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Abstract

Compiler-based auto-parallelization is a much studied,aret has
still not found wide-spread application. This is largelyedio the
poor exploitation of application parallelism, subseqlenesult-
ing in performance levels far below those which a skilledeskp
programmer could achieve. We have identified two weaknémses
traditional parallelizing compilers and propose a noveegrated
approach, resulting in significant performance improvesefithe
generated parallel code. Using profile-driven paralleld@tection
we overcome the limitations of static analysis, enablingptigden-
tify more application parallelism and only rely on the user fi-
nal approval. In addition, we replace the traditional tésgecific
and inflexible mapping heuristics with a machine-learnirgdal
prediction mechanism, resulting in better mapping denisiohile
providing more scope for adaptation to different targehiec-
tures. We have evaluated our parallelization strategynagahe
NAS and SPEC OMP benchmarks and two different multi-core
platforms (dual quad-core Intel Xeon SMP and dual-socke2@S
Cell blade). We demonstrate that our approach not only yisig-
nificant improvements when compared with state-of-thepart
allelizing compilers, but comes close to and sometimes ezge
the performance of manually parallelized codes. On average
methodology achieves 96% of the performance of the hanedtun
OpenMP NAS and SPEC parallel benchmarks on the Intel Xeon
platform and gains a significant speedup for the IBM Cellfplan,
demonstrating the potential of profile-guided and macléaening
based parallelization for complex multi-core platforms.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages Processors—Compilers; D.1.Bfogramming Techniqugs
Concurrent Programming—Parallel Programming

General Terms Experimentation, Languages, Measurement, Per-
formance

Keywords Auto-Parallelization, Profile-Driven Parallelism De-
tection, Machine-Learning Based Parallelism Mapping, ridfie
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1. Introduction

Multi-core computing systems are widely seen as the mosievia
means of delivering performance with increasing transigemsi-
ties (1). However, this potential cannot be realized unteesap-
plication has been well parallelized. Unfortunately, éffid par-
allelization of a sequential program is a challenging anarer
prone task. It is generally agreed that manual code paraltel
tion by expert programmers results in the most streamlizedliel
implementation, but at the same time this is the most cosity a
time-consuming approach. Parallelizing compiler tecbggl on
the other hand, has the potential to greatly reduce costiuedto-
market while ensuring formal correctness of the resultiatalel
code.

Automatic parallelism extraction is certainly not a newessh
area (2). Progress was achieved in 1980s to 1990s on redtrict
DOALL and DOACROSSoops (3; 4; 5). In fact, this research
has resulted in a whole range of parallelizing research demp
ers, e.g. Polaris (6), SUIF-1 (7) and, more recently, Opei#j4
Complementary to the on-going work in auto-parallelizatioany
high-level parallel programming languages — such as Ci{®)5
OpenMP, Streamlt (10), UPC (11) and X10 (12) — and program-
ming models — such as Galois (14), STAPL (15) and HTA (16) —
have been proposed. Interactive parallelization tools {B7 19;
20) provide a way to actively involve the programmer in theede
tion and mapping of application parallelism, but still deda@reat
effort from the user. While these approaches make parsatiedix-
pression easier than in the past, the effort involved inalisdng
and mapping parallelism is still far greater than that oftiwg an
equivalent sequential program.

This paper argues that the lack of success in auto-paraitien
has occurred for two reasons. First, traditional statialelism de-
tection techniques are not effective in finding parallelidoe to
lack of information in the static source code. Second, netig
integrated approach has successfully brought togethemeatic
parallelism discovery and portable mapping. Given thatrtine-
ber and type of processors of a parallel system is likely tmge
from one generation to the next, finding the right mappingafior
application may have to be repeated many times throughoap-an
plication’s lifetime, hence, making automatic approachtésctive.

Approach. Our approach integrates profile-driven parallelism de-
tection and machine-learning based mapping in a singlegfam
work. We use profiling data to extract actual control and dizta
pendences and enhance the corresponding static analytbedywi
namic information. Subsequently, we apply a previouslyned



for (i = 0; i < nodes; i++){
Anext = Aindex[i];
Alast = Aindex[i + 1];

sumO0 = A[Anext][0][O]«Vv[i][0] +
A[Anext][O][1] =v[i][1] +
A[Anext][0][2] xv[i][2];

suml =

Anext++;
while (Anext < Alast) {
col Acol[Anext];

sum0 += A[Anext][0][0]xv[col]
A[Anext][0][1] *xv[col]
A[Anext][0][2] *xv[col]
suml +=

[0] +
[1] +
[2];

1

w[col][0] += A[Anext][0][0] xv[i][0] +
A[Anext][1][0] xv[i][1] +
A[Anext][2][0] xv[i][2];
w[col][1] += ...

Anext++;

V}V[i][O] +=
wli][1] +=

sumo;

Figure 1. Static analysis is challenged by sparse array reduction
operations and the innarileloop in the SPE@quakebenchmark.

machine-learning based prediction mechanism to each@idoalp

candidate and decide if and how the parallel mapping shajftb

formed. Finally, we generate parallel code using standgeh®IP

annotations. Our approach is semi-automated, i.e. we oqlgat

the user to finally approve those loops where parallelipaito
likely to be beneficial, but correctness cannot be provercloen
sively.

Results. We have evaluated our parallelization strategy against
the NAS and SPEC OMP benchmarks and two different multi-
core platforms (dual quad-core Intel Xeon SMP and dual-sbck

#pragma omp for reduction (+:sum) private (d)
for (j=1; j <= lastcol-firstcol —1; j++) {

d = x[j] = r[jl

sum = sum + dx d;

}

Figure 2. Despite its simplicity mapping of this parallel loop taken
from the NAScg benchmark is non-trivial and the best-performing
scheme varies across platforms.

related work in section 6 before we summarize and conclude in
section 7.

