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Abstract
Compiler-based auto-parallelization is a much studied area, yet has
still not found wide-spread application. This is largely due to the
poor exploitation of application parallelism, subsequently result-
ing in performance levels far below those which a skilled expert
programmer could achieve. We have identified two weaknessesin
traditional parallelizing compilers and propose a novel, integrated
approach, resulting in significant performance improvements of the
generated parallel code. Using profile-driven parallelismdetection
we overcome the limitations of static analysis, enabling usto iden-
tify more application parallelism and only rely on the user for fi-
nal approval. In addition, we replace the traditional target-specific
and inflexible mapping heuristics with a machine-learning based
prediction mechanism, resulting in better mapping decisions while
providing more scope for adaptation to different target architec-
tures. We have evaluated our parallelization strategy against the
NAS and SPEC OMP benchmarks and two different multi-core
platforms (dual quad-core Intel Xeon SMP and dual-socket QS20
Cell blade). We demonstrate that our approach not only yields sig-
nificant improvements when compared with state-of-the-artpar-
allelizing compilers, but comes close to and sometimes exceeds
the performance of manually parallelized codes. On average, our
methodology achieves 96% of the performance of the hand-tuned
OpenMP NAS and SPEC parallel benchmarks on the Intel Xeon
platform and gains a significant speedup for the IBM Cell platform,
demonstrating the potential of profile-guided and machine-learning
based parallelization for complex multi-core platforms.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.1.3 [Programming Techniques]:
Concurrent Programming—Parallel Programming

General Terms Experimentation, Languages, Measurement, Per-
formance

Keywords Auto-Parallelization, Profile-Driven Parallelism De-
tection, Machine-Learning Based Parallelism Mapping, OpenMP
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1. Introduction
Multi-core computing systems are widely seen as the most viable
means of delivering performance with increasing transistor densi-
ties (1). However, this potential cannot be realized unlessthe ap-
plication has been well parallelized. Unfortunately, efficient par-
allelization of a sequential program is a challenging and error-
prone task. It is generally agreed that manual code paralleliza-
tion by expert programmers results in the most streamlined parallel
implementation, but at the same time this is the most costly and
time-consuming approach. Parallelizing compiler technology, on
the other hand, has the potential to greatly reduce cost and time-to-
market while ensuring formal correctness of the resulting parallel
code.

Automatic parallelism extraction is certainly not a new research
area (2). Progress was achieved in 1980s to 1990s on restricted
DOALL and DOACROSSloops (3; 4; 5). In fact, this research
has resulted in a whole range of parallelizing research compil-
ers, e.g. Polaris (6), SUIF-1 (7) and, more recently, Open64(8).
Complementary to the on-going work in auto-parallelization many
high-level parallel programming languages – such as Cilk-5(9),
OpenMP, StreamIt (10), UPC (11) and X10 (12) – and program-
ming models – such as Galois (14), STAPL (15) and HTA (16) –
have been proposed. Interactive parallelization tools (17; 18; 19;
20) provide a way to actively involve the programmer in the detec-
tion and mapping of application parallelism, but still demand great
effort from the user. While these approaches make parallelism ex-
pression easier than in the past, the effort involved in discovering
and mapping parallelism is still far greater than that of writing an
equivalent sequential program.

This paper argues that the lack of success in auto-parallelization
has occurred for two reasons. First, traditional static parallelism de-
tection techniques are not effective in finding parallelismdue to
lack of information in the static source code. Second, no existing
integrated approach has successfully brought together automatic
parallelism discovery and portable mapping. Given that thenum-
ber and type of processors of a parallel system is likely to change
from one generation to the next, finding the right mapping foran
application may have to be repeated many times throughout anap-
plication’s lifetime, hence, making automatic approachesattractive.

Approach. Our approach integrates profile-driven parallelism de-
tection and machine-learning based mapping in a single frame-
work. We use profiling data to extract actual control and datade-
pendences and enhance the corresponding static analyses with dy-
namic information. Subsequently, we apply a previously trained



f o r ( i = 0 ; i < nodes ; i ++) {
Anext = Aindex [ i ] ;
A l a s t = Aindex [ i + 1 ] ;

sum0 = A[ Anext ] [ 0 ] [ 0 ]∗ v [ i ] [ 0 ] +
A[ Anext ] [ 0 ] [ 1 ] ∗ v [ i ] [ 1 ] +
A[ Anext ] [ 0 ] [ 2 ] ∗ v [ i ] [ 2 ] ;

sum1 = . . .

Anext ++;
whi le ( Anext < A l a s t ) {

c o l = Acol [ Anext ] ;

sum0 += A[ Anext ] [ 0 ] [ 0 ]∗ v [ c o l ] [ 0 ] +
A[ Anext ] [ 0 ] [ 1 ] ∗ v [ c o l ] [ 1 ] +
A[ Anext ] [ 0 ] [ 2 ] ∗ v [ c o l ] [ 2 ] ;

sum1 += . . .

w[ c o l ] [ 0 ] += A[ Anext ] [ 0 ] [ 0 ] ∗ v [ i ] [ 0 ] +
A[ Anext ] [ 1 ] [ 0 ] ∗ v [ i ] [ 1 ] +
A[ Anext ] [ 2 ] [ 0 ] ∗ v [ i ] [ 2 ] ;

w[ c o l ] [ 1 ] += . . .
Anext ++;

}
w[ i ] [ 0 ] += sum0 ;
w[ i ] [ 1 ] += . . .

}

Figure 1. Static analysis is challenged by sparse array reduction
operations and the innerwhile loop in the SPECequakebenchmark.

machine-learning based prediction mechanism to each parallel loop
candidate and decide if and how the parallel mapping should be per-
formed. Finally, we generate parallel code using standard OpenMP
annotations. Our approach is semi-automated, i.e. we only expect
the user to finally approve those loops where parallelization is
likely to be beneficial, but correctness cannot be proven conclu-
sively.

