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Abstract—Web technology underpins many interactive mobile
applications. However, energy-efficient mobile web interactions is
an outstanding challenge. Given the increasing diversity and com-
plexity of mobile hardware, any practical optimization scheme
must work for a wide range of users, mobile platforms and web
workloads. This paper presents CAMEL, a novel energy opti-
mization system for mobile web interactions. CAMEL leverages
machine learning techniques to develop a smart, adaptive scheme
to judiciously trade performance for reduced power consumption.
Unlike prior work, CAMEL directly models how a given web
content affects the user expectation and uses this to guide energy
optimization. It goes further by employing transfer learning and
conformal predictions to tune a previously learned model in
the end-user environment and improve it over time. We apply
CAMEL to Chromium and evaluate it on four distinct mobile
systems involving 1,000 testing webpages and 30 users. Compared
to four state-of-the-art web-event optimizers, CAMEL delivers
22% more energy savings, but with 49% fewer violations on the
quality of user experience, and exhibits orders of magnitudes less
overhead when targeting a new computing environment.

I. INTRODUCTION

Web has become the main approach for accessing informa-

tion on mobile systems. Indeed, recent studies suggest that

70% of all web traffic comes from mobile devices with the

average mobile user in the US spending over three hours per

day with web content [1]. When interacting with web content,

mobile users want their devices to react fast to interaction

events while having a long-lasting battery [2]. Achieving both

at once is difficult as web content access often comes with

a high energy cost to end-users [3] but existing mechanisms

for web access optimization often ignore the effects of energy

savings on user experience [4]–[7].

Prior work on energy optimization for mobile web access

has predominantly focused on lowering power consumption of

the transmission and rendering operations for loading a web

page [4], [5], [8]–[10]. Unfortunately, these approaches can

only achieve modest savings as they ignore the continuous

nature of web interactions. Due to small-form-factor of mobile

devices, the webpages often can only be seen through multiple

user interactions, such as scrolling and zooming. As we will

show in this paper, these operations can consume 2 to 5 times

more energy than the initial page loading phase and hence

optimizing energy drain of these operations is critical.

Some more recent works try to reduce the energy footprint

of web interactions by limiting the processor clock speed [6],

[7], [11] or dropping some interaction events [12]. However,

these solutions are suboptimal as they achieve energy savings

at the cost of user experience. Indeed, the user’s sensitivity

to response delay differs, with the content type, nature of

interactions and interactive speed all affecting user expecta-

tions [13]. Another drawback of all existing approaches is

that they offer little ability to adapt a decision policy across

different computing environments. As mobile hardware, web

workloads, and operating system internal mechanisms change

over time, it is unlikely that a policy developed today will

remain suitable for tomorrow.

We present CAMEL, a novel energy optimization strategy

for mobile web interactions that takes into consideration both

the need to reduce the energy footprint and to provide good

user experience. CAMEL preserves user experience through

machine learning models learned offline and deployed on the

device. These models capture subtle interactions between web

content and user perception of delay. This enables CAMEL

to make energy-efficient scheduling decisions for any new

webpage unseen at design time. Specifically, CAMEL in-

tegrates two types of machine-learning models: a per-user

specific predictor that estimates the minimum acceptable re-

sponse delay for given web content, and a profit estimator

that assesses the outcome of different scheduling decisions

given the expected user interaction requirements. CAMEL uses

these two predictors to quickly find the optimal processing

configuration that consumes the least energy but still meeting

the interactivity target of the user.

Developing a practical machine learning approach that

can generalize across a diverse range of constantly evolving

hardware architectures, web workloads and user habits is far

from trivial. Prior work has addressed this portability issue

through rewriting or retraining [14]. Both solutions, however,

are inadequate for mobile web optimization as they either

require expert involvement or substantial overhead for training

data collection. CAMEL is designed to avoid this pitfall.

To target a diverse set of users and mobile devices, CAMEL

employs a novel transfer learning [15] based approach to

tune a generic model developed by the application vendor to

match the requirements of a new user or hardware platform.

Our insight is that one can re-use the knowledge previously

obtained from a different platform or user to speed up learning

in a new environment considerably. Instead of gathering train-

ing samples by profiling the entire dataset, we use statistical

methods to determine which part of the dataset is likely

to offer useful representative information. By using fewer

training instances, we reduce the profiling times and end-user

involvement as well as the cost associated with them. We

show that despite using many fewer training instances, the

resultant performance of CAMEL is comparable to retraining

from scratch by profiling the entire dataset.