2. Motivation

Parallelism Detection.  Figure 1 shows a short excerpt of travp
function from the SPE@quakeseismic wave propagation bench-
mark. This function implements a general-purpose sparsgxma
vector product and takes up more than 60% of the total ex@tuti
time of theequakeapplication. While conservative, static analysis
fails to parallelize both loops due to sparse matrix openatiwith
indirect array indices and the inneshile loop, profiling-based de-
pendence analysis provides us with the additional infaonahat

no actual data dependence inhibits parallelization fovargsam-
ple input. While we still cannot prove absence of data depeoes

for every possiblénput we can classify both loops as candidates for
parallelization (reduction) and, if profitably parallelde, present

it to the user for approval. In this example, the user woutt/jgle

the additional knowledge (and guarantee) that ewety index in

the inner loop is unique and, hence, accesses[t@1] [0] and
wlcol] [1], respectively, do not result in cross-iteration dependen-
cies.

This example demonstrates that static analysis is ovemy co
servative. Profiling based analysis, on the other hand, oarde
accurate dependence information fosgecificinput. When com-
bined we can select candidates for parallelization basezhaqpir-
ical evidenceand, hence, can eventually extract more application
parallelism than purely static approaches.

Mapping. In figure 2 a parallel reduction loop originating from

QS20 Cell blade). We demonstrate that our approach not only the parallel NAS conjugate-gradieagy benchmark is shown. De-

yields significant improvements when compared with stétde-
art parallelizing compilers, but comes close to and sonetigx-
ceeds the performance of manually parallelized codes. We sh
that profiling-driven analyses can detect more parallep$othan
static techniques. A surprising result is that all loopssified as
parallel by our technique are correctly identified as su@spie
the fact that only a single, small data input is consideredpfo-
allelism detection. Furthermore, we show that parallelstec-
tion in isolation is not sufficient to achieve high perforrnapand
neither are conventional mapping heuristics. Our maclgaaing
based mapping approach provides the adaptivity acrosompret
that is required for a genuinely portable parallelizatitrategy.

spite the simplicity of the code, mapping decisions are tnivral.
For example, parallel execution of this loop is not profiggiolr the
Cell BE platform due to high communication costs between pro
cessing elements. In fact, parallel execution results inagsime
slowdown over the sequential version for the Cell for any ham
of threads. On the Intel Xeon platform, however, paral&lian can
be profitable, but this depends strongly on the specific Og&nM
scheduling policy. The best schen®TATIQ results in a speedup
of 2.3 over the sequential code and performs 115 times kibger
the worst schemedYNAMIQ that slows the program down to 2%
of its original, sequential performance.

This example illustrates that selecting the correct mappin

On average, our methodology achieves 96% of the performancescheme has a significant impact on performance. However, the
of the hand-tuned OpenMP NAS and SPEC parallel benchmarks mapping scheme varies not only from program to program, but

on the Intel Xeon platform, and a significant speedup for teé C
platform, demonstrating the potential of profile-guidedchiae-
learning based auto-parallelization for complex multiecqlat-
forms.

Overview. The remainder of this paper is structured as follows.
We motivate our work based on simple examples in section @. Th
is followed by a presentation of our parallelization franoekvin
section 3. Our experimental methodology and results aceigied
in sections 4 and 5, respectively. We establish a wider gorate

also from architecture to architecture. Therefore, we regeduto-
matic and portable solution for parallelism mapping.

3. Parallelization Framework

In this section we provide an overview and technical detsilsur
parallelization framework.

As shown in figure 3, a sequential C program is initially ex-
tended with plain OpenMP annotations for parallel loops esd
ductions as a result of our profiling-based dependence sinaln
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Figure 3. A two-staged parallelization approach combining
profiling-driven parallelism detection and machine-léagrbased
mapping to generate OpenMP annotated parallel programs.

addition, data scoping for shared and private data alsa taleze
at this stage.

In a second step we add further OpenMP work allocation
clauses to the code if the loop is predicted to benefit from par
allelization, or otherwise remove the parallel annotatidrhis also
happens for loop candidates where correctness cannot kerpro
conclusively (based on static analysis) and the user disaep of
the suggested parallelization decision.

Finally, the parallel code is compiled with a native OpenMP
compiler for the target platform. A complete overview of ¢dool-
chain is shown in figure 4.

3.1 Profile-Driven Parallelism Detection

We propose a profile-driven approach to parallelism deiecti
where the traditional static compiler analyses are notacsal,
but enhancedvith dynamic information. To achieve this we have
devised a novel instrumentation scheaperating at the interme-
diate representation (IR) levef the compiler. Unlike e.g. (21) we
do not need to deal with low-level artifacts of any particuila
struction set, but obtain dynamic control and data flow imfation
relating to IR nodes immediately. This allows ush@ack-annotate
the original IR with the profiling information and resume com
pilation/parallelization. The three stages involved imrglialism
detection are:

1. IR instrumentation, C code generation and profiling
2. CDFG construction and dependence analysis
3. Parallel code generation

3.1.1 Instrumentation and Profile Generation

Our primary objective is to enhance the static analysis ohdit
tional parallelizing compiler using precise, dynamic imh@tion.
The main obstacle here is correlating the low-level infdiora
gathered during program execution — such as specific meneery a
cesses and branch operations — to the high-level data aricblcon
flow information. Debug information embedded in the exeblata
is usually not detailed enough to enable this reconstmctio

To bridge thisinformation gapwe perform instrumentation at
the IR level of the compiler (CoSy). For each variable accads
ditional code is inserted that emits the associated synalte tref-
erence as well as the actual memory address of the data itém. A
data items including arrays, structures, unions and p@ae cov-
ered in the instrumentation. This information is later usedisam-
biguate memory accesses that static analysis fails to zaaBimi-
larly, we instrument every control flow instruction with tienode
identifier and code to record the actual, dynamic control.filewen-
tually, a plain C representation close to the original paogrbut
with additional instrumentation code inserted, is recedeunsing
an IR-to-C translation pass and compiled with a native x8&-co
piler.