Results. We have evaluated our parallelization strategy against
the NAS and SPEC OMP benchmarks and two different multi-
core platforms (dual quad-core Intel Xeon SMP and dual-socket
QS20 Cell blade). We demonstrate that our approach not only
yields significant improvements when compared with state-of-the-
art parallelizing compilers, but comes close to and sometimes ex-
ceeds the performance of manually parallelized codes. We show
that profiling-driven analyses can detect more parallel loops than
static techniques. A surprising result is that all loops classified as
parallel by our technique are correctly identified as such, despite
the fact that only a single, small data input is considered for par-
allelism detection. Furthermore, we show that parallelismdetec-
tion in isolation is not sufficient to achieve high performance, and
neither are conventional mapping heuristics. Our machine-learning
based mapping approach provides the adaptivity across platforms
that is required for a genuinely portable parallelization strategy.
On average, our methodology achieves 96% of the performance
of the hand-tuned OpenMP NAS and SPEC parallel benchmarks
on the Intel Xeon platform, and a significant speedup for the Cell
platform, demonstrating the potential of profile-guided machine-
learning based auto-parallelization for complex multi-core plat-
forms.

Overview. The remainder of this paper is structured as follows.
We motivate our work based on simple examples in section 2. This
is followed by a presentation of our parallelization framework in
section 3. Our experimental methodology and results are discussed
in sections 4 and 5, respectively. We establish a wider context of

#pragma omp f o r r e d u c t i o n ( + : sum ) p r i v a t e ( d )
f o r ( j =1 ; j <= l a s t c o l−f i r s t c o l −1; j ++) {

d = x [ j ] − r [ j ] ;
sum = sum + d∗ d ;

}

Figure 2. Despite its simplicity mapping of this parallel loop taken
from the NAScgbenchmark is non-trivial and the best-performing
scheme varies across platforms.

related work in section 6 before we summarize and conclude in
section 7.

2. Motivation
Parallelism Detection. Figure 1 shows a short excerpt of thesmvp
function from the SPECequakeseismic wave propagation bench-
mark. This function implements a general-purpose sparse matrix-
vector product and takes up more than 60% of the total execution
time of theequakeapplication. While conservative, static analysis
fails to parallelize both loops due to sparse matrix operations with
indirect array indices and the innerwhile loop, profiling-based de-
pendence analysis provides us with the additional information that
no actual data dependence inhibits parallelization for a given sam-
ple input. While we still cannot prove absence of data dependences
for every possibleinput we can classify both loops as candidates for
parallelization (reduction) and, if profitably parallelizable, present
it to the user for approval. In this example, the user would provide
the additional knowledge (and guarantee) that everycol index in
the inner loop is unique and, hence, accesses tow[col][0] and
w[col][1], respectively, do not result in cross-iteration dependen-
cies.

This example demonstrates that static analysis is overly con-
servative. Profiling based analysis, on the other hand, can provide
accurate dependence information for aspecificinput. When com-
bined we can select candidates for parallelization based onempir-
ical evidenceand, hence, can eventually extract more application
parallelism than purely static approaches.

Mapping. In figure 2 a parallel reduction loop originating from
the parallel NAS conjugate-gradientcg benchmark is shown. De-
spite the simplicity of the code, mapping decisions are non-trivial.
For example, parallel execution of this loop is not profitable for the
Cell BE platform due to high communication costs between pro-
cessing elements. In fact, parallel execution results in a massive
slowdown over the sequential version for the Cell for any number
of threads. On the Intel Xeon platform, however, parallelization can
be profitable, but this depends strongly on the specific OpenMP
scheduling policy. The best scheme (STATIC) results in a speedup
of 2.3 over the sequential code and performs 115 times betterthan
the worst scheme (DYNAMIC) that slows the program down to 2%
of its original, sequential performance.

This example illustrates that selecting the correct mapping
scheme has a significant impact on performance. However, the
mapping scheme varies not only from program to program, but
also from architecture to architecture. Therefore, we needan auto-
matic and portable solution for parallelism mapping.

3. Parallelization Framework
In this section we provide an overview and technical detailsof our
parallelization framework.

As shown in figure 3, a sequential C program is initially ex-
tended with plain OpenMP annotations for parallel loops andre-
ductions as a result of our profiling-based dependence analysis. In
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Figure 3. A two-staged parallelization approach combining
profiling-driven parallelism detection and machine-learning based
mapping to generate OpenMP annotated parallel programs.

addition, data scoping for shared and private data also takes place
at this stage.

In a second step we add further OpenMP work allocation
clauses to the code if the loop is predicted to benefit from par-
allelization, or otherwise remove the parallel annotations. This also
happens for loop candidates where correctness cannot be proven
conclusively (based on static analysis) and the user disapproves of
the suggested parallelization decision.

Finally, the parallel code is compiled with a native OpenMP
compiler for the target platform. A complete overview of ourtool-
chain is shown in figure 4.

3.1 Profile-Driven Parallelism Detection

We propose a profile-driven approach to parallelism detection
where the traditional static compiler analyses are not replaced,
but enhancedwith dynamic information. To achieve this we have
devised a novel instrumentation schemeoperating at the interme-
diate representation (IR) levelof the compiler. Unlike e.g. (21) we
do not need to deal with low-level artifacts of any particular in-
struction set, but obtain dynamic control and data flow information
relating to IR nodes immediately. This allows us toback-annotate
the original IR with the profiling information and resume com-
pilation/parallelization. The three stages involved in parallelism
detection are:

1. IR instrumentation, C code generation and profiling

2. CDFG construction and dependence analysis

3. Parallel code generation

3.1.1 Instrumentation and Profile Generation

Our primary objective is to enhance the static analysis of a tradi-
tional parallelizing compiler using precise, dynamic information.
The main obstacle here is correlating the low-level information
gathered during program execution – such as specific memory ac-
cesses and branch operations – to the high-level data and control
flow information. Debug information embedded in the executable
is usually not detailed enough to enable this reconstruction.