To adapt to changes in the deployment environment, CAMEL

combines statistical and probabilistic assessments to estimate

the error bound (or credibility) of a prediction. This provides a



rigorous methodology to quantify how much we should trust a

model’s output, allowing a learning framework to use feedback

on uncertain inputs to continuously update a decision model

in the end-user environment.

We demonstrate the benefits of CAMEL by integrating it into

the rendering architecture of Chromium [16] and evaluating

it against four event-based web schedulers [6], [11], [12],

[17]. We perform an unprecedentedly large-scale evaluation

involving 1,000 testing webpages, 30 users and four distinct

mobile devices. Experimental results show that CAMEL con-

sistently outperforms all existing schemes by delivering better

energy savings with less frequent violations on the quality-

of-experience (QoE). We consider the cases for porting an

existing model to different users or hardware. We show that

CAMEL provides portable performance but incurs significantly

less training overhead over prior strategies.

Contributions. This paper is the first to:

• show how a content-aware QoE optimizing scheme can

be developed for web interactions using predictive mod-

eling (Section IV);

• employ transfer learning to address the model portability

issue across users and devices (Section V-A);

• exploit statistical assessments to detect and improve age-

ing models for mobile web browsing (Section V-B).

II. BACKGROUND AND MOTIVATION

CAMEL reduces energy usage during web interactions.

Existing works largely optimize the initial page loading phase,

but as we demonstrate below, interactions have higher energy

drain and thus more potential for savings. The few works

[6], [11], [17] to address interactions assume a fixed response

deadline for web content, but this runs the risk of degrading

the overall user experience. By contrast, CAMEL minimizes

energy consumption without compromising QoE, by offering

“sufficiently good” performance. This is motivated by user

experience studies showing that improvements beyond “good

enough” are not guaranteed to enhance mobile user experi-

ence [2], [18], e.g., the user cannot tell the difference between

a lag of 10ms compared to a lag of 100ms [13].

A. Problem Scope

CAMEL targets interactions taking place after web contents

have been fetched and the Document Object Model (DOM)

tree constructed. We consider three representative browsing

gestures: scrolling, pinching (i.e., zoom in and out), and

flinging (a quick swipe). We do not consider clicking because

it often leads to a new page loading which can be optimized

by a page-loading-specific scheme like [8]. Our work targets

the widely used big.LITTLE [19] mobile architecture. As a

case study, we apply CAMEL to Chromium, the open-source

project behind Google Chrome and many other browsers like

Opera and Microsoft Edge for ARM. Note that as CAMEL

targets response to interaction events within the web rendering

engine, it is not restricted to browsers but equally applicable

to webview-based apps like social media and newsreaders.
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Figure 1: Motivation webpages (a) and the breakdown of

energy consumption during page loading and interactions (b).
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(b) Frames per second (FPS)

Figure 2: Energy reduction (a) and FPS (b) on BBC and

Wikipedia pages when using the optimal policy over the

interactive governor.

Table I: Optimal configurations for motivation examples.

Event-res.

freq.

big CPU

(GHz)

little CPU

(GHz)

GPU

(MHz)

BBC News 1 / 6 1.28 0.672 250

Wikipedia 1 / 15 1.05 0.49 250

render process placement !

B. Motivating Examples

Consider the scenario depicted in Figure 1 (a) where a user

is scrolling up when reading two webpages from BBC News

and Wikipedia on a recent XiaoMi 9 smartphone (detailed in

Section VI). Here, we use RERAN [20], a record and replay

tool, to replay user interactions.

1) Energy consumption: interactions vs page loading.

Figure 1(b) compares the energy consumed in response to

scrolling against that spent during the loading phase in a WiFi

environment. The measurement excludes energy consumption

during CPU and GPU idle time. To minimize the impact of

screen use and background workloads, we set the screen to

the lowest brightness and close all background workloads. As

can be seen from the diagram, the energy spent during the

interaction phase is 2-5 times higher than that used in the initial

loading phase. This finding is in line with prior studies [11],

[21], suggesting that prior approaches that only focus on the

loading phase would miss a massive optimization opportunity.