The program resulting from this process is still sequeratial
functionally equivalent to the original code, but emits dditional
trace of data access and control flow items.

3.1.2 CDFG Construction and Dependence Analysis

The subsequent analysis stage consumes one trace itenma a ti
and incrementally constructs a global control and data fleaply
(CDFG) on which the parallelism detection is performed. ¢tgiit

is not necessary to store the entire trace if the tools armetiaip
appropriately.

Each trace item is processed by algorithm 1. It disting@she
between control and data flow items and maintains varioua dat
structures supporting dependence analysis. The contrel d&z-
tion constructs a global control flow graph of the applicatio-
cluding call stacks, loop nest trees, and normalized log@iion
vectors. The data-flow section is responsible for mappinmang
addresses to specific high-level data flow information. R we
keep a hash table where data items are traced at byte-leml-gr
larity. Data dependences are recorded as data edges in tR€.CD
These edges are further annotated with the specific datmsect
(e.g. array indices) that cause the dependence. For lcoeddata
dependences an additional bit vector relating the depeederthe
surrounding loop nest is maintained.

Data ltems

- CDFG(V, Ec, Ep): graph with control £¢) and data-flov
(Ep) edges

- bit.[]: bitfield in eache € Ep

- set.: address set in eaehe Ep

- it4[]: iteration vector of address

- M[A, {V,it}]: hash table: mem. addr {Vit.}

- ito[]: current normalized iteration vector

-u € V: current node

Procedureinstruction_handler
I < next instruction
if I'is a memory instructiothen
a < address accessed by instruction
if Iisa DEFthen
update last writer im/
endif
else ifUSEthen
find matching DEF from\/
if DEF—USE edge: ¢ CDFGthen
adde in Ep
endif
sete «— sete U{a}
foreachy : it,[i] # ito[i] do bit[i] «— true
itq «— 1to
endif
endif
else ifI is a control instructiorthen
v + node referenced by instruction
if edge(u,v) ¢ Ec then
add(u,v) in CDFG
endif
U —v

endif

Algorithm 1 : Algorithm for CDFG construction.

As soon as the complete trace has been processed the con-
structed CDFG with all its associated annotations is imggbbtack
into the CoSy compiler and added to the internal, staticijved
data and control flow structures. This is only possible bsedhe
dynamic profile contains references to IR symbols and nodad-i
dition to actual memory addresses.

The profiling-based CDFG is the basis for the further detecti
of parallelism. However, there is the possibility of cortftig de-
pendence information, for example, if‘may” data dependence



C M s

Sequential Small Sample
C Code Data Set
J v
A
s N a ~
. . Parallel
{S“"C & Byt @t @ et with
Instrumentation Profiling Dependence Parallelization Mapping | Generation OpenMP
L Analysis Annotations
v A /
AT
“Real”, Full-Sized
Data Set
_
Native Native
Results . e
Execution Compilation
S/

Figure 4. Our parallelization framework comprises IR-level instenmtation and profiling stages, followed by static and dymratependence
analyses driving loop-level parallelization and a macHasning based mapping stage where the user may be asketi@pproval before
parallel OpenMP code is generated. Platform-specific cedemtion is performed by the native OpenMP enabled C cempil

has not “materialized” in the profiling run. In this case, weat
such a loop as potentially parallelizable, but present theouser
for final approval if parallelization is predicted to be ptafile.

3.1.3 Parallel Code Generation

We use OpenMP for parallel code generation due to the low
complexity of generating the required code annotations taed
widespread availability of native OpenMP compilers. Catie

we only target paralleFOR loops and translate these into corre-
sponding OpenMP annotations.

Privatization. We maintain a complete list of true-, anti- and
output-dependencies as these are required for paratleliza
Rather than recording all the readers of each memory lotat®
keep a map of the normalized iteration index of each mema-lo
tion that is read/written at each level of a loop-nest. THmAs us
to efficiently track all memory locations that cause a loapried
anti- or output-dependence. A scadais privatizable within a loop
if and only if every path from the beginning of the loop bodyato
use ofz passes from a definition of before the use. Hence, we
can determine the privatizable variables by inspectingitbem-
ing and outgoing data-dependence edges of the loop. Angmago
approach applies to privatizable arrays.

Reduction Operations. Reduction recognition for scalar vari-
ables is based on the algorithm presented in (22), but utii&e
original publication we use a simplified code generatiorgeta
where it is sufficient to emit an OpenM®ductionannotation for
each recognized reduction loop. We validate staticallyected
reduction candidates using profiling information and useadn
ditional reduction template library to enable reductiomsasray
locations such as that shown in figure 1.

Synchronization. The default behavior of parallel OpenMP loops
is to synchronize threads at the end of the work sharing natst
by means of a barrier. Due to the high cost of this form of symch
nization it is important for good performance that reduridam-
chronization is avoided. Synchronization also increadistime,
due to load imbalance, and can sequentialize sections ob-a pr

and apply a compile time barrier synchronization minimaagl-
gorithm (23), resulting in a minimal number of barriers. Hoose
loops where the default synchronization can be eliminatecbx
tend the annotations with the OpenMBwaitclause.

Limitations. At present, our approach to code generation is rela-
tively simple and, essentially, relies on OpenMP code atiwts
alongside minor code transformations. We do not yet perfagh-
level code restructuring which might help expose or expiuitre
parallelism or improve data locality. While OpenMP is a cdep
friendly target for code generation it imposes a numberrofté-
tions. For example, we do not yet exploit coarse-grain pelisn,

e.g. pipelines, and wavefront parallelism even though weatso
extract this form of parallelism.