To bridge thisinformation gapwe perform instrumentation at
the IR level of the compiler (CoSy). For each variable access, ad-
ditional code is inserted that emits the associated symbol table ref-
erence as well as the actual memory address of the data item. All
data items including arrays, structures, unions and pointers are cov-
ered in the instrumentation. This information is later usedto disam-
biguate memory accesses that static analysis fails to analyze. Simi-
larly, we instrument every control flow instruction with theIR node
identifier and code to record the actual, dynamic control flow. Even-
tually, a plain C representation close to the original program, but
with additional instrumentation code inserted, is recovered using
an IR-to-C translation pass and compiled with a native x86 com-
piler.

The program resulting from this process is still sequentialand
functionally equivalent to the original code, but emits an additional
trace of data access and control flow items.

3.1.2 CDFG Construction and Dependence Analysis

The subsequent analysis stage consumes one trace item at a time
and incrementally constructs a global control and data flow graph
(CDFG) on which the parallelism detection is performed. Hence, it
is not necessary to store the entire trace if the tools are chained up
appropriately.

Each trace item is processed by algorithm 1. It distinguishes
between control and data flow items and maintains various data
structures supporting dependence analysis. The control flow sec-
tion constructs a global control flow graph of the application in-
cluding call stacks, loop nest trees, and normalized loop iteration
vectors. The data-flow section is responsible for mapping memory
addresses to specific high-level data flow information. For this we
keep a hash table where data items are traced at byte-level granu-
larity. Data dependences are recorded as data edges in the CDFG.
These edges are further annotated with the specific data sections
(e.g. array indices) that cause the dependence. For loop-carried data
dependences an additional bit vector relating the dependence to the
surrounding loop nest is maintained.

Data Items
· CDFG(V, EC , ED): graph with control (EC) and data-flow
(ED) edges
· bite[]: bitfield in eache ∈ ED

· sete: address set in eache ∈ ED

· ita[]: iteration vector of addressa
·M [A, {V, it}]: hash table: mem. addr.→ {V, ita}
· it0[]: current normalized iteration vector
· u ∈ V : current node

Procedureinstruction handler
I ← next instruction
if I is a memory instructionthen

a← address accessed by instruction
if I is a DEF then

update last writer inM
endif
else ifUSEthen

find matching DEF fromM
if DEF→USE edgee /∈ CDFG then

adde in ED

endif
sete ← sete ∪ {a}
foreach i : ita[i] 6= it0[i] do bite[i]← true
ita ← it0

endif
endif
else ifI is a control instructionthen

v ← node referenced by instruction
if edge(u, v) /∈ EC then

add(u, v) in CDFG
endif
u← v

endif

Algorithm 1 : Algorithm for CDFG construction.

As soon as the complete trace has been processed the con-
structed CDFG with all its associated annotations is imported back
into the CoSy compiler and added to the internal, staticallyderived
data and control flow structures. This is only possible because the
dynamic profile contains references to IR symbols and nodes in ad-
dition to actual memory addresses.

The profiling-based CDFG is the basis for the further detection
of parallelism. However, there is the possibility of conflicting de-
pendence information, for example, if a“may” data dependence
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Figure 4. Our parallelization framework comprises IR-level instrumentation and profiling stages, followed by static and dynamic dependence
analyses driving loop-level parallelization and a machine-learning based mapping stage where the user may be asked forfinal approval before
parallel OpenMP code is generated. Platform-specific code generation is performed by the native OpenMP enabled C compiler.

has not “materialized” in the profiling run. In this case, we treat
such a loop as potentially parallelizable, but present it tothe user
for final approval if parallelization is predicted to be profitable.

3.1.3 Parallel Code Generation

We use OpenMP for parallel code generation due to the low
complexity of generating the required code annotations andthe
widespread availability of native OpenMP compilers. Currently,
we only target parallelFOR loops and translate these into corre-
sponding OpenMP annotations.

Privatization. We maintain a complete list of true-, anti- and
output-dependencies as these are required for parallelization.
Rather than recording all the readers of each memory location we
keep a map of the normalized iteration index of each memory loca-
tion that is read/written at each level of a loop-nest. This allows us
to efficiently track all memory locations that cause a loop-carried
anti- or output-dependence. A scalarx is privatizable within a loop
if and only if every path from the beginning of the loop body toa
use ofx passes from a definition ofx before the use. Hence, we
can determine the privatizable variables by inspecting theincom-
ing and outgoing data-dependence edges of the loop. An analogous
approach applies to privatizable arrays.

Reduction Operations. Reduction recognition for scalar vari-
ables is based on the algorithm presented in (22), but unlikethe
original publication we use a simplified code generation stage
where it is sufficient to emit an OpenMPreductionannotation for
each recognized reduction loop. We validate statically detected
reduction candidates using profiling information and use anad-
ditional reduction template library to enable reductions on array
locations such as that shown in figure 1.

Synchronization. The default behavior of parallel OpenMP loops
is to synchronize threads at the end of the work sharing construct
by means of a barrier. Due to the high cost of this form of synchro-
nization it is important for good performance that redundant syn-
chronization is avoided. Synchronization also increases idle time,
due to load imbalance, and can sequentialize sections of a pro-
gram. Based on the CDFG we compute inter-loop dependencies

and apply a compile time barrier synchronization minimization al-
gorithm (23), resulting in a minimal number of barriers. Forthose
loops where the default synchronization can be eliminated we ex-
tend the annotations with the OpenMPnowaitclause.

Limitations. At present, our approach to code generation is rela-
tively simple and, essentially, relies on OpenMP code annotations
alongside minor code transformations. We do not yet performhigh-
level code restructuring which might help expose or exploitmore
parallelism or improve data locality. While OpenMP is a compiler-
friendly target for code generation it imposes a number of limita-
tions. For example, we do not yet exploit coarse-grain parallelism,
e.g. pipelines, and wavefront parallelism even though we can also
extract this form of parallelism.