2) Room for improvement. In the second experiment, we

wish to understand how much room is available for trading

performance for reduced energy consumption. We consider

two established techniques: (1) setting the CPU/GPU fre-

quency and running the render process on the big or little CPU

cluster, and (2) dropping some of the interaction events (i.e.,

approximate computing). To quantify the user expectation,

we use frames per second (FPS), because it is shown to

strongly correlates to the user’s perceived responsiveness for

web browsing [6], [11]. For most of the participants in our
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Figure 3: Overview of the scheduling framework of CAMEL.

user study (see Section IV-A2), the minimum acceptable FPS

for the BBC and Wikipedia pages is 32 and 23 respectively.

The disparity in the tolerable FPS is due to the content of the

two pages. The BBC page is dominated by images while the

Wikipedia one is dominated by dense texts, and human eyes

are less sensitive to the change of text-dominated content [22].

Figure 2 gives the energy reduction achieved by the optimal

policy over the Android default interactive frequency

governor and the resultant FPS. To find the optimal policy,

we automatically replay the scrolling events and exhaustively

profile all possible options. Table I lists the best processing

configurations for the testing webpages. The best policy for the

BBC page is to respond to one of every six input events1 and

run the render process on the little CPU with an appropriate

clock speed for CPUs and the GPU. This configuration re-

duces energy consumption by 32.2%. For the Wikipedia page,

the best policy gives an energy saving of 38.6%. However,

applying the best policy of the Wikipedia webpage to the BBC

one will give an FPS of 26 (6 FPS below the target of 32)

and a modest energy saving of 2.6% over the actual optimal

policy. Therefore, simply using one optimal policy found for

one webpage to another is likely to either miss optimization

opportunities or compromise QoE.

3) Insights. The two examples show the enormous potential

of energy optimization for mobile web interactions. However,

finding the right processing setting is difficult as it depends

on the web content, individual user expectation, and hardware.

In the next section, we will describe how CAMEL addresses

this challenge by directly modeling the impact of the web

content and interactive speed on user acceptable delay through

predictive modeling.

III. OVERVIEW OF CAMEL

Figure 3 depicts the scheduling framework of CAMEL. It

consists of two innovative components: (a) a QoE predictor

to estimate the minimum acceptable FPS target for a given

user, interactive speed and web content, and (b) a configuration

search engine to find a processing configuration (i.e., an event-

response frequency and a processor setting) that meets the

minimum FPS constraint with minimal energy usage.

A. QoE Predictor

Our QoE predictor takes as input features of the web

page and the incoming interactive speed. It then predicts

the minimum acceptable FPS. A baseline predictor for each

targeting event was first trained “at the factory” through a user

study. The baseline predictor then continuously improves itself

for each target user after deployment.

1Depending on the speed and duration, a gesture often generates multiple
events. For example, a flinging action can trigger over 70 scrolling events.

... ... ... ... ... ... ... ...
Input layer 7x Hidden Layers Output layer

FPS value features
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Figure 4: Our neural network based predictor.

B. Configuration Search Engine

Given a content-specific QoE constraint expressed as an

FPS target, the configuration search engine finds a processing

configuration to use. This is achieved by using an FPS pre-

dictor (or profit estimator) to estimate the FPS as a function

of a processing configuration and web features. By varying

the processing configuration given to the predictor, the search

engine can then exam the expected FPS and choose the best-

performing configuration before applying it. The chosen pro-

cessing configuration is passed to the render-related processes

and a runtime scheduler to adjust the event-response frequency

and processor settings. Like the QoE predictor, we learn one

FPS predictor for each event type, three in total.

C. Adaptive Learning

CAMEL is designed to be a practical scheme that is portable

across users and mobile devices. There are two critical chal-

lenges related to this design goal. Firstly, how to reduce the

end-user involvement in capturing a user’s QoE requirement.

Secondly, how to detect and improve an ageing decision model

in the deployment environment.

To reduce end-user involvement, CAMEL employs transfer

learning (Section V-A) to quickly re-target an existing model

for a new user or platform. Rather than retraining on the

entire training dataset, transfer learning uses only a dozen

of webpages. This not only significantly reduces the profiling

overhead but also allows performing learning on the user’s

device to mitigate the privacy concern for doing that on a

remote server [12]. To detect and improve ageing models,

CAMEL uses conformal predictions (Section V-B) to assess

the credibility of each prediction. It then uses user feedback

or automated runtime measurements on incorrectly predicted

inputs to improve a deployed model over time. This continuous

learning strategy minimizes user intervention by only asking

for feedback when things have gone wrong.