3.2 Machine Learning Based Parallelism Mapping

The responsibilities of the parallelism mapping stage ared-
cide if a parallel loop candidate ofitableto parallelize and, if
s0, to select a scheduling policy from the four options effeby
OpenMP:CYCLIC DYNAMIC GUIDED, andSTATIC As the ex-
ample in figure 2 demonstrates, this is a non-trivial taskthedp-
timal solution depends on both the particular propertieghefoop
under consideratioandthe target platform. To provide a portable,
but automated mapping approach we use a machine learnimg tec
nigue to construct a predictor that, after some initialrtirzg, will
replace the highly platform-specific and often inflexiblepping
heuristics of traditional parallelization frameworks.

3.2.1 Predictive Modeling

Separating profitably parallelizable loops from those t&t not
is a challenging task. Incorrect classification will resalmissed
opportunities for profitable parallel execution or even islaw-
down due to an excessive synchronization overhead. Toaditi
parallelizing compilers such as SUIF-1 employ simple tstios
based on the iteration count and the number of operationisein t
loop body to decide on whether or not a particular paralleplo
candidate should be executed in parallel.

Our data — as shown in figure 5 — suggests that such a naive

gram. Based on the CDFG we compute inter-loop dependenciesscheme is likely to fail and that misclassification occuegjfrently.
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Figure 5. This diagrams shows the optimal classification (sequen-
tial/parallel execution) of all parallel loop candidatesmsidered in Figure 6. Support vector machines for non-linear classification.
our experiments for the Intel Xeon machine. Linear modeld an

static features such as the iteration count and size of tgeldody

in terms of IR statements are not suitable for separatinfjtaiody sequentiaprogram and are obtained from the same profiling exe-
parallelizable loops from those that are not. cution that has been used for parallelism detection.

3.2.3 Training Summary
A simple work based scheme would attempt to separate the prof We use aroff-line supervised learningcheme whereby we present

itably parallelizable loops by a diagonal line as indicatedhe the machine learning component with pairs of program festur
d'agra”? in figure 5. Indepenqent of y\{here exactly the "”“M and desired mapping decisions. These are generated frdmagyli
there will always be loops misclassified and, hence, paiepér- of known parallelizable loops through repeated, timed etien
formance benef]ts wasted. What IS needed ISa scheme thakés) t of the sequential and parallel code with the different asé
into account a richer set of — possibly dynamic — loop featuie) scheduling options and recording the actual performancéhen
is capable of non-linear classification, and (c) can beyadipted target platform. Once the prediction model has been biitiguall
to a new platform. - . the available training data, no further learning takeselac

In this paper we proposepaedictive modelin@pproach based
on machine-learning classification. In particular, we Gsgport 3.2.4 Deployment

Vector Machines (SVMR4) to decide (a) whether or not to paral- . L ) .
lelize a loop candidate and (b) how it should be scheduleé. Th For a new, previouslynseerapplication with parallel annotations

SVM classifier is used to construct hyper-planes in the multi the following steps need to be carried out:

dimensional space girogram features- as discussed in the fol- 1 Feature extractionThis involves collecting the features shown
lowing paragraph — to identify profitably parallelizabl®ps. The in table 1 from thesequentialversion of the program and is
classifier implements a multi-class SVM model witheaial basis accomplished in the profiling stage already used for paisite
function (RBF)kernel capable of handling both linear and non- detection.

linear classification problems (24). The details of our SMiksi-

fier are provided in figure 6. 2. Prediction For each parallel loop candidate the corresponding

feature set is presented to the SVM predictor and it returns a
classification indicating if parallel execution is profirkand
We extract ch eristi featureshat sufficiently d ib which scheduling policy to choose. For a loop nest we statt wi

€ extract characteristprogram reaturesnat sufficiently describe the outermost loop ensuring that we settle for the most eears
the relevant aspects of a program and present it to the SV#M cla : ;

I, ! o F . - grained piece of work.
sifier. An overview of these features is given in table 1. Etagic
featuresare derived from CoSy’s internal code representation. Es- 3-

3.2.2 Program Features

User Interaction If parallelizationappearsto possible (accord-

sentially, these features characterize the amount of warkiec! ing to the initial profiling) and profitable (according to theevi-
out in the parallel loop similar to e.g. (25). Thgnamic features ous prediction step), but correctness cannot be provenatig st
capture the dynamic data access and control flow patterriseof t analysis, we ask the user for his/her final approval.

4. Code Generationin this step, we extend the existing OpenMP
annotation with the appropriate scheduling clause, orte¢fe

:S :_n;;;t\:jl;gtlgrne%oc?unr:t annotation if parallelization does not promise any perfamoe
Static features IR Branch Count improvement or has been rejected by the user.
Loop lteration Count 3.3 Safety and Scalability Issues

Data Access Count
Dynamic features Instruction Count
Branch Count

Safety. Unlike static analysis, profile-guided parallelizatiomea
not conclusively guarantee the absence of control and caterd
— - dences forevery possiblenput. One simple approach regarding
Table 1. Features characterizing each parallelizable loop. the selection of the “representative” inputs is based orrobfiow




coverage analysis. This is driven by the empirical obsemahat
for the vast majority of the cases the profile-driven apphaaght
have a false positive (“there is a flow-dependence but thestap
gests the contrary”) is due to a control-flow path that tha d#tut
set did not cover. This also gives a fast way to select reptase
tive workloads (in terms of data-dependencies) just by «teg
the applications natively and recording the resulting comlerage.
Of course, there are many counter-examples where an inpahde
dent data-dependence appears with no difference in theotont
flow. The latter can be verified by the user.

For this current work, we have chosen a “worst-case scénario
and used thesmallestdata set associated with each benchmark
for profiling, but evaluated against tHargest of the available
data sets. Surprisingly, we have found that this naive sehieas
detected almost all parallelizable loops in the NAS and SPEAP
benchmarks while not misclassifying any loop as parabdlie
when it is not.

Furthermore, with the help of our tools we have been able
to identify three incorrectly shared variables in the ar@iNAS
benchmarks that should in fact be privatized. This illussahat
manual parallelization is prone to errors and that autargattiis
process contributes to program correctness.