3.2 Machine Learning Based Parallelism Mapping

The responsibilities of the parallelism mapping stage are to de-
cide if a parallel loop candidate isprofitable to parallelize and, if
so, to select a scheduling policy from the four options offered by
OpenMP:CYCLIC, DYNAMIC, GUIDED, andSTATIC. As the ex-
ample in figure 2 demonstrates, this is a non-trivial task andthe op-
timal solution depends on both the particular properties ofthe loop
under considerationand the target platform. To provide a portable,
but automated mapping approach we use a machine learning tech-
nique to construct a predictor that, after some initial training, will
replace the highly platform-specific and often inflexible mapping
heuristics of traditional parallelization frameworks.

3.2.1 Predictive Modeling

Separating profitably parallelizable loops from those thatare not
is a challenging task. Incorrect classification will resultin missed
opportunities for profitable parallel execution or even in aslow-
down due to an excessive synchronization overhead. Traditional
parallelizing compilers such as SUIF-1 employ simple heuristics
based on the iteration count and the number of operations in the
loop body to decide on whether or not a particular parallel loop
candidate should be executed in parallel.

Our data – as shown in figure 5 – suggests that such a naı̈ve
scheme is likely to fail and that misclassification occurs frequently.
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Figure 5. This diagrams shows the optimal classification (sequen-
tial/parallel execution) of all parallel loop candidates considered in
our experiments for the Intel Xeon machine. Linear models and
static features such as the iteration count and size of the loop body
in terms of IR statements are not suitable for separating profitably
parallelizable loops from those that are not.

A simple work based scheme would attempt to separate the prof-
itably parallelizable loops by a diagonal line as indicatedin the
diagram in figure 5. Independent of where exactly the line is drawn
there will always be loops misclassified and, hence, potential per-
formance benefits wasted. What is needed is a scheme that (a) takes
into account a richer set of – possibly dynamic – loop features, (b)
is capable of non-linear classification, and (c) can be easily adapted
to a new platform.

In this paper we propose apredictive modelingapproach based
on machine-learning classification. In particular, we useSupport
Vector Machines (SVM)(24) to decide (a) whether or not to paral-
lelize a loop candidate and (b) how it should be scheduled. The
SVM classifier is used to construct hyper-planes in the multi-
dimensional space ofprogram features– as discussed in the fol-
lowing paragraph – to identify profitably parallelizable loops. The
classifier implements a multi-class SVM model with aradial basis
function (RBF)kernel capable of handling both linear and non-
linear classification problems (24). The details of our SVM classi-
fier are provided in figure 6.

3.2.2 Program Features

We extract characteristicprogram featuresthat sufficiently describe
the relevant aspects of a program and present it to the SVM clas-
sifier. An overview of these features is given in table 1. Thestatic
featuresare derived from CoSy’s internal code representation. Es-
sentially, these features characterize the amount of work carried
out in the parallel loop similar to e.g. (25). Thedynamic features
capture the dynamic data access and control flow patterns of the

Static features

IR Instruction Count
IR Load/Store Count
IR Branch Count
Loop Iteration Count

Dynamic features
Data Access Count
Instruction Count
Branch Count

Table 1. Features characterizing each parallelizable loop.

1. Baseline SVM for classification

(a) Training data:
D = {(xi, ci)|xi ∈ R

p, ci ∈ {−1, 1}}ni=1

(b) Maximum-margin hyperplane formulation:
ci(w · xi − b) ≥ 1, for all 1 ≤ i ≤ n.

(c) Determine parameters by minimization of||w|| (in w, b)
subject to 1.(b).

2. Extensions for non-linear multiclass classification

(a) Non-linear classification:
Replace dot product in 1.(b) by a kernel function, e.g. the
following radial basis function:
k(x, x′) = exp(−γ||x− x

′||2), for γ > 0.

(b) Multiclass SVM:
Reduce single multiclass problem into multiple binary prob-
lems. Each classifier distinguishes between one of the labels
and the rest.

Figure 6. Support vector machines for non-linear classification.

sequentialprogram and are obtained from the same profiling exe-
cution that has been used for parallelism detection.

3.2.3 Training Summary

We use anoff-line supervised learningscheme whereby we present
the machine learning component with pairs of program features
and desired mapping decisions. These are generated from a library
of known parallelizable loops through repeated, timed execution
of the sequential and parallel code with the different available
scheduling options and recording the actual performance onthe
target platform. Once the prediction model has been built using all
the available training data, no further learning takes place.

3.2.4 Deployment

For a new, previouslyunseenapplication with parallel annotations
the following steps need to be carried out:

1. Feature extraction. This involves collecting the features shown
in table 1 from thesequentialversion of the program and is
accomplished in the profiling stage already used for parallelism
detection.

2. Prediction. For each parallel loop candidate the corresponding
feature set is presented to the SVM predictor and it returns a
classification indicating if parallel execution is profitable and
which scheduling policy to choose. For a loop nest we start with
the outermost loop ensuring that we settle for the most coarse-
grained piece of work.

3. User Interaction. If parallelizationappearsto possible (accord-
ing to the initial profiling) and profitable (according to theprevi-
ous prediction step), but correctness cannot be proven by static
analysis, we ask the user for his/her final approval.

4. Code Generation. In this step, we extend the existing OpenMP
annotation with the appropriate scheduling clause, or delete the
annotation if parallelization does not promise any performance
improvement or has been rejected by the user.

3.3 Safety and Scalability Issues

Safety. Unlike static analysis, profile-guided parallelization can-
not conclusively guarantee the absence of control and data depen-
dences forevery possibleinput. One simple approach regarding
the selection of the “representative” inputs is based on control-flow



coverage analysis. This is driven by the empirical observation that
for the vast majority of the cases the profile-driven approach might
have a false positive (“there is a flow-dependence but the tool sug-
gests the contrary”) is due to a control-flow path that the data input
set did not cover. This also gives a fast way to select representa-
tive workloads (in terms of data-dependencies) just by executing
the applications natively and recording the resulting codecoverage.
Of course, there are many counter-examples where an input depen-
dent data-dependence appears with no difference in the control-
flow. The latter can be verified by the user.