IV. PREDICTIVE MODELING

The QoE and FPS predictors employed by CAMEL are arti-

ficial neural networks (ANNs). We choose the ANN because

it gives better and more robust performance over alternatives

(Section VII-E), and also allows the use of transfer learning

to mitigate the training overhead in the deployment environ-

ment (Section VII-C). We describe our predictive modeling

based framework by following the classical 3-step process for

supervised learning: (1) problem modeling and training data

generation (2) train a predictor (3) use the predictor.

A. Problem Modeling and Training Data Generation

1) Model structure. Figure 4 depicts our neural network - a

fully connected, feed-forward ANN with 7 hidden layers and
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Figure 5: Overview of our training process for FPS predictions.

260 nodes per hidden layer. The number of nodes of the input

layer is determined by the dimensionality of the model input

(Section IV-A3). This structure is automatically determined

by applying the AutoKeras [23] AutoML tool on the training

dataset. In Section VII-E, we evaluate the impact of network

structures on performance.

2) Training data generation. We apply cross-validation to

train and test our models (see also Section VI-C). Training

data are generated by profiling a set of training webpages.

FPS training data. Figure 5 depicts the process for learning a

baseline FPS predictor on 800 training webpages. To generate

training data, we use RERAN to automatically generate a ges-

ture at different speeds (measured by the number of pixels per

second) on each training webpage. For each interactive speed,

we vary the processing configurations and record the achieved

FPS. Specifically, we exhaustively execute the computation-

intensive render and paint processes under each CPU/GPU set-

ting. We also evaluate all candidate event-response frequencies

for a processor setting. In total, we train an FPS predictor on

over 1 million automatically generated training samples (800
webpages × 10 interactive speeds × ∼ 16 processor settings

× 8 event-response frequencies). The processor settings and

event-response frequencies are configurations on the optimal

frontier of performance and energy trade-offs, which are

determined by profiling all possible settings on 20 randomly

chosen training webpages. Note that the trained model can be

applied to arbitrary interactive speeds and processor settings

by taking these as the model inputs. Finally, for each webpage,

we collect the web features as we will described later in this

section. We stress that this process is fully automated and does

not require user involvement.

QoE training data. Our QoE training data are gathered

through a user study. In practice, this can be done through a

crowdsourcing platform like Amazon Mechanical Turk. Our

user study involved 30 paid users (15 females) who were

studying at our institution. To minimize user involvement,

we apply the k-means clustering algorithm [24] to choose

100 representative webpages from our training dataset. We

ask each user to watch the screen update of each training

webpage on a XiaoMi 9 smartphone under various FPS speeds.

We also vary the incoming event by considering 5 commonly

interactive speeds per gesture [12] To help our participants to

correlate the generated events to finger movements, we invite

them to interact with the device and show the resultant FPS

of their finger movements. For each training instance, we ask

a user to select the lowest acceptable screen update rate. We

then record the corresponding minimum acceptable FPS on

a per-webpage, per-speed, per-gesture and per-user basis. On

Table II: Raw web features used in the work

DOM Tree
#DOM nodes depth of tree

#each HTML tag #each HTML attr.

#rules #each property
Style Rules

#each selector pattern

Other GPU memory footprint for viewports

average, it took a participant 2.5 hours to complete the study.

Later, we extend this user study to all 1,000 webpages used

for QoE evaluation using cross-validation.

3) Feature extraction. One of the key aspects in building a

good predictor is finding the right features to characterize the

input workload. In this work, we started from 6,913 raw web

features extracted from the DOM tree. Table II summarizes

our raw features. The features were chosen based on previous

work of mobile web optimization [8] and our intuitions.

The QoE model takes as input the web features of current

and future viewports and the user interactive speed. The

FPS model takes as input the web features, the interactive

speed, the processing setting (i.e., event-response frequency

and processor setting), and the CPU cluster where the render

process is running on (for modeling the penalty for cross-

processor task migration).

Feature reduction. To learn effectively over a small training

dataset, we apply the correlation coefficient and principal

component analysis [24] to reduce the dimensionality of raw

web features from 6,913 to 127. Both techniques are shown

to be useful in prior work for feature reduction [8], [25].

Feature normalization. In the final step, we scale each of the

extracted feature values to a common range (between 0 and 1)

to prevent the range of any single feature being a factor in its

importance. We record the minimum and maximum values of

each feature in the training dataset, in order to scale the feature

values of an unseen webpage. We also clip a feature value to

make sure it is within the expected range during deployment.