Scalability. As we process data dependence information at byte-
level granularity and effectively build a whole program GBve
may need to maintain data structures growing potentialllaae
as the entire address space of the target platform. In peadtow-

ever, we have not observed any cases where more than 1GB of

heap memory was needed to maintain the dynamic data dependen
structures, even for the largest applications encounteredr ex-
perimental evaluation. In comparison, static compileas gerform
whole program analyses need to maintain similar data stresof
about the same size. While the dynamic traces can potgnitiedl
come very large as every single data access and control fliwga
recorded, they can be processeding thus eliminating the need
for large traces to be stored.

As our approach operates at the IR level of the compiler we do
not need to consider detailed architecture state, hendiimgaan
be accomplished at speeds close to native, sequential. Speratk-
pendence analysis we only need to keep track of memory and con
trol flow operations and make incremental updates to hadastab
and graph structures. In fact, dependence analysis on dyalyn
constructed CDFGs has the same complexity as static apdigsi
cause we use the same representations and algorithms aattbe s
counterparts.

4. Experimental Methodology

In this section we summarize our experimental methodolagy a
provide details of the multi-core platforms and benchmarksd
throughout the evaluation.

4.1 Platforms

We target both a shared memory (dual quad-core Intel Xeam) an
distributed memory multi-core system (dual-socket QS20 Ce
blade). A brief overview of both platforms is given in table 3

4.2 Benchmarks

[ Program [ Suite | Data Sets/Xeon[ Data Sets/Cell]

BT NPB2.3-OMP-C S,W,A /B NA

CG NPB2.3-OMP-C S,W,A B S, WA
EP NPB2.3-OMP-C S,W,A B S, WA
FT NPB2.3-OMP-C S,W,A B S, WA

IS NPB2.3-OMP-C S,W,A'B S,W, A
MG NPB2.3-OMP-C S,W,A'B S,W, A
SP NPB2.3-OMP-C S,W,A'B S,W, A
LU NPB2.3-OMP-C S,W,A'B S,W, A
art SPEC CFP2000 | test, train, ref test,train, ref
ammp SPEC CFP2000 | test, train, ref test,train, ref
equake SPEC CFP2000 | test, train, ref test,train, ref

Table 2. Benchmark applications and data sets.

[ Cell Blade Server |

Hardware Dual Socket, QS20 Cell Blade
2 X 3.2 GHz IBM Cell processors
512KB L2 cache per chip
1GB XDRAM
Fedora Core 7 with Linux kernel 2.6.22 SMP
IBM XLC single source compiler for Cell v0.9
-O5 -gstrict -garch=cell -gipa=partition=minute (-qipazerlay)
Cell SDK 3.0
[ Intel Xeon Server |

Hardware Dual Socket, Intel Xeon X5450 @ 3.00GHz
2 Quad-cores, 8 cores in total
6MB L2-cache shared/2 cores (12MB/chip)
16GB DDR2 SDRAM
64-bit Scientific Linux with kernel 2.6.9-55 x864
Intel ICC 10.1 (Build 20070913)
-O2 XT -axT -ipo

Table 3. Hardware and software configuration details of the two
evaluation platforms.

0.S
Compiler

0.S
Compiler

counterparts. However, it should be noted that the secaleantid
parallel SPEC codes are not immediately comparable duente so
amount of restructuring of the “official” parallel codessuéting in

a performance advantage of the SPEC OMP codes over the sequen
tial ones, even on a single processor system.

Each program has been executed using multiple different inp
data sets (shown in table 2), however, for parallelism diste@and
mapping we have only used temallesof the available data séts
The resulting parallel programs have then been evaluataithstg
the larger inputs to investigate the impactvedrst-case inpubn
the safety of our parallelization scheme.

4.3 Methodology

We have evaluated three different parallelization apgrestnan-
ual, auto-parallelizationusing the Intel ICC compiler (just for the
Intel platform), and ouprofile-drivenapproach.

For native code generation all programs (both sequentidl an
parallel OpenMP) have been compiled using the Intel ICC and
IBM XLC compilers for the Intel Xeon and IBM Cell platforms,
respectively.

Furthermore, we use “leave-one-out cross-validation”vial-e
uate our machine-learning based mapping technique. Thissne
that for K programs, we remove one, train a model on the remain-
ing K — 1 programs and predict th&*" program with the previ-

For our evaluation we have selected benchmarks (NAS and SPECgysly trained model. We repeat this procedure for each progn

OMP) where both sequential and manually parallelized OgenM
versions are available. This has enabled us to directly eoenp
our parallelization strategy against parallel implemgate from
independent expert programmers.

More specifically, we have used the NAS NPB (sequential

turn.

For the Cell platform we report parallel speedup over setigien
code running on the general-purpd3@Erather than a singI8PE
In all cases the sequential performance of the PPE exceatlsfth

v.2.3) and NPB (OpenMP v.2.3) codes (26) alongside the SPEC 1Some of the larger data sets could not be evaluated on thedGelto
CPU2000 benchmarks and their corresponding SPEC OMP2001memory constraints.



a single SPE, ensuring we report improvements ovestiomgest
baseline available.

5. Experimental Evaluation
In this section we present and discuss our results.

5.1 Overall Results

Figures 7(a) and 7(b) summarize our performance resultisdir
the Intel Xeon and IBM Cell platforms.

Intel Xeon. The most striking result is that the Intel auto-
parallelizing compiler fails to exploit any usable levelsparal-

of hand-tuned parallel OpenMP codes, resulting in an aeerag
speedup of 3.34 across all benchmarks.

IBM Cell. Figure 7(b) shows the performance resulting from
manual and profile-driven parallelization for the dualiQaht-
form.