For this current work, we have chosen a “worst-case scenario”
and used thesmallestdata set associated with each benchmark
for profiling, but evaluated against thelargest of the available
data sets. Surprisingly, we have found that this naive scheme has
detected almost all parallelizable loops in the NAS and SPECOMP
benchmarks while not misclassifying any loop as parallelizable
when it is not.

Furthermore, with the help of our tools we have been able
to identify three incorrectly shared variables in the original NAS
benchmarks that should in fact be privatized. This illustrates that
manual parallelization is prone to errors and that automating this
process contributes to program correctness.

Scalability. As we process data dependence information at byte-
level granularity and effectively build a whole program CDFG we
may need to maintain data structures growing potentially aslarge
as the entire address space of the target platform. In practice, how-
ever, we have not observed any cases where more than 1GB of
heap memory was needed to maintain the dynamic data dependence
structures, even for the largest applications encounteredin our ex-
perimental evaluation. In comparison, static compilers that perform
whole program analyses need to maintain similar data structures of
about the same size. While the dynamic traces can potentially be-
come very large as every single data access and control flow path is
recorded, they can be processedonline, thus eliminating the need
for large traces to be stored.

As our approach operates at the IR level of the compiler we do
not need to consider detailed architecture state, hence profiling can
be accomplished at speeds close to native, sequential speed. For de-
pendence analysis we only need to keep track of memory and con-
trol flow operations and make incremental updates to hash tables
and graph structures. In fact, dependence analysis on dynamically
constructed CDFGs has the same complexity as static analysis be-
cause we use the same representations and algorithms as the static
counterparts.

4. Experimental Methodology
In this section we summarize our experimental methodology and
provide details of the multi-core platforms and benchmarksused
throughout the evaluation.

4.1 Platforms

We target both a shared memory (dual quad-core Intel Xeon) and
distributed memory multi-core system (dual-socket QS20 Cell
blade). A brief overview of both platforms is given in table 3.

4.2 Benchmarks

For our evaluation we have selected benchmarks (NAS and SPEC
OMP) where both sequential and manually parallelized OpenMP
versions are available. This has enabled us to directly compare
our parallelization strategy against parallel implementations from
independent expert programmers.

More specifically, we have used the NAS NPB (sequential
v.2.3) and NPB (OpenMP v.2.3) codes (26) alongside the SPEC
CPU2000 benchmarks and their corresponding SPEC OMP2001

Program Suite Data Sets/Xeon Data Sets/Cell

BT NPB2.3-OMP-C S, W, A, B NA
CG NPB2.3-OMP-C S, W, A, B S, W, A
EP NPB2.3-OMP-C S, W, A, B S, W, A
FT NPB2.3-OMP-C S, W, A, B S, W, A
IS NPB2.3-OMP-C S, W, A, B S, W, A
MG NPB2.3-OMP-C S, W, A, B S, W, A
SP NPB2.3-OMP-C S, W, A, B S, W, A
LU NPB2.3-OMP-C S, W, A, B S, W, A
art SPEC CFP2000 test, train, ref test,train, ref
ammp SPEC CFP2000 test, train, ref test,train, ref
equake SPEC CFP2000 test, train, ref test,train, ref

Table 2. Benchmark applications and data sets.

Cell Blade Server

Hardware Dual Socket, QS20 Cell Blade
2 × 3.2 GHz IBM Cell processors

512KB L2 cache per chip
1GB XDRAM

O.S Fedora Core 7 with Linux kernel 2.6.22 SMP
Compiler IBM XLC single source compiler for Cell v0.9

-O5 -qstrict -qarch=cell -qipa=partition=minute (-qipa=overlay)
Cell SDK 3.0

Intel Xeon Server

Hardware Dual Socket, Intel Xeon X5450 @ 3.00GHz
2 Quad-cores, 8 cores in total

6MB L2-cache shared/2 cores (12MB/chip)
16GB DDR2 SDRAM

O.S 64-bit Scientific Linux with kernel 2.6.9-55 x8664
Compiler Intel ICC 10.1 (Build 20070913)

-O2 -xT -axT -ipo

Table 3. Hardware and software configuration details of the two
evaluation platforms.

counterparts. However, it should be noted that the sequential and
parallel SPEC codes are not immediately comparable due to some
amount of restructuring of the “official” parallel codes, resulting in
a performance advantage of the SPEC OMP codes over the sequen-
tial ones, even on a single processor system.

Each program has been executed using multiple different input
data sets (shown in table 2), however, for parallelism detection and
mapping we have only used thesmallestof the available data sets1.
The resulting parallel programs have then been evaluated against
the larger inputs to investigate the impact ofworst-case inputon
the safety of our parallelization scheme.

4.3 Methodology

We have evaluated three different parallelization approaches:man-
ual, auto-parallelizationusing the Intel ICC compiler (just for the
Intel platform), and ourprofile-drivenapproach.

For native code generation all programs (both sequential and
parallel OpenMP) have been compiled using the Intel ICC and
IBM XLC compilers for the Intel Xeon and IBM Cell platforms,
respectively.

Furthermore, we use “leave-one-out cross-validation” to eval-
uate our machine-learning based mapping technique. This means
that forK programs, we remove one, train a model on the remain-
ing K − 1 programs and predict theKth program with the previ-
ously trained model. We repeat this procedure for each program in
turn.

For the Cell platform we report parallel speedup over sequential
code running on the general-purposePPErather than a singleSPE.
In all cases the sequential performance of the PPE exceeds that of

1 Some of the larger data sets could not be evaluated on the Celldue to
memory constraints.



a single SPE, ensuring we report improvements over thestrongest
baseline available.

5. Experimental Evaluation
In this section we present and discuss our results.

5.1 Overall Results

Figures 7(a) and 7(b) summarize our performance results forboth
the Intel Xeon and IBM Cell platforms.