4) Training overhead. The time for training the baseline

predictors is dominated by generating the training data. In this

work, it takes less than a week to collect all the training data

for a mobile platform. In comparison processing the raw data,

and building the models took a negligible amount of time, less

than an hour for learning all individual models on a PC. We

stress that training of the baseline predictors is a one-off cost.

B. Training a Baseline Predictor

The collected web feature values and speed together with

the desired FPS values are passed to a supervised learning

algorithm to learn an ANN for each event. For FPS predictions,

we also use additional model inputs as stated in Section IV-A3.

Our models are trained using back-propagation with stochastic

gradient descent (SGD) guided by the widely used Adam

optimizer [26] and L2 regularization, which is a standard-

setting for training ANNs. For training examples y1 . . . yn, the

optimizer finds model parameters Θ to minimize the output of

a mean-squared-logarithmic loss (MSLE) function ℓ:

Θ = argmin
Θ

1

n

n∑

i=1

ℓ (yi,Θ)

We choose MSLE because it penalizes underestimates more

than overestimates, which reduces the chance of QoE viola-

tions due to an underestimated FPS target.



C. Using the Models

The trained predictors can be applied to new, unseen web-

pages. We implemented our models using Keras [27] and

Scikit-learn [28]. Our optimization can be turned on by the

user or enabled during Android’s “Battery Saver” mode. When

a supported event is detected, we will extract web features of

the current and the future viewports from the DOM tree – the

future viewport is calculated based on the interactive speed.

We calculate the average interactive speed using a sampling

window of 50 ms or the interactive session – which is shorter.

We then use the QoE and FPS predictors to choose the optimal

processing configuration as described in Section III-B. To

minimize the runtime overhead, our framework runs on the

least loaded CPU core. The overhead of feature extraction,

predictions, searching, and runtime scheduling is small – less

than 5 ms, which is included in all experimental results.

V. ADAPTIVE LEARNING

We propose two new ways to improve the adaptiveness and

practicability of a machine-learning-based web optimizer.

A. Adapt to A New Environment

1) The problem. QoE is user-specific and the resultant

FPS depends on the underlying hardware. Therefore, using a

generic model across different users and hardware platforms is

ineffective. To tune a model to match a specific user or mobile

device, CAMEL employs transfer learning [15] to quickly port

a baseline predictor to the target computing environment.

2) The idea. Prior work in other domains has shown that

ANN models trained on similar inputs for different tasks

often share useful commonalities [29]. Our work leverages this

insight to speed up the process for tuning a model for a new

user or mobile hardware. This is because the first few layers

(i.e., those close to the input layer) of our ANN are likely to

focus on abstracting web features and largely independent of

the model output. Since we use the same network structure,

transfer learning is achieved by copying the weights of a base-

line model to initialize the new network. Then, we train the

model as usual but using profiling information (as described

in Section IV-A) collected from fewer training webpages.

3) Determining training samples. A key question for ap-

plying transfer learning in our context is how many training

examples do we need. Under-provisioning of training data will

lead to low accuracy, while over-provisioning will incur sig-

nificant profiling overhead especially when that requires end-

user involvement. To determine the right number of training

examples, we group our training webpages using the k-means

clustering algorithm. We then choose two webpages from each

cluster: one is mostly close to its cluster centroid on the feature

space, the other has the biggest Frobenius norm value [30]

with respect to other centroid points. In practice, the chosen

webpages can be shipped as part of the browser bundle, where

profiling can be performed when the device is charging after

the first installation.

To determine the right number of clusters (i.e., K), we use

the Bayesian Information Criterion (BIC) score [31]. The BIC

measures if a selected K is the best fit for grouping data
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Figure 6: Using clustering to choose training examples for

transfer learning. A cluster centroid is marked by a cross, while

the two chosen webpages of a cluster are marked as triangles.

samples within a dataset. The larger the score is, the higher the

chance that we find a good clustering number for the dataset.

The BIC score is calculated as [32]:

BICj = l̂j −
pj

2
· logR

where l̂j is the likelihood of the data when K equals to j,
R is the number of training samples, and the free parameter
pj is the sum of K − 1 class probabilities – calculated as:
pj = (K − 1)+ dK +1 for a d-dimension feature vector plus

1 variance estimate. l̂j is computed as:

l̂j =

k∑

n=1

−
Rn

2
log(2π) −

Rn · d

2
log(σ̂

2
) −

Rn − K

2
+ Rnlog(Rn/R)

where Rn is the number of points in a cluster and σ̂2 is the

distance variance between each point to its cluster centroid.

