑖)

2 · 𝐼 (𝑎 ∉ 𝐺𝑖 |𝑎 = 𝑠𝑟,𝑖) &(𝑏 ∈ 𝐺𝑖&𝑏 ≠ 𝑠𝑟,𝑖)

2 · 𝐼 + 2 · 𝐼 (𝑎 ∈ 𝐺𝑖&𝑎 ≠ 𝑠𝑟,𝑖) &(𝑏 ∈ 𝐺𝑖&𝑏 ≠ 𝑠𝑟,𝑖)

(1)

where condition (𝑎 ∉ 𝐺𝑖 |𝑎 = 𝑠𝑟,𝑖) denotes that one operand of

reduction 𝑇𝑖, 𝑗 comes from shared memory, which is the result of

its previous reduction, or the operand is the slice 𝑖 in the sending

buffer of process 𝑟 , and process 𝑟 is responsible for executing 𝑇𝑖, 𝑗 .

In this case, the reduction process 𝑟 can directly read the operand

Jintao Peng1 , Jianbin Fang1,∗ , Jie Liu1 , Min Xie1 , Yi Dai1 , Bo Yang1 , Shengguo Li1 , Zheng Wang2
𝑠 ାଵ 𝑠 ାଶ 𝑠 ାଷ 𝑠 ା

𝑇 ଵ ൌ𝑖 𝑝
𝑇 ଶ ൌ𝑖 𝑝

𝑇 ିଵ ൌ𝑖 𝑝

𝑠ଵା %, 𝑠ଵା ାଵ %, 𝑠ଵା ାଶ %, … 𝑠ଵା ାିଵ %,
𝑇,ଵ ൌ

1 𝑖 1 %𝑝
𝑇,ଶ ൌ

1 𝑖 2 %𝑝
𝑇,ିଵ ൌ

1 𝑖 𝑝 െ 1 %𝑝
…

a
b

a

a

a

b
b

b

Figure 5: Reduction tree 𝑇𝑖 of proposed algorithm

[𝑇1,𝑇2, ...,𝑇𝑝].

without extra copies. (𝑎 ∈ 𝐺𝑖&𝑎 ≠ 𝑠𝑟,𝑖) denotes that one operand

of 𝑇𝑖, 𝑗 is the 𝑖th slice in the sending buffer that does not belong to

the process 𝑟 . Thus, the slice must be copied to shared memory

before process 𝑟 uses it. Each copy operation has one load and store

operation and requires a DAV of 2 · 𝐼 .

Next, we define any algorithm for sliced reduction based on

shared memory as a sequence of 𝑝 reduction trees [𝑇1,𝑇2, ...,𝑇𝑝],

which meets the following constraints:

𝐶 =

𝑗 ∈ {1, 2, ..., 𝑝 − 1}

𝑖, (𝑇 𝑟
𝑖,𝑗) ∈ {1, 2, ..., 𝑝 }

∀𝑖∀ 𝑗 (𝑇𝑎
𝑖,𝑗), (𝑇

𝑏
𝑖,𝑗) ∈ {1, 2, ..., 𝑗 − 1} ∪𝐺𝑖

∀𝑖 (∩
𝑝−1
𝑗=1 (𝑇

𝑎
𝑖,𝑗 ∪𝑇

𝑏
𝑖,𝑗)) = 𝜙

(2)

where 𝑇 𝑟
𝑖, 𝑗 , 𝑇

𝑎
𝑖,𝑗 , and 𝑇

𝑏
𝑖,𝑗 are the elements of reduction node 𝑇𝑖, 𝑗 ≡

[𝑟, 𝑎, 𝑏]. The third constraint means that both operands of each re-

duction operation come from a previous reduction’s result or a slice

in sending buffer. The fourth constraint means that for each reduc-

tion tree, all reduction operands (number 2·(𝑝−1)) are different from

each other. As the length of set
��{1, 2, ..., (𝑝−1)−1}∪𝐺𝑖

�� = 𝑝−2+𝑝 =

2 · (𝑝−1), the fourth constraint ensures that there are 2 · (𝑝−1) non-

roots in a binary tree.With the root node, there are a total of 𝑝 leaves

and 𝑝 − 1 non-leaves, where 𝑝 is the number of slices in the sending

buffer and (𝑝−1) is the number of reduction nodes. The constraints

can express any reduction algorithm. For example, the DPML reduc-

tion [13] can be formalized as [𝑇DPML
1 ,𝑇DPML

2 , ...,𝑇DPML
𝑝], where

𝑇DPML
𝑖 =

[
[𝑖, 𝑠1,𝑖 , 𝑠2,𝑖], [𝑖, 1, 𝑠3,𝑖], ..., [𝑖, 𝑝 − 2, 𝑠𝑝,𝑖]

]
.

The optimization problem is to find a solution 𝑋 satisfying,

𝑀𝐼𝑁

𝑝∑︁

𝑖=1

𝑝−1∑︁

𝑗=1

𝑉 (𝑇𝑖,𝑗) .

𝑆 .𝑡 . ∀𝑋 ≡ [𝑇1,𝑇2, ...,𝑇𝑝] → 𝐶 (𝑋) = 𝑇𝑟𝑢𝑒

(3)

The optimization goal is to minimize the total copy of all reduction

nodes in all trees, which is important for large messages. Figure 2

has shown that the core idea of our design is to change the reduction

order and let each reduction node use the operands from shared

memory or local memory as much as possible. Then, we have to

solve the optimization problem and reach an optimal solution.

3.2 Solving the Optimization Problem

This section proposes our algorithm𝐴′ = [𝑇1,𝑇2, ...,𝑇𝑝−1], reaching

a reduction tree of 𝑇𝑖 (Figure 5). The reduction has 𝑝 − 1 steps. For

𝑇𝑖,1, one operand comes from the local memory of process 𝑇 𝑟
𝑖,1, and

the other operand is copied to shared memory before process 𝑇 𝑟
𝑖,1

reads it. For 𝑇𝑖,{2,3..,𝑝−1} , their operands come either from shared

memory or the local memory of the reduction process. For each tree

in 𝐴′, there is only one slice copy, and we can calculate the copy

a1

a2

a3

b1

b2

b3

c1

c2

c3

Rank a

Shared Memory c1 a2 b3

c1

a2

c3

b1

b2

b3

a1

c2

a3

b2

c3

a1

a3

b1

c2

Sum 1

Sum 2

Sum 3

Step 0Start Step 1 Step 2

Send buffers

Receiving buffers

Rank b Rank c Rank a Rank b Rank c Rank a Rank b Rank cRank a Rank b Rank c

Rank a

Rank b

Rank c

copy

A+=B

C=A+B

b2

c3

a1

c1+b1 a2+c2 b3+a3 c1+b1 a2+c2 b3+a3

Figure 6: Movement-avoiding reduce-scatter among three

processes (Ra, Rb, and Rc).

DAV of the algorithm (𝑉𝐴′ = 2 · 𝐼 · 𝑝 = 2 · 𝑠). Next, we prove that

2 · 𝑠 is the minimal copy DAV of the sliced reduction problem.

Theorem 3.1. For any reduction algorithm 𝑋 ≡ [𝑇1,𝑇2, ..,𝑇𝑝]

satisfying the constraints 𝐶 (𝑇𝑖, 𝑗) = True, there is

∀𝑇𝑖 ∈ 𝑋 → (

𝑝−1∑︁

𝑗=1

𝑉 (𝑇𝑖, 𝑗) ≥ 2 · 𝐼)

.

Proof. From Equation 1, 𝑉 (𝑇𝑖, 𝑗) ∈ {0, 2 · 𝐼 , 4 · 𝐼 }. For any re-

duction tree 𝑇𝑖 , there are 𝑝 − 1 reduction operations. Thus, the

minimum value of
∑𝑝−1

𝑗=1 𝑉 (𝑇𝑖, 𝑗) is 0. The second minimum value

is 2 · 𝐼 . If
∑𝑝−1

𝑗=1 𝑉 (𝑇𝑖, 𝑗) ≠ 0, then we have
∑𝑝−1

𝑗=1 𝑉 (𝑇𝑖, 𝑗) ≥ 2 · 𝐼 .

We assume that there exists an algorithm 𝑋 ≡ [𝑇1,𝑇2, ..,𝑇𝑝] that

satisfies the constraints and makes ∃𝑇𝑖 ∈ 𝑋 → (
∑𝑝−1

𝑗=1 𝑉 (𝑇𝑖, 𝑗) = 0)

hold. For all reductions in 𝑇𝑖 , their operands come from shared

memory or the local memory of the reduction process. But in the first

reduction𝑇𝑖,1, the shared memory has no data. Thus, both operands

come from the local memory of process 𝑇 𝑟
𝑖,1 to meet 𝑉 (𝑇𝑖,1) = 0,

which means that 𝑇𝑎
𝑖,1 = 𝑇𝑏

𝑖,1. This violates the fourth constraint

of the sliced reduction algorithm. And there is no sliced reduction

algorithm 𝑋 that makes ∃𝑇𝑖 ∈ 𝑋 → (
∑𝑝−1

𝑗=1 𝑉 (𝑇𝑖, 𝑗) = 0) hold.

Therefore, for all sliced reduction algorithms 𝑋 , we have ∀𝑇𝑖 ∈

𝑋 → (
∑𝑝−1

𝑗=1 𝑉 (𝑇𝑖, 𝑗) ≥ 2 · 𝐼). The theorem is proved. □

According to the theorem, any reduction tree𝑇𝑖 has
∑𝑝−1

𝑗=1 𝑉 (𝑇𝑖, 𝑗) ≥

2 · 𝐼 . Thus any algorithm 𝐴 with 𝑝 trees has larger copy DAV

than 𝑝 · 2 · 𝐼 = 2 · 𝑠 , and thus the proposed 𝐴′ is one of the op-

timal algorithms for solving the sliced reduction problem. Note

that the MPI Ring reduction based on send/recv is proved to be

bandwidth-optimal reduction algorithm [45]. However, in a shared

memory node, its copy DAV is not minimal. This is because each

MPI_send/_recv in each step still involves a least one data copy.

Rabenseifner reduction are also based on send/recv operations.

Thus, there is𝑉Ring ≥ 2 · (𝑝 − 1) · 𝑠 . While in algorithm𝐴′, only the

first step has data copy, other steps perform only computation. Next,

we apply this to redesign the MPI reduction algorithms, including

MPI_Reduce_scatter (Section 3.3), MPI_Allreduce (Section 3.4),

and MPI_Reduce (Section 3.5).

3.3 Movement-avoiding MPI Reduce-scatter

Based on algorithm𝐴′, we instantiate the movement-avoiding (MA)

reduce-scatter algorithm in Figure 6. The sending buffer is chunked

into 𝑝 slices. There is a global shared memory sizing 𝑠 (i.e., the

entire message), and 𝐼 is the size of each slice (𝐼 = 𝑠
𝑝).