Intel Xeon. The most striking result is that the Intel auto-
parallelizing compiler fails to exploit any usable levels of paral-
lelism across the whole range of benchmarks and data set sizes.
In fact, auto-parallelization results in a slow-down of theBT and
LU benchmarks for the smallest and for most data set sizes, re-
spectively. ICC gains a modest speedup only for the larger data
sets of theIS andSPbenchmarks. The reason for this disappoint-
ing performance of the Intel ICC compiler is that it is typically
parallelizing at inner-most loop level where significant fork/join
overhead negates the potential benefit from parallelization.

The manually parallelized OpenMP programs achieve an aver-
age speedup of 3.5 across the benchmarks and data sizes. In the case
of EP, a speedup of 8 was achieved for large data sizes. This is not
surprising since this is an embarrassingly parallel program. More
surprisingly,LU was able to achieve super-linear speedup (9×) due
to improved caching (27). Some programs (BT, MG andCG) ex-
hibit lower speedups with larger data sets (A and B in comparison
to W) on the Intel machine. This is a well-known and documented
scalability issue of these specific benchmarks (28; 27).

For most NAS benchmarks our profile-driven parallelization
achieves performance levels close to those of the manually par-
allelized versions, and sometimes outperforms them (EP, IS and
MG). This surprising performance gain can be attributed to three
important factors. Firstly, our approach parallelizes outer loops
whereas the manually parallelized codes have parallel inner loops.
Secondly, our approach exploits reduction operations on array loca-
tions and, finally, the machine learning based mapping is more ac-
curate in eliminating non-profitable loops from parallelization and
selecting the best scheduling policy.

The situation is slightly different for the SPEC benchmarks.
While profile-driven parallelization still outperforms the static
auto-parallelizer we do not reach the performance level of the
manually parallelized codes. Investigations into the causes of this
behavior have revealed that the SPEC OMP codes are not equiv-
alent to the sequential SPEC programs, but have been manually
restructured (29). For example, data structures have been altered
(e.g. fromlist to vector) and standard memory allocation (exces-
sive use ofmalloc) has been replaced with a more efficient scheme.
Obviously, these changes are beyond what an auto-parallelizer is
capable of performing. In fact, we were able to confirm that the
sequential performance of the SPEC OpenMP codes is on average
about 2 times (and up to 3.34 forart) above that of their original
SPEC counterparts. We have verified that our approach parallelizes
the same critical loops for bothequakeandart as SPEC OMP. For
art we achieve a speedup of 4, whereas the SPEC OMP version
is 6 times faster than the sequential SPEC FP version, of which
more than 50% is due to sequential code optimizations. We also
measured the performance of the profile-driven parallelized equake
version using the same code modifications and achieved a compa-
rable speedup of 5.95.

Overall, the results demonstrate that our profile-driven paral-
lelization scheme significantly improves on the state-of-the-art In-
tel auto-parallelizing compiler. In fact, our approach delivers per-
formance levels close to or exceeding those of manually paral-
lelized codes and, on average, we achieve 96% of the performance

of hand-tuned parallel OpenMP codes, resulting in an average
speedup of 3.34 across all benchmarks.

IBM Cell. Figure 7(b) shows the performance resulting from
manual and profile-driven parallelization for the dual-Cell plat-
form.

Unlike the Intel platform, the Cell platform does not deliver a
high performance on the manually parallelized OpenMP programs.
On average, these codes result in an overall slowdown. For some
programs such asCGandEPsmall performance gains could be ob-
served, however, for most other programs the performance degra-
dation is disappointing. Given that these are hand-parallelized pro-
grams this is perhaps surprising and there are essentially two rea-
sons why the Cell’s performance potential could not be exploited.
Firstly, it is clear that the OpenMP codes have not been developed
specifically for the Cell. The programmer have not considered the
communication costs for a distributed memory machine. Secondly,
in absence of specific scheduling directives the OpenMP runtime
library resorts to its default behavior, which leads to pooroverall
performance. Given that the manually parallelized programs de-
liver high performance levels on the Xeon platform, the results for
the Cell demonstrate that parallelism detection in isolation is not
sufficient, but mapping must be regarded as equally important.

In contrast to the “default” manual parallelization scheme, our
integrated parallelization strategy is able to successfully exploit
significant levels of parallelism, resulting in average speedup of 2.0
over the sequential code and up to 6.2 for individual programs (EP).
This success can largely be attributed to the improved mapping of
parallelism resulting from our machine-learning based approach.

5.2 Parallelism Detection and Safety

Our approach relies on dynamic profiling information to discover
parallelism. This has the obvious drawback that it may classify a
loop as potentially parallel when there exists another dataset which
would highlight a dependence preventing correct parallelization.
This is a fundamental limit of dynamic analysis and the reason for
requesting the user to confirm uncertain parallelization decisions.
It is worthwhile, therefore, to examine to what extent our approach
suffers fromfalse positives(“loop is incorrectly classified as paral-
lelizable”). Clearly, an approach that suffers from high numbers of
such false positives will be of limited use to programmers.

Column 2 in table 5.2 shows the number of loops our approach
detects as potentially parallel. The column labeledFP (“false pos-
itive”) shows how many of these were in fact sequential. The sur-
prising result is that none of the loops we considered potentially
parallel turned out to be genuinely sequential. Certainly,this re-
sults does not prove that dynamic analysis is always correct. Still,
it indicates that profile-based dependence analysis may be more ac-
curate than generally considered, even for profiles generated from
small data sets. Clearly, this encouraging result will needfurther
validation on more complex programs before we can draw any fi-
nal conclusions.

Column 3 in table 5.2 lists the number of loops parallelizable
by ICC. In some applications, the ICC compiler is able to detect a
considerable number of parallel loops. In addition, if we examine
the coverage (shown in parentheses) we see that in many casesthis
covers a considerable part of the program. Therefore we conclude
that it is less a matter of the parallelism detection that causes ICC to
perform so poorly, but rather how it exploits and maps the detected
parallelism (see section 5.3).