4) Illustrative example. Figure 6 illustrates how one of our

training dataset of 800 webpages can be grouped into 9 clusters

determined using the BIC score. To aid the clarity, we apply

t-SNE [33] to project the data onto a two-dimensional space.

Directly using an FPS model trained for Pixel 2 to XiaoMi 9

gives an error rate of 37.5%. By using profiling information

collected from 18 carefully chosen webpages on the target

device to update the predictor, the error rate decreases to 6.7%.

Such performance is not far from the error rate of 4.6% when

training the model from scratch by profiling the entire 800

training webpages, but we cut the training time from two days

to less than two minutes on the end user’s phone.

B. Continuous Learning at the Deployment Environment

1) The problem. The key for continuously improving a

model after deployment is knowing when the model is wrong

so that we can use the ground-truth to improve it. Judging

if an FPS prediction is inaccurate is straightforward because

the ground-truth can be automatically measured. Checking if

a QoE target meets the user expectation is harder because we

cannot ask a user to provide feedback every time.

2) The solution. To estimate if a QoE target prediction is

wrong, we leverage the conformal prediction (CP) [34], [35].

The CP is a statistical assessment method for quantifying how

much we could trust a model’s prediction. This is done by

learning a nonconformity function from the model’s training

data. This function estimates the “strangeness” of a mapping

from input features, x, to a prediction output, y, by looking

at the input and the probability distribution of the model

prediction. In our case, the function estimates the error bound

of a QoE prediction. If the error bound is greater than a



Table III: Evaluation platforms

Device CPU GPU RAM

(GB)

Screen

(inches)

OS

XiaoMi 9 Snapdragon 855

@ 2.84 GHz

Adreno 640 8 6.39 MIUI 10

(Android 9)

Google

Pixel 2

Snapdragon 835

@ 2.35 GHz

Adreno 540 4 5.0 Android 9

Huawei

P9

Kirin 955 @ 2.5

GHz

Mali T880 3 5.2 Android 8

Odroid

Xu3

Exynos 5422 @

2 GHz

Mali T628 2 4 Ubuntu

16.04
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Figure 7: The CDF of #DOM nodes (a), webpage size (b).

configurable threshold (20% in this work), we then consider

the model gives an incorrect prediction.

CAMEL uses the inductive CP as it works with any regres-

sion model [36]. For a prediction, y, of input x, function f
calculates the nonconformity score as:

f(x, y) =
|y − h(x)|

g(x) + β

where h is a regression-based QoE or FPS model, g estimates

the difficulty of predicting y and β is a sensitive parameter that

determines the impact of normalization. Note that g and β are

automatically determined from training data.

3) Continuous learning. For a QoE prediction that is con-

sidered to be inaccurate, CAMEL takes the high-end value of

the CP-estimated error bound to minimize QoE violations. It

then finds out the actual QoE target by seeking user feedback.

This is done by automatically replaying the screen update

under different FPS settings, from high to low. For each set-

ting, CAMEL asks the user to rate the screen update for being

“acceptable” or not. It stops playing the screen update when

the user indicates an FPS setting is unacceptable. To update

a QoE or FPS model, CAMEL adds profiling information of

the uncertain inputs to the transfer learning dataset. When

the device is charging, CAMEL runs the learning algorithm

to update the predictors and CP models.

VI. EVALUATION SETUP

A. Platforms and Workloads

Evaluation Platforms. To implement CAMEL, we modified

Chromium (ver. 74)2 and compiled it under the “release”

build. Our evaluation platforms, detailed in Table III, include

different hardware specs, representing low, medium and high-

end mobile systems. We specifically include Odroid Xu3,

because all, except one [12], of our competitive schemes have

been tuned and evaluated on this platform.

Web Workloads. We use the landing page of the top 1,000

hottest websites (as of May, 2019) ranked by alexa.com

based on the global web traffic analysis. Figure 7 shows the

CDF of the number of DOM nodes and web content sizes.

The webpage sizes range from small (4 DOM nodes and 10

2Code can be downloaded from [https://bit.ly/2srZbs9].

KB) to large (over 7000 DOM nodes and 14 MB), indicating

that our test data cover a diverse set of web contents.