Our reduction algorithm has three primary operations: ① copy,

②𝐴+ = 𝐵, and ③𝐶 = 𝐴+𝐵, and requires 1+𝑝−1 = 𝑝 steps. Figure 6

Optimizing MPI Collectives on Shared Memory Multi-Cores

Table 1: Comparing DAV of reduce-scatter algorithms

Reduce-scatter algorithms Data Access Volume per node

Ring [45] 5 · 𝑠 · (𝑝 − 1)

Rabenseifner [50] 5 · 𝑠 · 𝑝 · (1
2
+ 1

4
+ ... + 1

𝑝)

DPML [13] 𝑠 · (5 · 𝑝 − 1)

YHCCL (proposed) 𝑠 · (3 · 𝑝 − 1)

exemplifies that we have three processes, and thus require three

steps (S0-S2) for reduce-scatter. The three reduction steps are: (S0)

rank a/b/c copies the data slice of 2/3/1 into the shared memory;

(S1) the rank a/b/c reduces (using 𝐴+ = 𝐵) slice 3/1/2 to the shared

memory; (S2) the rank a/b/c reduces (using 𝐶 = 𝐴 + 𝐵) slice 1/2/3

of the shared memory to the receiving buffer. Note that each rank

operates its own receiving buffer in the operations𝐶 = 𝐴+𝐵 during

step S2. This is because the rank a/b/c will copy slice 2/3/1 to shared

memory in S0, and the process-slice binding is fixed. When dealing

with a much larger message, our design performs reduce-scatter

multiple times to keep the data slice sufficiently small to be cached.

From the perspective of data access volume (DAV), all algorithms

for the sliced reduction problem contain 𝑝 · (𝑝 − 1) slice reduction

operations; each has two loads and one store, which requires a DAV

of 3 · 𝐼 . Thus we get the DAV of the algorithm 𝐴′ as 3 · 𝐼 · 𝑝 · (𝑝 −

1) +
∑𝑝
𝑖=1

∑𝑝−1
𝑗=1 𝑉 (𝑇𝑖, 𝑗) = 𝑠 · (3 · 𝑝 − 1). We compare the DAV of

the prior MPI reduce-scatter algorithms in Table 1. Note that both

Ring and Rabenseifner are built on the send/recv communication

primitive. For the kernel-assisted MPI, there is a synchronization

and single memory copy in a point-to-point communication [25].

Typical kernel modules (CMA [54] and KNEM [27]) perform data

copy in kernel space, while shared memory copy is a user space

operation, thus involves more system overhead. In a step of the ring

reduce-scatter, there is 2 ·𝐼 or 3 ·𝐼 DAV in one send/recv or reduction.

The Rabenseifner reduce-scatter half the message size in each

step, and the number of steps is the logarithm of 𝑝 . For DPML, it

copies the whole sending buffer to shared memory which needs at

least 2 · 𝑠 · 𝑝 . Compared to DPML, YHCCL can eliminate around

40% unnecessary data movements and consumes only 𝑝 · 𝐼 shared

memory. To summarize, the DAV of YHCCL is smaller than the

other shared memory algorithms when using over two processes.

This is due to the fact that our algorithm minimizes unnecessary

data movements. Although the synchronization overhead of MA

reduction can grow with the number of parallel processes (e.g., on

future architectures with more cores), the reduction in memory

overhead given by our approach (up to 40% reduction over DPML

and RG) should amortize the synchronization overhead on large

messages.

For large messages, the shared memory, sizing 𝑝 · 𝐼 , may exceed

the cache capacity. We prefer using a small slice size 𝐼 to perform

reduction multiple times to keep the shared memory in the cache.

Besides, on a multi-NUMA system, as the MA reduction uses only

local memory and small slices of shared memory (suited in the

cache), it can avoid accessing remote NUMA’s physical memory.

Socket-aware optimization. For our MA reduction, using more

processes will often endure an expensive synchronization overhead.

This is because there exists a synchronization between every two

neighboring steps. In practice, we use atomic operations to update a

1
2
3

Rank a

4

1
2
3

4

1
2
3

4

1
2
3

4

①:MA reduction𝐼 ൌ 2𝑠𝑝

𝑎ଵ 𝑏ଵ𝑎ଶ 𝑏ଶ𝑎ଷ 𝑏ଷ𝑎ସ 𝑏ସ
𝑐ଵ 𝑑ଵ𝑐ଶ 𝑑ଶ𝑐ଷ 𝑑ଷ𝑐ସ 𝑑ସ

①:MA reduction𝐼 ൌ 2𝑠𝑝②:parallel reduction𝐼 ൌ 𝑠𝑝

Shared memory Shared memoryRank b Rank c Rank d

Figure 7: Two-level reduce-scatter on 4 processes (m=2 sock-

ets, each has n=2 processes).

flag held by each process for synchronization and signaling between

children and parents in the reduction tree. Thus, we present a socket-

aware MA reduction algorithm to mitigate this overhead.

Figure 7 demonstrates the socket-aware MA reduction on 𝑝 = 4

processes (divided into𝑚 = 2 sockets), where the sending buffer

is chunked into four slices. In the socket-aware design, the first

step is performing MA reduction with slice size 𝐼 = 2 · 𝑠/𝑝 , and we

get the local reduction result of each socket. There need 𝑝/𝑚 − 1

times synchronizations. In the second step, each rank performs

reductions on the corresponding slices and then stores the final

result in shared memory or its receiving buffer. There requires one

synchronization.

In the first step, there are𝑚 intra-socket MA reductions, and each

works on 𝑝/𝑚 processes and message size 𝑠 . So there is a DAV of

𝑚·𝑠 ·(3·
𝑝
𝑚−1) = 𝑠 ·(3·𝑝−𝑚). In the second step,𝑚 socket incurs𝑚−1

reduction, and thus there is a DAV of (𝑚−1) · (3 · 𝑠𝑝 ·𝑝) = 3 ·𝑠 · (𝑚−1).

The total DAV is 𝑠 · (3 · 𝑝 −𝑚) + 3 · 𝑠 · (𝑚 − 1) = 𝑠 · (3 · 𝑝 + 2 ·𝑚 − 3).

Notice that the socket-aware design has a slightly larger DAV but

fewer synchronization (𝑝/𝑚) than the pure MA reductions (𝑝 − 1).

The synchronization overhead of socket-aware MC can grow with

the number of parallel processes (e.g., on future architectures with

more cores). However, the reduction in memory overhead given

by our approach (up to 40% reduction over DPML and RG) should

amortize the synchronization overhead.

3.4 Movement-avoiding MPI All-reduce

Following the design of our reduce-scatter algorithm, we provide

our design of movement-avoiding all-reduce algorithm. Our algo-

rithm first performs reduce-scatter with MA reduce-scatter and

stores the result on the shared memory, and then each rank copies

the result to their receiving buffers. Copying the reduction result

to the receiving buffer requires a DAV of 2 · 𝑠 · 𝑝 per node. As the

DAV of the socket-aware reduce-scatter is 𝑠 · (3 · 𝑝 + 2 ·𝑚 − 3), we

get the DAV of the all-reduce algorithm as 𝑠 · (5 · 𝑝 + 2 ·𝑚 − 3).

Table 2 compares the DAV of different all-reduce algorithms. The

RG all-reduce is a pipelined tree algorithm, and parameter 𝑘 is the

branching degree of reduction. In the first step of the RG all-reduce,

the children processes copy data to the shared memory, and then

the parent rank reduces the data. For other steps, the parent directly

reduces the data on the shared memory. After reduction, all ranks

copy their results to receiving buffer. Thus, the DAV of the RG

all-reduce algorithm is (2 · 𝑠 · 𝑘 + 3 · 𝑠 · 𝑘) (
𝑝

𝑘+1
) + (3 · 𝑠 · 𝑘 (

𝑝

(𝑘+1)2
+

𝑝

(𝑘+1)3
+ ... +

𝑝
𝑝)) + (2 · 𝑠 · 𝑝). When 𝑝 ≥ 4, our all-reduce has a

smaller DAV than the other algorithms.

Jintao Peng1 , Jianbin Fang1,∗ , Jie Liu1 , Min Xie1 , Yi Dai1 , Bo Yang1 , Shengguo Li1 , Zheng Wang2

Table 2: Comparing DAV of the all-reduce algorithms

All-reduce algorithms Data Access Volume per node

Ring [45] 7 · 𝑠 · (𝑝 − 1)

Rabenseifner [50] 7 · 𝑠 · 𝑝 · (12 +
1
4 + ... +

1
𝑙𝑜𝑔𝑝
)

DPML [13] 𝑠 · (7 · 𝑝 − 1)

RG [34] 𝑠 · 𝑝 · (5·𝑘
𝑘+1
+ 3·𝑘
(𝑘+1)2

+ ... + 3·𝑘
𝑝 + 2)

YHCCL (MA reduction) 𝑠 · (5 · 𝑝 − 1)

YHCCL (socket-aware MA) 𝑠 · (5 · 𝑝 + 2 ·𝑚 − 3)

Table 3: Comparing DAV of reduce algorithms

Reduce Algorithms Data Access Volume per node

DPML [13] 𝑠 · (5 · 𝑝 + 1)

RG [34] 𝑠 · 𝑝 · (5·𝑘
𝑘+1
+ 3·𝑘
(𝑘+1)2

+ ... + 3·𝑘
𝑝)

YHCCL (MA reduction) 𝑠 · (3 · 𝑝 + 1)

YHCCL (socket-aware MA) 𝑠 · (3 · 𝑝 + 2 ·𝑚 − 1)

3.5 Movement-avoiding MPI Reduce

Based on our reduce-scatter design, we present the movement-

avoiding reduce algorithm. Our algorithm first performs a socket-

aware MA reduce-scatter to shared memory, and then the root rank

copies the result from the shared memory to the receiving buffer.

The DAV of our reduce algorithm is (𝑠 · (3 · 𝑝 + 2 ·𝑚 − 3) + 2 · 𝑠 =

𝑠 · (3 · 𝑝 + 2 ·𝑚 − 1)). Table 3 compares the DAV of different reduce

algorithms. When𝑚 << 𝑝 , we see that our reduce algorithm has a

smaller DAV when 𝑝 ≥ 4.

4 ADAPTIVE COLLECTIVES WITH
FINE-GRAINED NON-TEMPORAL STORES

This section addresses the issue that existing pipelined collectives

cannot effectively utilize non-temporal (NT) stores.

4.1 The Idea

To further investigate the difference between the temporal and non-

temporal (NT) memory accesses, we redesign the STREAM COPY

benchmark with two data copy operations: t-copy, which uses

prefetched loads and regular temporal stores, and nt-copy, which

uses prefetched loads but non-temporal stores. To simulate the slice

data copy of the pipelined collectives, we chunk a 16 GB array into

data slices and use slice as the copy granularity. Table 4 shows the

bandwidth differences between memmove, t-copy, and nt-copy.