Unlike the Intel platform, the Cell platform does not defive
high performance on the manually parallelized OpenMP paimgt
On average, these codes result in an overall slowdown. Foe so
programs such &G andEP small performance gains could be ob-
served, however, for most other programs the performangeade
dation is disappointing. Given that these are hand-péizdte pro-
grams this is perhaps surprising and there are essentiallyea-

lelism across the whole range of benchmarks and data set size sons why the Cell's performance potential could not be dtqalo

In fact, auto-parallelization results in a slow-down of € and

Firstly, it is clear that the OpenMP codes have not been dpeel

LU benchmarks for the smallest and for most data set sizes, re-specifically for the Cell. The programmer have not considéne

spectively. ICC gains a modest speedup only for the larg& da
sets of thdS and SPbenchmarks. The reason for this disappoint-
ing performance of the Intel ICC compiler is that it is typlga
parallelizing at inner-most loop level where significantkigin
overhead negates the potential benefit from parallelizatio

communication costs for a distributed memory machine. Saigp
in absence of specific scheduling directives the OpenMHAment
library resorts to its default behavior, which leads to poeerall
performance. Given that the manually parallelized prograta-
liver high performance levels on the Xeon platform, the lssfor

The manually parallelized OpenMP programs achieve an aver- the Cell demonstrate that parallelism detection in isofats not

age speedup of 3.5 across the benchmarks and data sizescésth

of EP, a speedup of 8 was achieved for large data sizes. This is not

surprising since this is an embarrassingly parallel prnogrsiore
surprisingly,LU was able to achieve super-linear speeduyp)(due

to improved caching (27). Some progran®&T{ MG andCG) ex-
hibit lower speedups with larger data sets (A and B in conspari
to W) on the Intel machine. This is a well-known and documeénte
scalability issue of these specific benchmarks (28; 27).

For most NAS benchmarks our profile-driven parallelization
achieves performance levels close to those of the manually p
allelized versions, and sometimes outperforms th&m, (S and
MG). This surprising performance gain can be attributed teghr
important factors. Firstly, our approach parallelizeseoubops
whereas the manually parallelized codes have parallet ioogs.
Secondly, our approach exploits reduction operations i@y éoca-
tions and, finally, the machine learning based mapping ieraof
curate in eliminating non-profitable loops from parallation and
selecting the best scheduling policy.

The situation is slightly different for the SPEC benchmarks
While profile-driven parallelization still outperforms ehstatic
auto-parallelizer we do not reach the performance levelhef t
manually parallelized codes. Investigations into the eawaf this

sufficient, but mapping must be regarded as equally impbrtan
In contrast to the “default” manual parallelization schemer
integrated parallelization strategy is able to succelgstrkploit
significant levels of parallelism, resulting in averageeshe of 2.0
over the sequential code and up to 6.2 for individual progr&R).
This success can largely be attributed to the improved mapgpi
parallelism resulting from our machine-learning basedaggh.

5.2 Parallelism Detection and Safety

Our approach relies on dynamic profiling information to diger
parallelism. This has the obvious drawback that it may dflass
loop as potentially parallel when there exists another slettavhich
would highlight a dependence preventing correct parablélbn.
This is a fundamental limit of dynamic analysis and the radso
requesting the user to confirm uncertain parallelizatiocisiens.
It is worthwhile, therefore, to examine to what extent oyprayach
suffers fromfalse positiveg‘loop is incorrectly classified as paral-
lelizable”). Clearly, an approach that suffers from higers of
such false positives will be of limited use to programmers.
Column 2 in table 5.2 shows the number of loops our approach

detects as potentially parallel. The column labdit(“false pos-
itive”) shows how many of these were in fact sequential. Tire s

behavior have revealed that the SPEC OMP codes are not equiv-prising result is that none of the loops we considered piztint
alent to the sequential SPEC programs, but have been manuall parallel turned out to be genuinely sequential. Certaitlig re-

restructured (29). For example, data structures have bliésred
(e.g. fromlist to vecto) and standard memory allocation (exces-
sive use ofnallog) has been replaced with a more efficient scheme.
Obviously, these changes are beyond what an auto-pazales
capable of performing. In fact, we were able to confirm that th

sults does not prove that dynamic analysis is always corgtitk,
itindicates that profile-based dependence analysis maybe ac-
curate than generally considered, even for profiles gesefadbm
small data sets. Clearly, this encouraging result will neether
validation on more complex programs before we can draw any fi-

sequential performance of the SPEC OpenMP codes is on &verag nal conclusions.

about 2 times (and up to 3.34 fart) above that of their original
SPEC counterparts. We have verified that our approach pkzab
the same critical loops for bo#muakeandart as SPEC OMP. For

Column 3 in table 5.2 lists the number of loops parallelizabl
by ICC. In some applications, the ICC compiler is able to diete
considerable number of parallel loops. In addition, if warmine

art we achieve a speedup of 4, whereas the SPEC OMP versionthe coverage (shown in parentheses) we see that in manytbases

is 6 times faster than the sequential SPEC FP version, offwhic
more than 50% is due to sequential code optimizations. We als
measured the performance of the profile-driven parallélepiake
version using the same code modifications and achieved ascomp
rable speedup of 5.95.

Overall, the results demonstrate that our profile-driveralpa
lelization scheme significantly improves on the statebef-art In-
tel auto-parallelizing compiler. In fact, our approachiksis per-
formance levels close to or exceeding those of manuallylpara
lelized codes and, on average, we achieve 96% of the penfmena

covers a considerable part of the program. Therefore weledac
that itis less a matter of the parallelism detection thaseauCC to

perform so poorly, but rather how it exploits and maps thectet

parallelism (see section 5.3).

The final column in table 5.2 eventually shows the number of
loops parallelized in the hand-coded applications. As teefthe
percentage of sequential coverage is shown in parenthEses.
fewer loops than theoretically possible are actually peliaéd be-
cause the programmer have obviously decided only to pézalle
those loops they considered “hot” and “profitable”. Thesepk
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(a) Speedup over sequential codes achieved by ICC auttigliaedion, manual parallelization and profile-driverraifelization for the Xeon platform.
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(b) Speedup over sequential code achieved by manual piaatilen and profile-driven parallelization for the duallliGaatform.