The final column in table 5.2 eventually shows the number of
loops parallelized in the hand-coded applications. As before, the
percentage of sequential coverage is shown in parentheses.Far
fewer loops than theoretically possible are actually parallelized be-
cause the programmer have obviously decided only to parallelize
those loops they considered “hot” and “profitable”. These loops
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(a) Speedup over sequential codes achieved by ICC auto-parallelization, manual parallelization and profile-driven parallelization for the Xeon platform.
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 Manual Parallelization  Prof-driven Parallelization

(b) Speedup over sequential code achieved by manual parallelization and profile-driven parallelization for the dual Cell platform.

Figure 7. Speedups due to different parallelization schemes.

Profile driven ICC no threshold Manual
Application #loops(%cov) FP FN #loops(%cov) #loops(%cov)

bt 205 (99.9%) 0 0 72 (18.6%) 54 (99.9%)
cg 28 (93.1%) 0 0 16 (1.1%) 22 (93.1%)
ep 8 (99.9%) 0 0 6 (<1%) 1 (99.9%)
ft 37 (88.2%) 0 0 3 (<1%) 6 (88.2%)
is 9 (28.5%) 0 0 8 (29.4%) 1 (27.3%)
lu 154 (99.7%) 0 0 88 (65.9%) 29 (81.5%)
mg 48 (77.7%) 0 3 9 (4.7%) 12 (77.7%)
sp 287 (99.6%) 0 0 178 (88.0%) 70 (61.8%)
equakeSEQ 69 (98.1%) 0 0 29 (23.8%) 11 (98.0%)
art SEQ 31 (85.6%) 0 0 16 (30.0%) 5 (65.0%)
ammpSEQ 21 (1.4%) 0 1 43 (<1%) 7 (84.4%)

Table 4. Number of parallelized loops and their respective cover-
age of the sequential execution time.

cover a significant part of the sequential time and effectivepar-
allelization leads to good performance as can be seen for theXeon
platform.

In total there are fourfalse negatives(columnFN in table 5.2) ,
i.e. loops not identified as parallel although safely parallelizable.
Three false negatives are contained in theMG benchmark, and
two of these are due to loops which have zero iteration countsfor
all data sets and, therefore, are never profiled. The third one is a
MAX reduction, which is contained inside a loop that our machine-
learning classifier has decided not to parallelize.

5.3 Parallelism Mapping

In this section we examine the effectiveness of three mapping
schemes (manual, heuristic with static features, and machine-
learning using profiling information) across the two platforms.

Intel Xeon. Figure 8(a) compares the performance of ICC and
our approach to that of the hand-parallelized OpenMP programs. In
the case of ICC we show the performance of two different mapping
approaches. By default, ICC employs a compile-time profitability
check while the second approach performs a runtime check using a
dynamic profitability threshold.

For some cases (BT.B and SP.B) the runtime checks provide
a marginal improvement over the static mapping scheme while
the static scheme is better forIS.B. Overall, both schemes are
equally poor and deliver less than half of the speedup levelsof
the hand-parallelized benchmarks. The disappointing performance
appears to be largely due to non-optimal mapping decisions,i.e. to
parallelize inner loops rather than outer ones.

In the same figure we compare our machine-learning based
mapping approach against a scheme which uses the same profiling
information, but employs a fixed, work-basedheuristicsimilar to
the one implemented in the SUIF-1 parallelizing compiler (see
also figure 5). This heuristic considers the product of the iteration
count and the number of instructions contained in the loop body
and decides against a static threshold. While our machine-learning
approach delivers nearly the performance of the hand-parallelized
codes and, in some cases, is able to outperform them, the static
heuristic performs poorly and is unable to obtain more than 85% of
the performance of the hand-parallelized code. This translates into
an average speedup of 2.5 rather than 3.7 for the NAS benchmarks.
The main reason for this performance loss is that the defaultscheme
using only static code features and a linear work model is unable to
accurately determine whether a loop should be parallelizedor not.

In figure 9 we compare the performance resulting from the
different automated mapping approaches to that of the hand-
parallelized SPEC OMP codes. Again, our machine-learning based
approach outperforms ICC and the fixed heuristic. On average, our
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(a) NAS benchmarks on the Intel Xeon platform.
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(b) NAS and SPEC FP benchmarks on the IBM Cell platform.

Figure 8. Impact of different mapping approaches (100% = manually parallelized OpenMP code).
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Figure 9. Impact of different mapping approaches for the SPEC
benchmarks (100% = manually parallelized OpenMP code).

approach delivers 88% of the performance of the hand-parallelized
code, while ICC and the fixed heuristic approach achieve perfor-
mance levels of 45% and 65%, respectively. The lower performance
gains for the SPEC benchmarks are mainly due to a better starting
point of the hand-parallelized SPEC OMP benchmarks (see section
5.1).

IBM Cell. The diagram in figure 8(b) shows the speedup of
our machine-learning based mapping approach over the hand-
parallelized code on the Cell platform. As before, we compare our
approach against a scheme which uses the profiling information,
but employs a fixed mapping heuristic.

The manually parallelized OpenMP programs are not specifi-
cally “tuned” for the Cell platform and perform poorly. As a con-
sequence, the profile-based mapping approaches show high perfor-
mance gains over this baseline, in particular, for the smallinput
data sets. Still, the combination of profiling and machine-learning
outperforms the fixed heuristic counterpart by far and, on average,

results in a speedup of 9.7 over the hand-parallelized OpenMP pro-
grams across all data sets.

Summary The combined profiling and machine-learning ap-
proach to mapping comes within reach of the performance of hand-
parallelized code on the Intel Xeon platform and in some cases
outperforms it. Fixed heuristics are not strong enough to separate
profitably parallelizable loops from those that are no and perform
poorly. Typically, static mapping heuristics result in performance
levels of less than 60% of the machine learning approach. This
is because the default scheme is unable to accurately determine
whether a loop should be parallelized or not. The situation is ex-
acerbated on the Intel Cell platform where accurate mappingde-
cisions are key enablers to high performance. Existing (“generic”)
manually parallelized OpenMP codes fail to deliver any reasonable
performance and heuristics, even if based on profiling data,are
unable to match the performance of our machine-learning based
scheme.