We see that using nt-copy can achieve a 50% bandwidth im-

provement compared to using t-copy on sliced large data copy.

This is because t-copy writes allocate the cache and incur the RFO

overhead. When the cache is fully filled, the cache misses may evict

the dirty cacheline to the main memory, resulting in a waste of

memory bandwidth. By contrast, nt-copy can avoid the overhead

by hinting the CPU not to cache data. The experiment reveals that

for the sliced large data copy where the stored data is not to be

used soon, we should use nt-copy. If the stored data is going to

be used soon (e.g., the copy-in operations in pipelined collectives),

or if the work data size is small, we should use t-copy rather than

nt-copy to leverage the cache.

Table 4: The memory bandwidth (in MB/s) when using slice

copy to copy a 16GB array on NodeA.

memmove t-copy nt-copy

512 KB 147361.4 151731.1 236571.3

1 MB 149686.3 152558.9 239518.3

2 MB 232060.8 158386.0 237662.7

𝑎ଷ 𝑏ଷ 𝑐ଷ
𝑎ଷ

𝑠𝑢𝑚ଷ𝑠𝑢𝑚ଷ𝑠𝑢𝑚ଷ

𝑎ଷାଵ 𝑏ଷାଵ 𝑐ଷାଵ𝑎ଷାଶ 𝑏ଷାଶ 𝑐ଷାଶ

𝑏ଷ 𝑐ଷ
？

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐷𝑎𝑡𝑎
Enough Cache capacity

Without capacity misses With capacity misses

𝐿𝑎𝑟𝑔𝑒 𝑊Stored data soon be reused

𝑁𝑜𝑛 െ 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐷𝑎𝑡𝑎
𝑆𝑚𝑎𝑙𝑙 𝑊

Enough Cache capacity
Stored data may be written-

back due to capacity miss!

Figure 8: Characterizing the slice copy in pipelined collec-

tives.

Algorithm 1:Memory Copy with adaptive NT Store

Data: source buffer 𝑎, dest buffer 𝑏, copy size 𝜏 , non-temporal flag 𝑡 ,
available cache capacity𝐶 , work data size𝑊

1 𝐶 = {𝑐′, 𝑐′ + 𝑝 · 𝑐′′ };

2 Function adaptive-copy(𝑎, 𝑏, 𝜏 , 𝑡 ,𝐶 ,𝑊):
3 if 𝑡 == 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑊 > 𝐶 then
4 t-copy(𝑎, 𝑏, 𝜏);

5 else
6 nt-copy(𝑎, 𝑏, 𝜏);

7 return;

The memmove switches on or off NT instructions by simply

comparing copy size with a threshold [38, 46], which fails to cap-

ture the complex memory access patterns of the current pipelined

collectives. Thus, we aim to characterize the slice data copy in the

pipelined collectives and pass the information to the reimplemented

copy function, which can adaptively enable the NT data accesses.

4.2 Modeling Adaptive NT Stores

Figure 8 shows that we characterize the slice copy in pipelined

collectives in two dimensions: ① the work data size (𝑊) of the

collective algorithm, and ② whether the stored buffer of copy is

temporal or non-temporal. We define the work data size of the

collective algorithm (𝑊) as the sum of the sending buffer, receiving

buffer, and other auxiliary buffers (e.g., shared memory) used in

the algorithm. The temporal data is referred to be the data that

are frequently used in the algorithm, while the non-temporal data

means the data is rarely used [10, 38] in a period. For an algorithm

with large𝑊 and the slice copy storing non-temporal data, there

will occur capacity cache misses and write allocation. As the non-

temporal data are rarely used in a period, we choose to use the NT

store to write the data directly into the memory to avoid wasting

the memory bandwidth. On the other hand, if the stored data is

temporal data, whatever the size of𝑊 is, writing the data to the

cache rather than the main memory will utilize the cache for the

next reference. When𝑊 is small, there will be no capacity cache

misses. Thus, we use the temporal store to write and allocate data

into the cache. As a consequence, it requires an adaptive copy that

uses nt-copy to bypass the cache and t-copy to utilize the cache.

Optimizing MPI Collectives on Shared Memory Multi-Cores

Algorithm 2:MA all-reduce with adaptive-copy

Data: sending buffer 𝑠𝑏, receiving buffer 𝑟𝑏, shared memory 𝑠ℎ𝑚, message
size 𝑠 , slice size 𝐼 , my rank 𝑟 , process number 𝑝 , reduce operation 𝑜𝑝

1 Function MA-allreduce(𝑠𝑏, 𝑟𝑏, 𝑠 , 𝑜𝑝):
2 𝑊 ← 𝑠 · 𝑝 + 𝑠 · 𝑝 + 𝑝 · 𝐼 ;

3 for (𝑠𝑠 = 0; 𝑠𝑠 < 𝑠𝑧; 𝑠𝑠+ = 𝐼 · 𝑝) do
4 for 𝑗 = 0 to 𝑝 do
5 𝑙 ← 𝐼 · ((𝑗 + 𝑟 + 1)%𝑝) ;

6 𝑖 ← 𝑠𝑠 + 𝑙 ;

7 if 𝑗 == 0 then
8 adaptive-copy(𝑠𝑏 [𝑖], 𝑠ℎ𝑚[𝑙], 𝐼 , 0,𝐶,𝑊)

9 else
10 op(𝑠𝑏 [𝑖], 𝑠ℎ𝑚[𝑙], 𝐼)

11 if 𝑗 > 0 and 𝑖 < 𝑝 − 1 then
12 Sync-with-neighbor

13 Sync-intra-node;

14 for 𝑗 = 0 to 𝑝 do
15 𝑖 ← 𝑠𝑠 + 𝐼 · 𝑗 ;

16 adaptive-copy(𝑠ℎ𝑚[𝐼 · 𝑗], 𝑟𝑏 [𝑖], 𝐼 , 1,𝐶,𝑊)

Algorithm 1 shows the pseudocode of adaptive-copy, which

extends prior copy operations (e.g., memmove) with six arguments.

The additional three parameters (𝑡 ,𝐶 ,𝑊) represent the characteris-

tics of the pipelined algorithm and the system cache information.

adaptive-copy use the parameters to identify the orange area of

Figure 8. Some recent CPU architectures (e.g., Intel’s skylake) use

a non-inclusive L3 cache [11, 53], and the data in L1 and L2 is not

located in L3. Thus, the available cache capacity is larger than L3,

and the available cache is𝐶 = 𝑐′ + 𝑝 · 𝑐′′, where 𝑐′ is the size of the

last level cache, and 𝑐′′ is the size of the second last level cache per

core. When the last-level cache is inclusive, we have 𝐶 = 𝑐′.

4.3 Adaptive Collective Implementations

4.3.1 How to use adaptive-copy in MA all-reduce algorithm. Algo-

rithm 2 shows how we use adaptive-copy in the MA all-reduce

algorithm (Section 3). It also includes the operations of copy-ins and

copy-outs. The work data size of the MA all-reduce on 𝑝 processes

is 𝑠 · 𝑝 + 𝑠 · 𝑝 + 𝑝 · 𝐼 , which includes the size of sending/receiv-

ing buffer and shared memory. The first adaptive-copy in line 8

stores the data in the shared memory. In this case, the stored slice

is used in the next reduction, and the shared memory is frequently

used during the reduction. Thus we set the non-temporal flag to 0.

The second slice copy in line 16 is that each rank copies the result

to the receiving buffer. The receiving buffer is used once during

the all-reduce, and thus we set the non-temporal flag to 1. For the

socket-aware MA all-reduce, the work data size is𝑊 . The work

data size for a𝑚 socket system is 𝑠 · 𝑝 + 𝑠 · 𝑝 +𝑚 · 𝑝 · 𝐼 .

4.3.2 How to use adaptive-copy in pipelined broadcast algorithm.

Algorithm 3 shows the classical pipelined broadcast algorithm with

adaptive-copy based on shared memory [28, 34]. In each step, the

root rank copies a slice to shared memory, and non-root processes

copy the previous data to receiving buffers. The work data size of

the algorithm is 𝑠 + 𝑠 · (𝑝 − 1) + 2 · 𝐼 . As the message is chunked

into slices, for each slice, the root process copies it to the shared

memory and then the data is copied to the receiving buffer by the

non-root processes. We see that the shared memory is temporal

data, and the receiving buffer is non-temporal data.

Algorithm 3: Pipelined broadcast with adaptive-copy

Data: root process 𝑅
1 Function pipe-bcast(𝑠𝑏, 𝑟𝑏, 𝑠 , 𝑅):
2 𝑊 ← 𝑠 + 𝑠 · (𝑝 − 1) + 2 · 𝐼 ;

3 for (𝑠𝑠 = 0; 𝑠𝑠 < 𝑠𝑧; 𝑠𝑠+ = 𝐼) do
4 if 𝑟 == 𝑅 then
5 adaptive-copy(𝑠𝑏 [𝑠𝑠], 𝑠ℎ𝑚[(𝑠𝑠𝐼 %2)], 𝐼 , 0,𝐶,𝑊)

6 else
7 𝑠1← 𝑠𝑠 − 𝐼 ;

8 if 𝑠1 ≥ 0 then

9 adaptive-copy(𝑠ℎ𝑚[(𝑠1𝐼 %2)], 𝑟𝑏 [𝑠1], 𝐼 , 1,𝐶,𝑊)

10 Sync-intra-node;

11 if 𝑟 ≠ 𝑅 then

12 adaptive-copy(𝑠ℎ𝑚[(𝑠𝑠−𝐼𝐼 %2)], 𝑟𝑏 [𝑠𝑠 − 𝐼], 𝐼 , 1,𝐶,𝑊)

Algorithm 4: Pipelined all-gather with adaptive-copy

1 Function pipe-all-gather(𝑠𝑏, 𝑟𝑏, 𝑠):
2 𝑊 ← 𝑠 · 𝑝 + 𝑠 · 𝑝2 + 2 · 𝑝 · 𝐼 ;

3 for (𝑠𝑠 = 0; 𝑠𝑠 < 𝑠𝑧; 𝑠𝑠+ = 𝐼) do
4 adaptive-copy(𝑠𝑏 [𝑠𝑠], 𝑠ℎ𝑚[𝑟 · 2 · 𝐼 + (𝑠𝑠𝐼 %2) · 𝐼], 𝐼 , 0,𝐶,𝑊);

5 𝑠1← 𝑠𝑠 − 𝐼 ;

6 if 𝑠1 ≥ 0 then
7 for 𝑎 = 0 to 𝑝 do
8 adaptive-

copy(𝑠ℎ𝑚[𝑎 · 2 · 𝐼 + (𝑠1𝐼 %2) · 𝐼], 𝑟𝑏 [𝑠1], 𝐼 , 1,𝐶,𝑊)

9 Sync-intra-node;

10 for 𝑎 = 0 to 𝑝 do

11 adaptive-copy(𝑠ℎ𝑚[𝑎 · 2 · 𝐼 + (𝑠𝑠−𝐼𝐼 %2) · 𝐼], 𝑟𝑏 [𝑠𝑠 − 𝐼], 𝐼 , 1,𝐶,𝑊)

4.3.3 How to use adaptive-copy in pipelined all-gather algorithm.

Algorithm 4 shows the pipelined all-gather algorithm based on

shared memory [28, 43]. For each step, all processes copy a slice

to shared memory. Then processes copy the slices from shared

memory to receiving buffers. For the first copy in line 4, the stored

data on shared memory will soon be used. For the second copy in

lines 8 and 11, the stored slices in receiving buffers are used only

after the all-gather. As a result, shared memory is temporal data,

and receiving buffer is non-temporal data. The work data size for

the algorithm is 𝑠 · 𝑝 + 𝑠 · 𝑝2 + 2 · 𝑝 · 𝐼 .