Figure 7. Speedups due to different parallelization schemes.

[ Profile driven [ ICC nothreshold — Manual |
[ Application | #loops(%cov) [ FP [ FN [ #loops(%cov) | #loops(%cov) |

bt 205 (99.9%)] 0 | O 72 (18.6%) 54 (99.9%)
g 28 (93.1%)| 0 | O 16 (1.1%) 27 (93.1%)
ep 8 (99.9%)| 0| 0 6 (<1%) 1 (99.9%)
ft 37 (88.2%)| 0 | O 3 (<1%) 6 (88.2%)
s 9 (285%)| 0 | 0 8 (29.4%) 1 (27.3%)
U 154 (99.7%)] 0 | 0 88 (65.0%) 29 (81.5%)
mg a8 (777%)| 0 | 3 9 (4.7%) 12 (77.7%)
sp 287 (99.6%)| 0 | 0 | 178 (88.0%) 70 (61.8%)
equakeSEQ| 69 (98.1%)| 0 | © 29 (23.8%) 11 (98.0%)
artSEQ 31 (85.6%)| 0 | O 16 (30.0%) 5 (65.0%)
ammpSEQ | 21 (14%) | 0 | 1 43 (<1%) 7 (84.4%)

Table 4. Number of parallelized loops and their respective cover-

age of the sequential execution time.

cover a significant part of the sequential time and effectiae
allelization leads to good performance as can be seen foteba
platform.

In total there are foufalse negativegcolumnFN in table 5.2) ,
i.e. loops not identified as parallel although safely patiahble.
Three false negatives are contained in M& benchmark, and
two of these are due to loops which have zero iteration cdionts
all data sets and, therefore, are never profiled. The thidisra
MAX reduction, which is contained inside a loop that our machine
learning classifier has decided not to parallelize.

5.3 Parallelism Mapping

In this section we examine the effectiveness of three mappin
schemes (manual, heuristic with static features, and maehi
learning using profiling information) across the two platfs.

Intel Xeon. Figure 8(a) compares the performance of ICC and
our approach to that of the hand-parallelized OpenMP progrén

the case of ICC we show the performance of two different mappi
approaches. By default, ICC employs a compile-time prdfitgb
check while the second approach performs a runtime chenlg asi
dynamic profitability threshold.

For some casesB({.B and SP.B the runtime checks provide
a marginal improvement over the static mapping scheme while
the static scheme is better f¢8.B Overall, both schemes are
equally poor and deliver less than half of the speedup levkls
the hand-parallelized benchmarks. The disappointingop@dnce
appears to be largely due to non-optimal mapping decisiangp
parallelize inner loops rather than outer ones.

In the same figure we compare our machine-learning based
mapping approach against a scheme which uses the samengrofili
information, but employs a fixed, work-bashkduristic similar to
the one implemented in the SUIF-1 parallelizing compileze(s
also figure 5). This heuristic considers the product of taetion
count and the number of instructions contained in the loogybo
and decides against a static threshold. While our macleiamying
approach delivers nearly the performance of the hand{plrad
codes and, in some cases, is able to outperform them, the stat
heuristic performs poorly and is unable to obtain more tHz¥ &f
the performance of the hand-parallelized code. This ted@slinto
an average speedup of 2.5 rather than 3.7 for the NAS benkbmar
The main reason for this performance loss is that the defahéime
using only static code features and a linear work model iblerta
accurately determine whether a loop should be parallebzeubt.

In figure 9 we compare the performance resulting from the
different automated mapping approaches to that of the hand-
parallelized SPEC OMP codes. Again, our machine-learnasgt
approach outperforms ICC and the fixed heuristic. On average
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(b) NAS and SPEC FP benchmarks on the IBM Cell platform.

Figure 8. Impact of different mapping approaches (100% = manuallglfeized OpenMP code).
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Figure 9. Impact of different mapping approaches for the SPEC
benchmarks (100% = manually parallelized OpenMP code).

approach delivers 88% of the performance of the hand-jedizadtl
code, while ICC and the fixed heuristic approach achieveoperf
mance levels of 45% and 65%, respectively. The lower peidoca
gains for the SPEC benchmarks are mainly due to a betteingtart
point of the hand-parallelized SPEC OMP benchmarks (s¢m®sec
5.1).

IBM Cédl. The diagram in figure 8(b) shows the speedup of

results in a speedup of 9.7 over the hand-parallelized Ojfepid-
grams across all data sets.

Summary The combined profiling and machine-learning ap-
proach to mapping comes within reach of the performancermd-ha
parallelized code on the Intel Xeon platform and in some £ase
outperforms it. Fixed heuristics are not strong enough passe
profitably parallelizable loops from those that are no andopm
poorly. Typically, static mapping heuristics result in feemance
levels of less than 60% of the machine learning approachs Thi
is because the default scheme is unable to accurately determ
whether a loop should be parallelized or not. The situatsoex-
acerbated on the Intel Cell platform where accurate mapgéig
cisions are key enablers to high performance. Existingrége”)
manually parallelized OpenMP codes fail to deliver any oeable
performance and heuristics, even if based on profiling daia,
unable to match the performance of our machine-learningas
scheme.

5.4 Scalability

For the Xeon platform theU andEP benchmarks scale well with
the number of processors (see figure 10). In fact, a supeain
speedup due to more cache memory in total can be observetefor t
LU application. For other benchmarks scalability is more tiémdi

our machine-learning based mapping approach over the hand-and often saturation effects occur for four or more proo&sso

parallelized code on the Cell platform. As before, we coragamr
approach against a scheme which uses the profiling infoomati
but employs a fixed mapping heuristic.