5.4 Scalability

For the Xeon platform theLU andEP benchmarks scale well with
the number of processors (see figure 10). In fact, a super-linear
speedup due to more cache memory in total can be observed for the
LU application. For other benchmarks scalability is more limited
and often saturation effects occur for four or more processors.
This scalability issue of the NAS benchmarks is well-known and
in line with other research publications (27). Figure 11 shows a
performance drop for the step from one to two processors on the
Cell platform. This is due to the fact that we use the generally more
powerful PPE to measure single processor performance, but then
use the multiple SPEs for parallel performance measurements. The
diagram reveals that in the best case it takes about three SPEs to
achieve the original performance of the PPE. Some of the more
scalable benchmarks such asEP andMG follow a linear trend as
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Figure 10. Scalability on the Intel platform (largest data set).
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the number of processors increases, however, most of the remaining
benchmarks saturate at a low level.

6. Related Work
Parallel Programming Languages. Many approaches have been
proposed for changing or extending to existing programminglan-
guages to enable easier exploiting of parallelism (9; 10; 12). Unfor-
tunately, these approaches do not alleviate all problems ofporting
legacy sequential programs.

Automatic Parallelization. Static automatic parallelism extrac-
tion has been achieved on restricted DOALL and DOACROSS
loops (3; 4; 5). Unfortunately, many parallelization opportunities
could still not be discovered by a static analysis approach due to
lack of information at the source code level.

Speculative Parallelization. There are existing automatic paral-
lelization techniques that exploit parallelism in a speculatively ex-
ecution manner (30; 31; 32), but these approaches typicallyre-
quire hardware support. Matthewet al. (33) have manually par-
allelized the SPECINT-2000 benchmarks with thread level specu-
lation. Their approach relies upon the programmer to discover par-
allelism as well as runtime support for parallel execution.

Dynamic Parallelization Rus et al. (34) applied sensitivity analy-
sis to automatic parallelize programs whose behaviors may be sen-
sitive to input data sets. In contrast to their static analysis and run-
time checking approach, our profiling-driven approach discovers
more parallel opportunities as well as selecting parallel candidates
and scheduling policies. Dynamic dependence analysis (35;36) and
hybrid data dependence analysis (37) make use of dynamic depen-
dence information, but delay much of the parallelization work to
the runtime of the program. In contrast, we employ a separatepro-
filing stage and incorporate the dynamic information in the usual
compiler based parallelization without causing any runtime over-
head.

Interactive Parallelization. Interactive parallelization tools (13;
17; 18; 19; 20) provide a way to actively involve the programmer in
the detection and mapping of application parallelism. For example,
SUIF Explorer (13) helps the programmer to identify those loops
that are likely to be parallelizable and assists the user in checking
for correctness. Similarly, theSoftware Behavior-Oriented Paral-
lelization (38) system allows the programmer to specify intended
parallelism. In (39), programmers mark potential parallelregions of
the program, and the tool uses dynamic profiling informationto find
a good mapping of parallel candidates. Unlike our approach,these
frameworks require the programmer to mark parallel regions, in-
stead of discovering parallelism automatically. Moreover, the prob-
lem of mapping parallelism across architectures is not wellad-
dressed in these approaches.

Parallelism Mapping. Prior research in parallelism mapping has
mainly focused on building heuristics and analytical models (40;
41), runtime adaptation (42; 43) approaches, and on mappingor
migrating tasks on a specific platform. Instead of proposinga new
scheduling or mapping technique for a particular platform,we aim
to develop a compiler-based, automatic, and portable approach that
learns how to take advantage of existing compilers and runtime sys-
tem for efficiently mapping parallelism. Ramanujam and Sadayap-
pan (40) used heuristics to solve the task mapping problems in dis-
tributed memory machines. Their model requires low-level detail
of the hardware platform, such as the communication cost, which
have to be re-tuned once the underlying architecture changes. Static
analytical models have been proposed for predicting the program’s
behaviors. For example, the OpenUH compiler uses a cost model
for evaluating the cost for parallelizing OpenMP programs (41).
There are also some models that predict the parallel performance
such as LogP (44). However, these models require help from their
users and are not portable. Corbalanet al. (42) measure perfor-
mance and allocate processors during runtime. The adaptiveloop
scheduler (43) selects both the number of threads and the schedul-
ing policy for a parallel region in SMPs through runtime decisions.
In contrast to this runtime approach, this paper presents a static pro-
cessor allocation scheme which is performed at compilationtime.

Adaptive Compilation. Machine learning and statistical methods
have already been used in single core program transformation. For
example, Cooperet al. (45) develop a technique to find “good”
compiler optimization sequences for code size reduction.

In contrast to prior research, we built a model that learns how
to effectively map parallelism to multi-core platforms with existing
compilers and runtime systems. The model is automatically con-
structed and trained off-line, and the parallelism decisions are made
at the compilation time.

7. Conclusion and Future Work
In this paper we have developed a platform-agnostic, profiling-
based parallelism detection method that enhances static data de-
pendence analyses with dynamic information, resulting in larger



amounts of parallelism uncovered from sequential applications. We
have also shown that parallelism detection in isolation is not suffi-
cient to achieve high performance, but requires close interaction
with an adaptive mapping scheme to unfold the full potentialof
parallel execution across programs and architectures.

Results obtained on two complex multi-core platforms (Intel
Xeon and IBM Cell) and two sets of benchmarks (NAS and SPEC)
confirm that our method is more aggressive in parallelization and
more portable than existing static auto-parallelization and achieves
performance levels close to manually parallelized codes.

Future work will focus on further improvements of the profiling-
based data dependence analysis with the ultimate goal of eliminat-
ing the need for the user’s approval for parallelization decisions
that cannot be proven conclusively. Furthermore, we will integrate
support for restructuring transformations into our framework and
target parallelism beyond the loop level.
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