5 PERFORMANCE EVALUATION

This section introduces the implementation and compares themovement-

avoiding collectives with state-of-the-art algorithms, and then eval-

uates adaptive collectives with fine-grained NT stores. It also com-

pares YHCCL with state-of-the-art MPIs and real-life applications.

5.1 Implementation Details

We have implemented our optimization techniques as a component

of the Open MPI MCA coll framework. Our framework, namely

YHCCL
1, is released as an open-source library. We also developed a

profiling tool (PMPI) to support MPI collective performance profil-

ing. MPI programmers can use an environment variable to enable

our optimization via OMPI_MCA_COLL_YHCCL_priority=100.

For the MA reduction algorithm, we use the maximum and min-

imum slice sizes 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 = 𝐶𝑎𝑐ℎ𝑒 𝐿𝑖𝑛𝑒 respectively to fit the

1The code and data are available at: https://github.com/pengjintao/yh-ccl.

Jintao Peng1 , Jianbin Fang1,∗ , Jie Liu1 , Min Xie1 , Yi Dai1 , Bo Yang1 , Shengguo Li1 , Zheng Wang2

shared memory into the cache and avoid the cache line’s false shar-

ing [32]. Therefore, the actual slice size is 𝐼 =𝑚𝑎𝑥 (𝑚𝑖𝑛(𝑠𝑝 , 𝐼𝑚𝑎𝑥), 𝐼𝑚𝑖𝑛).

Even though the socket-aware design mitigates the synchroniza-

tion overhead, the overhead can become prohibitively expensive as

messages get smaller. Some current parallel reduction algorithms

like DPML [13] offers one synchronization with coping all sending

buffers to shared memory, but it does not utilize socket-aware and

cache hierarchy. As a result, the two-level parallel reduction in

Figure 4 is that YHCCL optimizes the current DPML algorithm with

a two-level hierarchy and switches the reduction algorithm to it

when the message is too small (e.g., 𝑠 ≤ 256 KB) to benefit from

MA reduction at the algorithm level.

5.2 Experimental Setup

5.2.1 Hardware platforms. We evaluate YHCCL on three comput-

ing clusters with shared memory multi-cores.

NodeA. Each node has 2x 32-core AMD EPYC 7452 CPUs (64 cores

in total). Each CPU has a collective 256 MB non-inclusive L3 cache,

complemented by an inclusive L2 cache of 512 KB per core [53].

Moreover, the CPUs are equipped with 16 DDR4-3200 memory

channels and are interlinked through a quartet of 16 GT/s xGMI

buses.

NodeB. Each node of this system has two 24-core Intel Xeon Plat-

inum 8163 CPUs (48 cores in total). Each CPU incorporates a collec-

tive 66 MB non-inclusive L3 cache, accompanied by an inclusive 1

MB L2 cache per core [11]. Moreover, these CPUs feature 12 DDR4-

2666 memory channels and are interconnected by 3x 10.4 GT/s UPI

buses.

Cluster C. Each node has of this cluster two 12-core Intel Xeon

E5-2692 v2 (24 cores in total), where each CPU has a shared 60 MB

inclusive L3 cache.

5.2.2 Software and Workloads. Our evaluation uses Open MPI

v4.1.3 based onUCXv1.8.0, GCC v10.2.0, Pytorch v1.10, andHorovod

v0.20.1. As the application workloads, we use both the OSU MPI

benchmark suite [9] and real-life applications to evaluate YHCCL.

The two applications are Adaptive Mesh Refinement Mini-App

(MiniAMR) and the training of distributed deep neural networks

(DNNs) applications.

5.3 Evaluating Movement-avoiding Collectives

Figure 9 compares the (socket-aware)MA reduce-scatter with Ring [45],

Rabenseifner [50], and DPML [13] reduce-scatter over various mes-

sage sizes. We have turned these algorithms’ parameters (slice size

and branch degree) to have their best performance on the NodeA.

For example, we select the best reduction size to be 8KB for DPML.

Our MA reduction has a maximum slice size of 256KB on NodeA

and 128KB on NodeB. Figure 9 shows the algorithms’ relative time

overhead to the socket-aware MA algorithm. We see that the MA

reduce-scatter and socket-aware design have significant perfor-

mance advantages for messages larger than 64KB. The socket-aware

MA reduce-scatter shows an average 4.18x, 3.8x, 3.6x speedup on

NodeA and 2.21x, 1.8x, 2.47x on NodeB compared to DPML, Ring,

Rabenseifner. In some cases, MA reduction performs better than

Ti
m

e
(u

s)

77
.7

10
3.

3

91
.4

12
1.

6

21
5.

3

41
7.

4

89
0.

4

30
83

.5

60
61

.7

11
47

2.
9

22
42

5.
5

46
63

6.
8

94
51

3.
4

M
sg

 S
z

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

2

4

6

8

10

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

Socekt-aware MA (ours)
MA (ours)
DPML
Ring
Rabenseifner

(a) NodeA, p=64

Ti
m

e
(u

s)

46
.8

57
.8

97
.4

13
8.

8

25
9.

1

63
7.

3

15
24

.5

32
54

.4

55
75

.3

10
61

1.
7

20
78

5.
8

43
15

8.
8

83
04

1.
3

M
sg

 S
z

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

Socekt-aware MA (ours)
MA (ours)
DPML
Ring
Rabenseifner

(b) NodeB, p=48

Figure 9: Reduce-scatter algorithm comparison.

Ti
m

e
(u

s)

87
.3

17
2.

3

13
5.

8

17
1.

1

31
8.

7

59
4.

8

15
21

.0

37
79

.3

73
72

.9

14
27

3.
5

28
19

2.
0

56
10

5.
4

11
27

75
.5

M
sg

 S
z

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

1

2

3

4

5

6

7

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

Socekt-aware MA (ours)
MA (ours)
DPML
RG

(a) NodeA, p=64

Ti
m

e
(u

s)

88
.3

10
8.

8

13
2.

5

17
2.

5

29
1.

9

61
4.

5

15
05

.7

26
08

.2

54
42

.5

10
76

3.
1

21
00

1.
1

41
49

7.
3

84
93

0.
0

M
sg

 S
z

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

Socekt-aware MA (ours)
MA (ours)
DPML
RG

(b) NodeB, p=48

Figure 10: Reduce algorithm comparison.
Ti

m
e

(u
s)

11
2.

2

13
2.

8

16
1.

9

30
7.

9

55
1.

1

12
91

.8

40
70

.1

81
65

.1

16
52

6.
2

33
40

8.
4

66
99

3.
7

13
16

82
.6

26
02

97
.7

M
sg

 S
z

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

1

2

3

4

5

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

Socekt-aware MA (ours)
MA (ours)
DPML

RG
Ring
Rabenseifner

(a) NodeA, p=64

Ti
m

e
(u

s)

17
3.

7

19
9.

6

27
6.

3

41
7.

9

78
6.

5

19
61

.8

38
20

.2

79
81

.4

17
15

1.
1

30
18

4.
7

60
52

9.
0

11
72

67
.5

21
65

76
.7

M
sg

 S
z

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

Socekt-aware MA (ours)
MA (ours)
DPML

RG
Ring
Rabenseifner

(b) NodeB, p=48

Figure 11: All-reduce algorithm comparison.

socket-aware MA. The socket-aware MA incurs less synchroniza-

tion compared to MA, but it requires an extra buffer and additional

data movements. In this case, when the socket-aware MA buffer

cannot be fitted into a smaller cache, it may performworse thanMA

reduction due to cache misses. These performance improvements

are due to the MA reduction minimizing the data copy, which can

use private data and a small volume of shared memory. Others like

Ring and Rabenseifner are based on point-to-point communication,

which involves much data copy as shown in Table 1 and 2, even

with kenel-assited MPI. For small messages, the MA designs suf-

fer from synchronization, and the Rabenseifner algorithm has an

advantage because it has a logarithmic step number.

Figure 11 shows how our socket-aware MA all-reduce performs

comparedwith Ring [45], Rabenseifner [50], DPML [13] and RG [34].

For the RG all-reduce, the branching degree in a socket is set to

2, and the slice size is set to 128KB. We see that our algorithm

has a significantly smaller overhead for large messages. RG and

Rabenseifner all-reduce have logarithmic steps and perform well

for messages smaller than 128KB. Figure 10 shows how our socket-

aware MA reduce compared with DPML [13] and RG [34]. The

proposed algorithm has an advantage for messages larger than

64KB on NodeA and 128KB on NodeB.

Optimizing MPI Collectives on Shared Memory Multi-Cores
Ti

m
e

(u
s)

13
1.

7

11
6.

5

15
2.

1

28
7.

9

55
1.

3

12
49

.5

30
81

.7

73
41

.8

14
55

4.
6

27
20

1.
1

53
80

2.
7

10
78

26
.1

20
69

95
.8

M
sg

 S
z

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

YHCCL
nt-copy
Memmove

(a) NodeA, p=64, 𝐼𝑚𝑎𝑥 =256KB

Ti
m

e
(u

s)

16
3.

4

18
8.

3

23
3.

5

34
9.

2

74
3.

0

19
09

.9

37
45

.3

69
87

.6

13
87

9.
1

25
70

0.
4

51
07

1.
3

99
76

3.
6

17
29

01
.0

M
sg

 S
z

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

YHCCL
t-copy
nt-copy
Memmove

(b) NodeB, p=48, 𝐼𝑚𝑎𝑥 =128KB

Figure 12: Evaluate adaptive all-reduce with adaptive-copy.

Ti
m

e
(u

s)

22
.1

38
.4

60
.1

13
5.

4

28
7.

7

57
6.