The manually parallelized OpenMP programs are not specifi-
cally “tuned” for the Cell platform and perform poorly. As arc
sequence, the profile-based mapping approaches show high-pe
mance gains over this baseline, in particular, for the sinallit
data sets. Still, the combination of profiling and machieahing
outperforms the fixed heuristic counterpart by far and, erage,

This scalability issue of the NAS benchmarks is well-knovma a

in line with other research publications (27). Figure 11lveh@
performance drop for the step from one to two processors en th
Cell platform. This is due to the fact that we use the gengmbire
powerful PPE to measure single processor performancehbut t
use the multiple SPEs for parallel performance measuream€&he
diagram reveals that in the best case it takes about thres ®PE
achieve the original performance of the PPE. Some of the more
scalable benchmarks such BB and MG follow a linear trend as
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Figure 11. Scalability on the Cell platform (largest data set).

the number of processors increases, however, most of trenem
benchmarks saturate at a low level.

6. Related Work

Parallel Programming Languages. Many approaches have been
proposed for changing or extending to existing programnfemg
guages to enable easier exploiting of parallelism (9; 1®; W@for-
tunately, these approaches do not alleviate all problenpoing
legacy sequential programs.

Automatic Parallelization. Static automatic parallelism extrac-
tion has been achieved on restricted DOALL and DOACROSS
loops (3; 4; 5). Unfortunately, many parallelization ofpaoities
could still not be discovered by a static analysis approachtd
lack of information at the source code level.

Speculative Parallelization. There are existing automatic paral-
lelization techniques that exploit parallelism in a spatiuely ex-
ecution manner (30; 31; 32), but these approaches typicaily
quire hardware support. Mattheet al. (33) have manually par-
allelized the SPECINT-2000 benchmarks with thread levetap
lation. Their approach relies upon the programmer to discpar-
allelism as well as runtime support for parallel execution.

Dynamic Parallelization Rus et al. (34) applied sensitivity analy-
sis to automatic parallelize programs whose behaviors raagh-
sitive to input data sets. In contrast to their static anglgad run-
time checking approach, our profiling-driven approach aliscs
more parallel opportunities as well as selecting paralieldidates
and scheduling policies. Dynamic dependence analysiS&@%nd
hybrid data dependence analysis (37) make use of dynaménelep
dence information, but delay much of the parallelizatiorrkvim
the runtime of the program. In contrast, we employ a separate
filing stage and incorporate the dynamic information in tiseal
compiler based parallelization without causing any ruetiover-
head.

Interactive Parallelization. Interactive parallelization tools (13;
17;18; 19; 20) provide a way to actively involve the progragniin
the detection and mapping of application parallelism. Kkaneple,
SUIF Explorer (13) helps the programmer to identify thosepk
that are likely to be parallelizable and assists the usehatking
for correctness. Similarly, th8oftware Behavior-Oriented Paral-
lelization (38) system allows the programmer to specify intended
parallelism. In (39), programmers mark potential paraégions of
the program, and the tool uses dynamic profiling informatiaoimd

a good mapping of parallel candidates. Unlike our approtese
frameworks require the programmer to mark parallel regiams
stead of discovering parallelism automatically. Moreotiee prob-
lem of mapping parallelism across architectures is not e
dressed in these approaches.

Parallelism Mapping. Prior research in parallelism mapping has
mainly focused on building heuristics and analytical meddio;
41), runtime adaptation (42; 43) approaches, and on mapping
migrating tasks on a specific platform. Instead of proposimgw
scheduling or mapping technique for a particular platform,aim

to develop a compiler-based, automatic, and portable apprthat
learns how to take advantage of existing compilers andmensys-
tem for efficiently mapping parallelism. Ramanujam and $aga
pan (40) used heuristics to solve the task mapping problemisi
tributed memory machines. Their model requires low-lewathd
of the hardware platform, such as the communication cosighwh
have to be re-tuned once the underlying architecture clsasgatic
analytical models have been proposed for predicting thgrpm’s
behaviors. For example, the OpenUH compiler uses a costimode
for evaluating the cost for parallelizing OpenMP programs)(
There are also some models that predict the parallel pediocs
such as LogP (44). However, these models require help frein th
users and are not portable. Corbaktnal. (42) measure perfor-
mance and allocate processors during runtime. The addptiyge
scheduler (43) selects both the number of threads and tleelsh
ing policy for a parallel region in SMPs through runtime démns.

In contrast to this runtime approach, this paper preserittia pro-
cessor allocation scheme which is performed at compildiine.

Adaptive Compilation. Machine learning and statistical methods
have already been used in single core program transformétar
example, Coopeet al. (45) develop a technique to find “good”
compiler optimization sequences for code size reduction.

In contrast to prior research, we built a model that learns ho
to effectively map parallelism to multi-core platforms kigxisting
compilers and runtime systems. The model is automaticalfy ¢
structed and trained off-line, and the parallelism decisiare made
at the compilation time.

7. Conclusion and Future Work

In this paper we have developed a platform-agnostic, pngfili
based parallelism detection method that enhances statcdda
pendence analyses with dynamic information, resultingangdr



amounts of parallelism uncovered from sequential apjpdtinat We
have also shown that parallelism detection in isolatioroissuffi-
cient to achieve high performance, but requires close antem
with an adaptive mapping scheme to unfold the full poterdfal
parallel execution across programs and architectures.

Results obtained on two complex multi-core platforms (Inte
Xeon and IBM Cell) and two sets of benchmarks (NAS and SPEC) [23] M. O’Boyle and E. Stohr.

confirm that our method is more aggressive in parallelirasind
more portable than existing static auto-parallelizatind achieves
performance levels close to manually parallelized codes.

Future work will focus on further improvements of the praofit
based data dependence analysis with the ultimate goalroiineii-
ing the need for the user's approval for parallelizationisieas
that cannot be proven conclusively. Furthermore, we wignate
support for restructuring transformations into our frarngwand
target parallelism beyond the loop level.
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