6

14
06

.3

30
22

.5

61
67

.7

12
68

0.
7

25
53

6.
0

54
30

6.
0

10
60

75
.2

M
sg

 S
z

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

2

4

6

8

10

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

YHCCL
t-copy
nt-copy
Memmove

(a) NodeA, p=64, 𝐼𝑚𝑎𝑥 =1MB

Ti
m

e
(u

s)

10
.7

18
.6

35
.5

68
.0

12
6.

0

18
4.

3

46
2.

4

10
69

.5

20
71

.6

39
63

.9

77
61

.6

15
48

6.
1

31
86

6.
5

61
58

3.
9

12
67

77
.5

M
sg

 S
z

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

1.0

1.2

1.4

1.6

1.8

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

YHCCL
t-copy
nt-copy

(b) NodeB, p=48, 𝐼𝑚𝑎𝑥 =1MB

Figure 13: Evaluate adaptive broadcast with adaptive-copy.

Ti
m

e
(u

s)

13
4.

0

27
0.

1

55
9.

2

17
58

.2

35
02

.6

70
34

.9

14
01

3.
4

28
01

2.
5

52
19

4.
7

10
39

09
.4

21
78

04
.7

M
sg

 S
z

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

1.0

1.2

1.4

1.6

1.8

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

YHCCL
t-copy
nt-copy
Memmove

(a) NodeA, p=64, 𝐼𝑚𝑎𝑥 =1MB

Ti
m

e
(u

s)

13
0.

1

26
6.

1

77
5.

2

16
31

.4

31
94

.6

62
99

.2

12
48

6.
9

24
87

6.
7

49
71

4.
7

99
35

5.
2

19
87

69
.1

M
sg

 S
z

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

YHCCL
t-copy
nt-copy
Memmove

(b) NodeB, p=48, 𝐼𝑚𝑎𝑥 =1MB

Figure 14: Evaluate adaptive all-gather with adaptive-copy.

To summarize, YHCCL outperforms other collectives onmemory-

intensive cases. This is mainly because YHCCL can eliminate re-

dundant data copies and avoid inter-NUMA memory accesses.

5.4 Evaluating Adaptive Collectives

Figure 12 shows the relative time overhead of the optimized socket-

aware MA all-reduce (YHCCL) compared to other implementations.

Comparing with nt-copy, we observe that t-copy performs better on

small messages when the cache is sufficient for collective operations.

These are small messages that can be entirely cached, but nt-copy

guides the cache line to bewritten back to thememory for each store

operation, incurring unnecessary overhead. But for large messages,

there will be a cache capacity miss. In this case, nt-copy performs

better. This is because it writes the data directly tomemory, avoiding

wasting memory bandwidth on cache loading and dirty data write-

back. On one hand, YHCCL is consistent with the t-copy for small

messages, because YHCCL uses t-copy when the work data set is

small. One the other hand, YHCCL performs better than t-copy and

nt-copy on large messages, because YHCCL can properly identify

the case to use the NT store for copy-ins and copy-outs.

Thememmove with threshold based on copy size performs worse

than nt-copy for large messages because it cannot capture the

memory access patterns of pipelined collectives. Our results show

that YHCCL performs better than memmove for large messages on

NodeA and NodeB. When it comes to the data access bandwidth,

the socket-aware all-reduce has a DAV of 𝑠 · (5 · 𝑝 + 2 ·𝑚 − 3). Thus

formemmove at 256MBmessage on NodeA and NodeB, the original

socket-aware MA all-reduce has a DAB of 314.7 and 281.8 GB/s.

After enabling the adaptive NT stores, the DAB is improved to 416.2

and 374.7 GB/s. Although pipelined collectives with memmove can

switch between temporal and non-temporal instructions, the mem-

move only utilizes the information of copy data size. As a result, our

adaptive design outperforms memmove and other implementations.

YHCCL switches from t-copy to nt-copy when𝑊 > 𝐶 and non-

temporal flag 𝑡 == 1 (shown in Algorithm 1 and 2). For socket-

aware MA all-reduce, the work data set𝑊 = 2 · 𝑠 · 𝑝 +𝑚 · 𝑝 · 𝐼𝑚𝑎𝑥 .

After solving 𝑊 > 𝐶 , we get 𝑠 >
𝐶−𝑚 ·𝑝 ·𝐼𝑚𝑎𝑥

2·𝑝 . For NodeA and

NodeB with non-inclusive L3 cache capacity 256MB and 66MB

and with a private L2 cache of 0.5MB and 1MB per core, we get

𝐶 = 𝑐′ + 𝑝 · 𝑐′′ = 294912/116736 KB, and
𝐶−𝑚 ·𝑝 ·𝐼𝑚𝑎𝑥

2·𝑝 =2176/1152

KB. That is, on NodeA/NodeB, when the message size is larger than

2176/1152KB, YHCCL starts to use nt-copy for non-temporal data.

We see that there are improvements of YHCCL compared to t-copy

starting from 2MB on NodeA and 1MB on NodeB in Figure 12. Thus,

YHCCL identifies the right time to switch to the NT store.

Figure 13 and Figure 14 show the relative timer overhead of

adaptive pipelined broadcast/all-gather (YHCCL) compared to t-

copy, nt-copy, and memmove. For all-gather in Figure 14, the start

size is 8KB-8MB, and the aggregated data size is 𝑝 times larger.

YHCCL outperforms memmove significantly because broadcast and

all-gather have no computation. For small messages, nt-copy does

not offer advantages, and for large messages, t-copy is not beneficial.

YHCCL outperforms them in both cases due to the appropriate

NT switching. Compared with the current implementation with

memmove, YHCCL performs better for large messages via adaptive

NT store, while the current memmove-based implementation failed

to identify the cases to use NT instruction.

5.5 Comparing YHCCLWith State-of-the-arts

Single node performance. Figure 15 compares YHCCLwith other

state-of-the-art collectives, including DPML [13], RG [34], MVA-

PICH2 2.3.7 [7], Intel ONEAPI 2022 [5], Open MPI 4.1.1 [8], MPICH

4.1 [6], and Hashmi’s XPMEM-based collectives [30, 31]. To simu-

late the application’s behavior, we update the sending and receiving

buffers before each iteration. Thus, some collectives with kernel

modules may not benefit from the local cache. For unbalanced col-

lectives (reduce and broadcast), we show the maximum overhead

of processes instead of the average because some processes of tree-

based collectives finish the collective quickly; they will amortize

the slowest overhead. Open MPI and Intel MPI has configured with

CMA [54] module, while MVAPICH2 is configured with socket-

aware collective optimization [3].

We see that the reduce-scatter, reduce, all-reduce, broadcast, and

all-gather have an average speedup of 1.9-5.0x, 2.0-6.4x, 1.4-5.2x,

1.4-4.5x, and 1.2-2.2x, compared to state-of-the-arts over various

Jintao Peng1 , Jianbin Fang1,∗ , Jie Liu1 , Min Xie1 , Yi Dai1 , Bo Yang1 , Shengguo Li1 , Zheng Wang2
Ti

m
e

(u
s)

28
.9

44
.9

74
.2

13
6.

8

36
4.

1

49
3.

4

25
8.

8

46
2.

2

15
31

.4

40
79

.1

70
88

.0

13
10

9.
1

24
89

8.
9

49
35

4.
7

97
16

8.
9

M
sg

 S
z

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Re
la

tiv
e

Ti
m

e
Ov

er
he

ad

YHCCL
DPML
Intel MPI
MVAPICH2
MPICH
Open MPI
XPMEM

(a) Reduce-scatter, p=64
Ti

m
e

(u
s)

26
.4

45
.2

75
.8

12
1.

7

14
0.

5

16
7.

8

25
0.

9

46
5.

3

14
91

.3

41
88

.3

73
19

.0

14
68

3.
4

25
85

7.
4

51
55

7.
4

10
02

70
.2

M
sg

 S
z

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

2.5

5.0

7.5

10.0

12.5

15.0

17.5 YHCCL
RG
Intel MPI
MVAPICH2
MPICH
Open MPI
XPMEM

(b) Reduce, p=64

Ti
m

e
(u

s)

36
.8

53
.2

93
.1

15
5.

2

21
4.

4

32
4.

4

57
2.

4

13
79

.6

36
34

.5

82
11

.5

15
55

4.
6

28
64

9.
8

56
37

4.
9

11
03

06
.6

21
87

60
.7

M
sg

 S
z

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

2

4

6

8

YHCCL
DPML
RG
Intel MPI
MVAPICH2
MPICH
Open MPI
XPMEM

(c) All-reduce, p=64

Ti
m

e
(u

s)

11
.1

15
.0

35
.1

75
.5

90
.5

19
2.

8

40
1.

6

79
9.

1

17
24

.9

36
06

.8

74
29

.3

15
33

0.
7

31
60

4.
5

64
08

2.
9

12
14

58
.1

M
sg

 S
z

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

1

2

3

4

5

6 YHCCL
Intel MPI
MVAPICH2
MPICH
Open MPI
XPMEM

(d) Broadcast, p=64

Ti
m

e
(u

s)

15
4.

9

31
2.

8

62
6.

0

19
19

.1

38
33

.2

81
65

.6

15
33

4.
2

30
82

8.
2

61
76

4.
9

12
38

24
.8

24
92

49
.5

M
sg

 S
z

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
YHCCL
Intel MPI
MVAPICH2
MPICH
Open MPI
XPMEM

(e) All-gather, p=64

Figure 15: Performance comparison between redesigned collectives and state-of-the-arts.

message sizes. These improvements are from the movement-avoid

reduction design and the usage of adaptive copies. For reduction col-

lectives (reduce, reduce-scatter, and all-reduce), Hashmi’s XPMEM-

based reduction [30] directly accesses remote data, which causes

inter-NUMA memory access on large messages. On smaller mes-

sages, it directly referent remote memory of other processes and

thus causes inter-socket access in the real application. Other shared

memory reductions and send-/recv- based reductions have a larger

DAV than MA reduction. For collectives with significant data stor-

ing (all-reduce, broadcast, and all-gather), the RFO overhead and

cache write-back downgrade their performance. As evidence, for

messages larger than 128 MB, we see the performance of Hashmi’s

all-reduce has improved due to the slice size of copy 𝑠
𝑝 = 2 MB

being larger than the threshold of memmove (2 MB). Similarly, for

broadcast and all-gather, Hashmi’s XPMEM-based algorithm is free

from the RFO and cache write-back overhead after 128/2 MB mes-

sage. Thus, after 128/2 MB, Hashmi’s XPMEM-based broadcast and

all-gather outperform YHCCL.

Single node scalability.We take all-reduce as an example because

all-reduce utilizes all optimizations. Figure 16a shows the scalability

of YHCCL on a single node, where YHCCL all-reduce uses MA

reduction with a 128 KB slice. It exceeds the other designs after 8

processes due to the lowest copy among shared memory algorithms;

it avoids inter-NUMA memory access and has an adaptive non-

temporal store. MA all-reduce has a DAV of 𝑠 · (5 · 𝑝 − 1), while

Hashmi’s XPMEM-based all-reduce is 5·𝑠 ·(𝑝−1). As a result, the gap

in DAV becomes more apparent as 𝑝 becomes smaller. This causes

Hashmi’s algorithm to perform better on two and four processes.

Compared to the all-reduce implementation of DPML, RG, Intel

MPI, MVAPICH2, MPICH, Open MPI, Hashmi’s XPMEM, YHCCL

has a maximum speedup of 2.5x, 2.6x, 2.8x, 2.8x, 10.1x, 4.5x, 1.5x.

Multi-node performance evaluation. For all-reduce, Figure 16

shows the comparison between YHCCL and other MPI implemen-

tations on the system of NodeA. All these MPI implementations are

configured carefully to have their best performance on the Infini-

Band networks [1ś4]. The OMPI-holl is the Open MPI with Hcoll

collective library [4], which is optimized for the InfiniBand net-

work. We implement a hierarchical approach by first applying the

proposed reduce-scatter within a node, then ring all-reduce across

multiple nodes before performing all-gather within a node. Com-

pared to other implementations, we see that YHCCL has a 1.4-8.8x

speedup on large messages compared to other designs when using

1024 processes. On small messages, MVAPICH2 and OpenMPI-hcoll

use tree-based implementations, which have advantages over the

ring-based strategy used by YHCCL on small messages. This is

because YHCCL not only has advantages within the node but also

2 4 8 16 32 64

104

105

106

Ti
m

e
ov

er
he

ad
 (m

s)

YHCCL
DPML
RG
Intel MPI

MVAPICH2
MPICH
Open MPI
Hashmi's XPMEM

(a) Single node scalability

Ti
m

e
(u

s)

91
4.

2

97
0.

6

10
00

.4

10
45

.0

10
95

.1

12
14

.6

15
64

.9

28
06

.5

62
95

.0

12
02

1.
7

24
07

4.
4

45
06

4.
7

75
61

4.
7

14
78

57
.5

29
84

69
.9

M
sg

 S
z

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

0

2

4

6

8

Sp
ee

du
p

YHCCL
Intel MPI
MVAPICH2
MPICH
OMPI-hcoll

(b) Multi-node performance

Figure 16: Large-scale performance evaluation of all-reduce.

1 2 4 8 16 32 64
Node Number

0

200

400

To
ta

l T
im

e
(s

)
37.7 49 72.9 116.7

187.8

300.5

480.8

22.5 39.4 58.4 92.4 129.7

243.3

380.6Open MPI YHCCL

Figure 17: Time overhead of Mini-AMR on multiple node

with 64 processes for each node (smaller is better).

uses multiple processes to communicate simultaneously between

nodes to saturate the network [52].

5.6 Evaluating YHCCL on Real Applications

We have implemented our techniques as an Open MPI component,

without having to modify users’ codes. This section shows the

all-reduce performance with two real applications.

Mesh Refinement (AMR) Application. On NodeA, we compare

the performance between the original Open MPI and YHCCL with

Adaptive Mesh Refinement Mini-App (Mini-AMR). Mini-AMR is

a 3D stencil calculation with Adaptive Mesh Refinement. It is one

of the Exascale Computing Project (ECP) Proxy applications. All-

reduce is frequently used in Mini-AMR, and the message length

is proportional to the number of refines. We use 1 to 64 nodes on

the cluster of NodeA and set refine times to 40000. The results

are shown in Figure 17. YHCCL reduces the execution time of

Mini-AMR by 1.26x-1.67x over different processes compared to the

default settings of Open MPI based on CMA kernel modules.

Despite being kernel-assisted, the CMA copy technique per-

forms data copying on a per-page basis and lacks the utilization

of non-temporal instructions for efficient large data transfer, as

reported by Linux sources [12]. Table 5 presents a comparison be-

tween the DMA copy (process_vm_readv) and the adaptive-copy

method for two copy patterns involving 32 MB data per mes-

sage. The sending buffers are allocated in shared memory using

MPI_Win_allocate_shared, while the receiving buffers are allocated

in private space. In both the one-to-all and ring copy scenarios,

Optimizing MPI Collectives on Shared Memory Multi-Cores

Table 5: CMA copy compared to adaptive-copy (second).

Pattern DMA copy adaptive-copy

One-to-all: rank 0 to rank 𝑖 0.061 0.014

Ring: rank 𝑖 to rank (𝑖 + 1)%𝑝 0.027 0.017

1

8

64

512

4096

1 2 4 8 16 32 64 128 256

Im
g

/S
e

co
n

d

Node Number

Open MPI

YHCCL ①

②
(a) Resnet 50

1

4

16

64

256

1 2 4 8 16 32 64 128 256

Im
g

/S
e

co
n

d

Node Number

Open MPI

YHCCL

①

②
(b) VGG-16

Figure 18: Evaluating DNN training with 1 to 256 nodes on

Cluster C (with 24 processes per node, larger is better).

the adaptive-copy method exhibits significantly improved perfor-

mance compared to the CMA copy technique, achieving speedups

of 4.35x and 1.58x, respectively. These results indicate that the cur-

rent CMA mechanism suffers from excessive cache load during

storage operations. Furthermore, the one-to-all copy case using

CMA demonstrates slower performance compared to the ring copy

cases. This discrepancy arises from the lock contention that occurs

when multiple processes access the same pages [17].

Convolutional Neural Network (CNN) Training. CNN training

consists of forwarding propagation, backward propagation, and

parameter update [35]. The parameter update stage is implemented

by a characteristic optimizer such as SGD [61]. Data parallelism is

a popular way of distributed training. Each worker has a copy of

the model and processes a portion of the dataset. In the parameter

update, the large message all-reduce is frequently used. We mea-

sure the performance of 2 different CNNmodels, i.e., Resnet-50 [49]

with 25.6M parameters, and VGG-16 [20] with 138.4M parame-

ters. Figure 18 shows the results. The improvement of proposed

designs compared to the original Open MPI on 6144 cores is 1.94x

(Resnet-50) and 1.80x (VGG-16). Due to the relatively weaker CPU,

the computation dominates the end-to-end execution time on this

specific platform (Cluster C), and our optimization in hiding com-

munication with computation for inter-node all reduce. Thus the

figures show fixed improvement.

6 RELATED WORK

Our work explicitly targets MPI collective optimization on shared-

memory multi-core CPUs. There are three typical ways of imple-

menting collective operations on a shared memory node: sent and

received (recv), direct shared memory, and direct kernel-assisted

collectives.

Many mainstream MPI libraries (e.g., Open MPI [8], MPICH [6])

employ the send/recv paradigm for collective operations. In the

early iterations of these libraries, shared memory was harnessed

for the on-node send/recv operations, as demonstrated by designs

like the ring-based approach [45], Rabenseifner’s technique [50],

and node-conscious frameworks [15]. In this paradigm, for each

MPI_Send and MPI_Recv pair, the sending process duplicates the

data into a previously allocated sharedmemory space. Subsequently,

the receiving process engages in a pipelined procedure, transferring

the data to its designated buffer. This intricate process requires two

distinct data copies [29]. While the send/recv-driven MPI collec-

tives enhance portability and are easy to deploy, they often deliver

sub-optimal performance [8], leaving much room for performance

improvement.

To mitigate the issue of extensive data copies of share-memory

MPI sent/recv, kernelmodules like KNEM [27], CMA [54], LiMiC [36],

and XPMEM [56], are used to achieve łzero-copy" for send/recv.

For example, XPMEM is a kernel module that enables a process to

expose its virtual address to other processes, allowing user-level un-

limited data access and better performance on reduction collectives

than other kernel modules [30], which only support kernel-level

single-copy. Nonetheless, these kernel modules are required to col-

lect all physical pages of the user buffer, which causes system over-

head. Further, deploying such modules requires extra effort from

the administrator and is not always available on target systems [34].

For instance, in a multi-tenant HPC system, administrators could

have security concerns when installing external kernels [19], where

some kernels lack security checks [27]. We also note that some ker-

nel solutions fail to capture the cross-socket memory accesses.

In contrastive to sent/recv and kernel-based solutions, direct

shared memory reduction [13, 34] creates a global shared memory

for caching intermediate results. This technique is implemented

using POSIX or SYSTEM V shared memory but incurs redundant

copy-in overhead. Some prior studies leverageNUMA/Cache/socket

information for optimizing collectives [34, 40, 42, 57, 60]. Hybrid

MPI [40] uses threads to simulate processes to implement MPI

and achieves direct data access between processes, but there are

engineering challenges in real-world applications. Therefore, the

shared heap [23, 39, 41, 56] is proposed to preallocate a large sec-

tion of shared memory and reimplement the malloc to allocate data

in shared memory. By using the buffers in the shared heap, MPI

can directly copy data between processes. Besides this, Ownership

Passing Interface [24] also achieves direct copy through preallo-

cated shared memory and ownership passing. In this case, If the

user uses MPI_Win_allocate_shared to allocate memory mapped

from IPC, this essentially implements a łzero-copyž mechanism.

For this, our first optimization of MA reduction won’t provide addi-

tional benefits. However, our other optimizations of NUMA-aware

communications and cache store optimization are still applicable.

Additionally, cache-oblivious algorithms [41] have been proposed

to improve the locality of collectives. But these collective designs

do not consider the cache load and dirty data write-back overhead

of storing instructions, which can degrade memory access perfor-

mance. Different from the prior studies, our work focuses on the

shared-memory collectives to address the issues of redundant data

movements and inefficient usage of NT stores.

7 CONCLUSION

We have presented YHCCL, an optimized collective communica-

tion library for MPI programs, explicitly targeting shared memory

multi-cores. The fundamental driving force behind the creation of

YHCCL was the recognition of the redundant data transfers inher-

ent in MPI reduction operations within shared memory contexts.

Moreover, prevalent pipelined collective operations suffered sub-

stantial overheads for cache load and data write-back inefficiencies

Jintao Peng1 , Jianbin Fang1,∗ , Jie Liu1 , Min Xie1 , Yi Dai1 , Bo Yang1 , Shengguo Li1 , Zheng Wang2

during memory accesses. To overcome these hurdles, YHCCL intro-

duces a novel reduction algorithm that minimizes data duplication

and an adaptive approach for using non-temporal instructions to

optimize cache performance for pipelined collective tasks.

We have implemented a working prototype of YHCCL and in-

tegrated it with the OpenMPI framework. YHCCL operates as a

user-mode library, removing the need for privileged system access.

We evaluate YHCCL across two multi-core clusters with 64 and

48 cores per node. Experimental results show YHCCL’s consider-

able performance enhancements over state-of-the-art collective

implementations, with improvements ranging from 1.2x to 6.4x on

large messages. Moreover, when applying to real-world workloads,

YHCCL yields speedups range from 1.3x to 2.0x.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive feedback.

This work was supported in part by the National Key Research and

Development Program of China under Grant No. 2021YFB0300101

and the National Natural Science Foundation of China under Grant

No. 61972408. For the purpose of open access, the author has applied

a Creative Commons Attribution (CCBY) licence to any Author

Accepted Manuscript version arising from this submission.

REFERENCES
[1] [n. d.]. Build OpenMPI with UCX. https://openucx.readthedocs.io/en/master/

running.html
[2] [n. d.]. Improve Performance and Stability with Intel® MPI Library on

InfiniBand. https://www.intel.com/content/www/us/en/developer/articles/
technical/improve-performance-and-stability-with-intel-mpi-library-on-
infiniband.html

[3] [n. d.]. MVAPICH2 2.3.7 User Guide. http://mvapich.cse.ohio-state.edu/static/
media/mvapich/mvapich2-userguide.pdf

[4] [n. d.]. NVIDIA: Enabling HCOLL in Open MPI. https://docs.nvidia.com/
networking/display/HPCXv29/HCOLL

[5] 2023-01-02. Intel MPI. https://www.intel.com/content/www/us/en/developer/
tools/oneapi/mpi-library.html

[6] 2023-01-02. MPICH. https://www.mpich.org/
[7] 2023-01-02. MVAPICH Home. https://mvapich.cse.ohio-state.edu
[8] 2023-01-02. Open MPI. https://www.open-mpi.org/
[9] 2023-01-02. OSU Micro-Benchmarks. https://mvapich.cse.ohio-state.edu/

benchmarks/
[10] 2023-03-14. Intel® 64 and IA-32 Architectures Software Developer Manu-

als. https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html

[11] 2023-03-14. Intel® Xeon® Scalable Processor: The Foundation of Data Centre In-
novation. https://simplecore-ger.intel.com/swdevcon-uk/wp-content/uploads/
sites/5/2017/10/UK-Dev-Con_Toby-Smith-Track-A_1000.pdf

[12] 2023-y-02. Linux kernel v6.4.2. https://elixir.bootlin.com/linux/latest/source/
mm/process_vm_access.c

[13] Mohammadreza Bayatpour, Sourav Chakraborty, Hari Subramoni, Xiaoyi Lu, and
Dhabaleswar K Panda. 2017. Scalable reduction collectives with data partitioning-
based multi-leader design. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1ś11.

[14] Mohammadreza Bayatpour, Jahanzeb Maqbool Hashmi, Sourav Chakraborty,
Hari Subramoni, Pouya Kousha, and Dhabaleswar K Panda. 2018. Salar: Scal-
able and adaptive designs for large message reduction collectives. In 2018 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, 12ś23.

[15] Amanda Bienz, Luke Olson, andWilliamGropp. 2019. Node-aware improvements
to allreduce. In 2019 IEEE/ACMWorkshop on Exascale MPI (ExaMPI). IEEE, 19ś28.

[16] L. Chai, A. Hartono, and D. K. Panda. 2006. Designing High Performance and Scal-
able MPI Intra-node Communication Support for Clusters. In IEEE International
Conference on Cluster Computing.

[17] Sourav Chakraborty, Hari Subramoni, and Dhabaleswar K Panda. 2017.
Contention-aware kernel-assisted MPI collectives for multi-/many-core sys-
tems. In 2017 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 13ś24.

[18] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and Kalyan Kumaran.
2018. Characterization of mpi usage on a production supercomputer. In SC18:

International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 386ś400.

[19] Sylvain Didelot et al. 2014. Improving MPI communication overlap with collabo-
rative polling. Computing 96, 4 (2014), 263ś278.

[20] Abhishek Dutta, Ankush Gupta, and Andrew Zissermann. 2016. VGG image
annotator (VIA). URL: http://www. robots. ox. ac. uk/vgg/software/via 2 (2016).

[21] Jianbin Fang, Chun Huang, Tao Tang, and Zheng Wang. 2020. Parallel program-
ming models for heterogeneous many-cores: a comprehensive survey. CCF Trans.
High Perform. Comput. 2, 4 (2020), 382ś400. https://doi.org/10.1007/s42514-020-
00039-4

[22] Jianbin Fang, Xiangke Liao, Chun Huang, and Dezun Dong. 2021. Performance
Evaluation of Memory-Centric ARMv8 Many-Core Architectures: A Case Study
with Phytium 2000+. J. Comput. Sci. Technol. 36, 1 (2021), 33ś43. https://doi.org/
10.1007/s11390-020-0741-6

[23] Andrew Friedley, Greg Bronevetsky, Torsten Hoefler, and Andrew Lumsdaine.
2013. HybridMPI: efficientmessage passing formulti-core systems. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. 1ś11.

[24] Andrew Friedley, Torsten Hoefler, Greg Bronevetsky, Andrew Lumsdaine, and
Ching-Chen Ma. 2013. Ownership passing: Efficient distributed memory pro-
gramming on multi-core systems. ACM SIGPLAN Notices 48, 8 (2013), 177ś186.

[25] Juan Antonio Rico Gallego. 2016. t-Lop: Scalably and accurately modeling
contention and mapping effects in multi-corec clusters. (2016).

[26] Sabela Ramos Garea and Torsten Hoefler. 2013. Modelling communications in
cache coherent systems. Technical Report (2013).

[27] Brice Goglin and Stephanie Moreaud. 2013. KNEM: A generic and scalable
kernel-assisted intra-nodeMPI communication framework. J. Parallel and Distrib.
Comput. 73, 2 (2013), 176ś188.

[28] Richard L Graham and Galen Shipman. 2008. MPI support for multi-core archi-
tectures: Optimized shared memory collectives. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface: 15th European PVM/MPI Users’
Group Meeting, Dublin, Ireland, September 7-10, 2008. Proceedings 15. Springer,
130ś140.

[29] William Gropp. 2002. MPICH2: A new start for MPI implementations. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface: 9th Euro-
pean PVM/MPI Users’ Group Meeting Linz, Austria, September 29–Oktober 2, 2002
Proceedings 9. Springer, 7ś7.

[30] Jahanzeb Maqbool Hashmi, Sourav Chakraborty, Mohammadreza Bayatpour,
Hari Subramoni, and Dhabaleswar K Panda. 2018. Designing efficient shared
address space reduction collectives for multi-/many-cores. In 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE, 1020ś1029.

[31] Jahanzeb Maqbool Hashmi, Sourav Chakraborty, Mohammadreza Bayatpour,
Hari Subramoni, and Dhabaleswar K Panda. 2019. Design and characteriza-
tion of shared address space mpi collectives on modern architectures. In 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 410ś419.

[32] John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. Elsevier.

[33] Johannes Hofmann, Dietmar Fey, Jan Eitzinger, Georg Hager, and Gerhard
Wellein. 2016. Analysis of intel’s haswell microarchitecture using the ecm model
and microbenchmarks. In International conference on architecture of computing
systems. Springer, 210ś222.

[34] Surabhi Jain, Rashid Kaleem, Marc Gamell Balmana, Akhil Langer, Dmitry
Durnov, Alexander Sannikov, and Maria Garzaran. 2018. Framework for scalable
intra-node collective operations using shared memory. In SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 374ś385.

[35] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A unified architecture for accelerating distributed DNN training in het-
erogeneous GPU/CPU clusters. In Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation. 463ś479.

[36] H-W Jin, Sayantan Sur, Lei Chai, and Dhabaleswar K Panda. 2005. Limic: Support
for high-performance mpi intra-node communication on linux cluster. In 2005
International Conference on Parallel Processing (ICPP’05). IEEE, 184ś191.

[37] Norman P Jouppi. 1993. Cache write policies and performance. ACM SIGARCH
Computer Architecture News 21, 2 (1993), 191ś201.

[38] Giorgos Kappes and Stergios V Anastasiadis. 2021. Asterope: A Cross-Platform
Optimization Method for Fast Memory Copy. In Proceedings of the 11th Workshop
on Programming Languages and Operating Systems. 9ś16.

[39] Shigang Li, Torsten Hoefler, Chungjin Hu, and Marc Snir. 2014. Improved MPI
collectives for MPI processes in shared address spaces. Cluster computing 17, 4
(2014), 1139ś1155.

[40] Shigang Li, Torsten Hoefler, and Marc Snir. 2013. NUMA-aware shared-memory
collective communication for MPI. In Proceedings of the 22nd international sym-
posium on High-performance parallel and distributed computing. 85ś96.

[41] Shigang Li, Yunquan Zhang, and Torsten Hoefler. 2017. Cache-oblivious MPI
all-to-all communications based on Morton order. IEEE Transactions on Parallel
and Distributed Systems 29, 3 (2017), 542ś555.

Optimizing MPI Collectives on Shared Memory Multi-Cores

[42] Amith R Mamidala, Rahul Kumar, Debraj De, and Dhabaleswar K Panda. 2008.
MPI collectives on modern multicore clusters: Performance optimizations and
communication characteristics. In 2008 Eighth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID). IEEE, 130ś137.

[43] Amith R Mamidala, Abhinav Vishnu, and Dhabaleswar K Panda. 2006. Efficient
shared memory and RDMA based design for mpi_allgather over InfiniBand. In
Recent Advances in Parallel Virtual Machine and Message Passing Interface: 13th
European PVM/MPI User’s Group Meeting Bonn, Germany, September 17-20, 2006
Proceedings 13. Springer, 66ś75.

[44] Benjamin S Parsons. 2015. Accelerating MPI collective communications through
hierarchical algorithms with flexible inter-node communication and imbalance
awareness. (2015).

[45] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms
for clusters of workstations. J. Parallel and Distrib. Comput. 69, 2 (2009), 117ś124.

[46] Silvius Rus, Raksit Ashok, and David Xinliang Li. 2011. Automated locality
optimization based on the reuse distance of string operations. In International
Symposium on Code Generation and Optimization (CGO 2011). IEEE, 181ś190.

[47] Andreas Sandberg, David Eklöv, and Erik Hagersten. 2010. Reducing cache
pollution through detection and elimination of non-temporal memory accesses.
In SC’10: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1ś11.

[48] Holger Stengel, Jan Treibig, GeorgHager, and GerhardWellein. 2015. Quantifying
performance bottlenecks of stencil computations using the execution-cache-
memory model. In Proceedings of the 29th ACM on International Conference on
Supercomputing. 207ś216.

[49] Sasha Targ, Diogo Almeida, and Kevin Lyman. 2016. Resnet in resnet: Generaliz-
ing residual architectures. arXiv preprint arXiv:1603.08029 (2016).

[50] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
collective communication operations in MPICH. The International Journal of
High Performance Computing Applications 19, 1 (2005), 49ś66.

[51] Vinod Tipparaju, Jarek Nieplocha, and Dhabaleswar Panda. 2003. Fast collective
operations using shared and remote memory access protocols on clusters. In
Proceedings International Parallel and Distributed Processing Symposium. IEEE,
10śpp.

[52] Jesper Larsson Träff and Sascha Hunold. 2020. Decomposing MPI collectives for
exploiting multi-lane communication. In 2020 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 270ś280.

[53] Markus Velten, Robert Schöne, Thomas Ilsche, and Daniel Hackenberg. 2022.
Memory Performance of AMD EPYC Rome and Intel Cascade Lake SP Server
Processors. In Proceedings of the 2022 ACM/SPEC on International Conference on
Performance Engineering. 165ś175.

[54] Jerome Vienne. 2014. Benefits of cross memory attach for mpi libraries on hpc
clusters. In Proceedings of the 2014 Annual Conference on Extreme Science and
Engineering Discovery Environment. 1ś6.

[55] Markus Wittmann, Thomas Zeiser, Georg Hager, and Gerhard Wellein. 2013.
Comparison of different propagation steps for lattice Boltzmann methods. Com-
puters & Mathematics with Applications 65, 6 (2013), 924ś935.

[56] Michael Woodacre, Derek Robb, Dean Roe, and Karl Feind. 2005. The SGI®
AltixTM 3000 global shared-memory architecture. Silicon Graphics, Inc 44 (2005).

[57] Meng-Shiou Wu, Ricky A Kendall, and Kyle Wright. 2005. Optimizing collective
communications on SMP clusters. In 2005 International Conference on Parallel
Processing (ICPP’05). IEEE, 399ś407.

[58] Charlene Yang. 2020. Hierarchical Roofline Analysis: How to Collect Data using
Performance Tools on Intel CPUs and NVIDIA GPUs. CoRR abs/2009.02449
(2020). arXiv:2009.02449 https://arxiv.org/abs/2009.02449

[59] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang, Parthasarathy Ran-
ganathan, Norman P Jouppi, and Mattan Erez. 2011. FREE-p: Protecting non-
volatile memory against both hard and soft errors. In 2011 IEEE 17th International
Symposium on High Performance Computer Architecture. IEEE, 466ś477.

[60] Jie Zhang, Xiaoyi Lu, and Dhabaleswar K Panda. 2017. Designing locality and
NUMA aware MPI runtime for nested virtualization based HPC cloud with
SR-IOV enabled InfiniBand. In Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. 187ś200.

[61] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. 2010. Parallelized
stochastic gradient descent. Advances in neural information processing systems
23 (2010).

A ARTIFACT DOI

https://zenodo.org/record/8200161

B ABSTRACT

This artifact illustrates the procedure to reproduce the experimen-

tal results presented in the "Optimizing MPI Collectives on Shared
Memory Multi-Cores" paper. This paper presents YHCCL, a high-

performance collective communication library for shared memory

nodes. YHCCL can be integrated into Open MPI as a component of

the MCA coll framework. It can also run independently based on

other MPI implementations by PMPI. Both methods are binary com-

patible for applications. The following parts provide instructions

for the library deployment and experiment evaluation.

C REPRODUCIBILITY OF EXPERIMENTS

Running the experiment workflow (including deployment and eval-

uation) may take about four hours.

C.1 Environment

Hardware Requirement: CPU with non-temporal load/store instruc-

tions. like the system listed in Section 6 (AMD EPYC 7452, Intel

Xeon Platinum 8163 or Intel Xeon E5-2692 v2). Software Require-

ment: CentOS Linux release 7.6, GCC-10.2.0, UCX 1.8.0 (optional),

Open MPI 4.1.3, OSU MPI benchmark, Pytorch 1.10+torchvision,

Horovod 0.20.1.

C.2 Deployment Workflow

S0: Download YHCCL source code from https://github.com/

pengjintao/yh-ccl

S1: Download the Open MPI 4.1.3 source code

S2: Copy yhccl into directory openmpi-4.1.3/ompi/mca/coll.

The directory name must be yhccl.

S3: Go back to openmpi-4.1.3 and run "./autogen.pl śforce"

S4: ./configure śprefix=ompi-build-dir śenable-mpi-cxx CFLAGS=-

O3 CXXFLAGS="-O3 -fpermissive -std=c++11" śenable-

mpi1-compatibility

S5: make -j 16 & make install

S6: Use the following environment variable settings: dir=ompi-

build-dir

C_INCLUDE_PATH=$C_INCLUDE_PATH:$dir/include

CPLUS_INCLUDE_PATH=$C_INCLUDE_PATH:$dir/include

PATH=$dir/bin:$PATH

LD_LIBRARY_PATH=$dir/lib:$LD_LIBRARY_PATH

S7: Check whether the building is successful: which mpicc &

ompi_info

S8: Check lscpu, and make sure the process-core binding is in

the right order.

S9: Building OSUMPI Benchmark with " ./configure CC=mpicc

CXX=mpicxx & make -j16".

C.3 Micro-benchmark Workflow

This section introduces the same evaluation steps as the paper,

which include microbenchmark, MA reduction, adaptive NT store,

and application evaluations. For benchmark evaluation, the com-

peting baselines include:

0: Intel MPI 2021.6:

1: MPICH 3.1.4: https://www.mpich.org/

2: Open MPI 4.1.3: https://www.open-mpi.org/

3: MVAPICH 2.3.7: http://mvapich.cse.ohio-state.edu/downloads/

4: DPML: https://dl.acm.org/doi/abs/10.1145/3126908.3126954

5: RG: https://ieeexplore.ieee.org/abstract/document/8665755

6: XPMEMall-reduce: https://ieeexplore.ieee.org/abstract/document/

8425255

Jintao Peng1 , Jianbin Fang1,∗ , Jie Liu1 , Min Xie1 , Yi Dai1 , Bo Yang1 , Shengguo Li1 , Zheng Wang2

We take all-reduce as an example and run it with 64 processes

on a node. We use a similar experiment flow for other collective

operations.

S0: Enable yhccl: export OMPI_MCA_coll_yhccl_priority=100

S1: Disable yhccl: export OMPI_MCA_coll_yhccl_priority=0

S2: Verification Test: mpiexec -n 64 ./osu_allreduce -c -m 65536:

268435456

S3: Performance evaluation compared with original Open MPI,

and other collective implementations

Disable yhccl andmpiexec -n 64 ./osu_allreduce -c -m 65536:

268435456

Enable YHCCL and mpiexec -n 64 ./osu_allreduce -c -m

65536:268435456

Expected results:We see that the YHCCL has 2.38x,1.40x,1.83x,1.73x,

5.21x, 4.60x, and 2.00x speedup on geometry average compared to

DPML, RG reduction, Intel MPI 2021.6, MVAPICH2 2.3.7, MPICH

3.1.4, Open MPI 4.1.3, Hashmi’s XPMEM on 64-256KB (as shown in

Figure 15c).

C.4 Evaluating MA reduction & Adaptive-NT
store

S0: Modify the yhccl_allreduce.cc, find the function yhccl_allreduce,

change option variable mulit_leader_algorithm to choose

different reduction algorithms to evaluate.

S1: Modify option variable using_non_temporal to choosewhether

to use memmove or adaptive-copy.

S2: Run themicrobenchmark in the directory "test/allreduce.cc".

Expected results:TheMA reduction algorithmhas 1.50x,2.20x,2.08x,

and 2.37x speedup compared to Ring, DPML, Intel RG, and Raben-

seifner all-reduce on 64-256KB (as shown in Figure 10a). This is

because MA reduction has a smaller copy-in overhead and accesses

only local NUMA and shared memory. The MA reduction with

adaptive-copy improves the performance by 28.89% at max (4MB

message, as shown in Figure 13a) compared to the one using mem-

move all-reduce message and has no loss on smaller messages. This

is because adaptive-copy can accurately switch between temporal

and non-temporal instructions.

C.5 CNN Application Evaluation

S0: Install Pytorch binary with "conda install pytorch torchvi-

sion torchaudio cpuonly -c pytorch"

S1: Install Horovod:

Setting up Open MPI with yhccl.

HOROVOD_WITH_PYTORCH=1

HOROVOD_WITH_MPI=1

pip install horovod

S2: Evaluate CNN training with Pytorch based on Horovod:

Enable/Disable yhccl and run pytorch_synthetic_benchmark.py

Expected results:When running CNN training on two Xeon

E5-2692v2 CPUs with 24 processes, YHCCL shows a 1.62x speedup

compared to the default Open MPI (as shown in Figure 18a). On

multiple nodes, the speedup is almost holding due to the limited

performance of the CPU system, and the inter-node communication

is overlapped with intra-node communication.

C.6 Mini AMR Application Evaluation

S0: InstallMini AMR fromhttps://github.com/Mantevo/miniAMR.git

S1: Run with srun -N 64 -n 4096 miniAMR.x śnum_refine 40000

śnum_tsteps 20 śrefine_freq 1 śnpx 16 śnpy 16 śnpz 16

Expected results: We set refine times to 40000 to get a large mes-

sage all-reduce which is the major overhead of the application. The

śnum_tsteps is the loop time. Finally, we see up to 1.67x speed in

application performance (as shown in Figure 17).

D OVERALL RESULTS

We show that YHCCL outperforms the competing baselines in most

test cases for both benchmark and application evaluations. But

in small messages (≤ 64 KB), YHCCL fails to achieve satisfying

performance.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Observations and Motivations
	2.3 YHCCL Overview

	3 Movement-avoiding Reduction Algorithms
	3.1 Sliced Reduction Problem
	3.2 Solving the Optimization Problem
	3.3 Movement-avoiding MPI Reduce-scatter
	3.4 Movement-avoiding MPI All-reduce
	3.5 Movement-avoiding MPI Reduce

	4 adaptive Collectives with Fine-grained Non-temporal Stores
	4.1 The Idea
	4.2 Modeling Adaptive NT Stores
	4.3 Adaptive Collective Implementations

	5 Performance Evaluation
	5.1 Implementation Details
	5.2 Experimental Setup
	5.3 Evaluating Movement-avoiding Collectives
	5.4 Evaluating Adaptive Collectives
	5.5 Comparing YHCCL With State-of-the-arts
	5.6 Evaluating YHCCL on Real Applications

	6 Related Work
	7 Conclusion
	References
	A ARTIFACT DOI
	B Abstract
	C REPRODUCIBILITY OF EXPERIMENTS
	C.1 Environment
	C.2 Deployment Workflow
	C.3 Micro-benchmark Workflow
	C.4 Evaluating MA reduction & Adaptive-NT store
	C.5 CNN Application Evaluation
	C.6 Mini AMR Application Evaluation

	D Overall Results