B. Competitive Approaches

We compare CAMEL to the following state-of-the-arts:

• EBS: A regression-based method for adjusting the pro-

cessor frequency to meet a fixed response deadline [6];

• Phase-aware: An event-phase-based power manage-

ment strategy for mobile web browsing [17];

• ML-governor: A machine-learning-based CPU fre-

quency governor for interactive web browsing [11];

• eBrowser: This strategy puts the browser process into

sleep to drop some of the input user events [12].

All the above schemes require learning on the entire training

dataset for each hardware architecture. Moreover, all, except

eBrowser, assume a fixed deadline for an event type.

C. Evaluation Methodology

Model evaluation. Like [11], we use five-fold cross-validation

to train all machine learning models (including our competi-

tors). Specifically, we randomly partition our 1,000 websites

into 5 sets where each set contains webpages from 200 sites.

We keep one set as the validation data for testing our model,

and the remaining 4 sets as training data to learn a model.

We repeat this process five times (folds) to make sure that

each of the 5 sets used exactly once as the validation data. To

minimize user involvement, we use a subset of webpages from

the training dataset to build the QoE model as described in

Section IV-A2. This is a standard methodology for evaluating

the generalization ability of a learned model.

Metrics. We consider two metrics: energy saving and QoE

violation. Energy saving is normalized to the energy consumed

by the interactive scheduler, an Android default CPU

governor for interactive applications. QoE violation is calcu-

lated as δ/FPSmin, where δ is the number of FPS falls below

the minimum acceptable FPS, FPSmin [11]. We do not use

powersave as a baseline as it gives long processing times

and violates QoE for all our test cases.

Measurements. For energy measuring, we use a Monsoon

power meter [37] (except for Odroid Xu3 because it already

has onboard power sensors for energy measurement) to mea-

sure the power consumption of the entire system including

the display with a 50% brightness (a typical indoor setting of

Android). For the FPS, we use a script to count the number

of invocations of the SurfaceView object of Chromium.

Reporting. When reporting performance, we use the geomet-

ric mean, which is widely seen as a more reliable performance

metric over the arithmetic mean [38]. Unless state otherwise,

we report the geometric mean across 3.6 million automatically-

generated test cases of 1,000 webpages, 30 users, 4 devices,

3 gestures and 10 speeds per gestures, using cross-validation.

Moreover, events are automatically generated, starting from

the initial viewport of a webpage. To have statistically sound

data, we run each approach on a test case repeatedly until the

confidence-bound under a 95% confidence interval is smaller

than 2%. Finally, all webpages are loaded from the device’s
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achieved by our approach over interactive.
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Figure 9: Compare with the state-of-the-arts. CAMEL consis-

tently outperforms all alternatives.

internal storage to preclude network variances, and we disable

the browser cache to ensure consistent results across runs.

VII. EXPERIMENTAL RESULTS

A. Content-aware QoE Optimization

To evaluate the benefit of content-aware QoE optimizations,

in this experiment we train our predictors on the entire training

dataset, but we will evaluate transfer learning in Section VII-C.

The results are given in Figure 8, where the min-max bars

show the variances across our evaluation scenarios.

Figure 8a shows that CAMEL reduces energy consumption

by at least 23.6% (up to 58.5%), and Figure 8b confirms that

such large energy reduction does not necessarily come at the

cost of poor user experience. CAMEL only leads to 1% to 4%

of QoE violations on less than 5% of the testing webpages with

2 to 3 lower than expected FPS values. On testing webpages

where no QoE violation occurred, CAMEL delivers 92.4% of

the available energy savings given by a theoretically perfect

predictor (found by exhaustively profiling) that always chooses

the optimal processing configuration. Furthermore, if we take

a conservative approach by adding 10% to the predicted FPS

QoE target, CAMEL can then eliminate all the QoE violations,

but still gives an average energy reduction of 21.3% (12.1%

to 37.4%). This results show that CAMEL is highly effective

in trading performance for energy savings.

B. Compare to Competitive Approaches

Figure 9 compares CAMEL with alternative schemes. The

white dot in the plots denotes the median value and the thick

black line represents 50% of the data. For fair comparison, all

schemes are built from the same training dataset.

All approaches improve over the interactive baseline.

By modeling the impact of web content on QoE and using

this to configure the heterogenous hardware, CAMEL gives the

highest overall energy saving and the lowest QoE violation

ratio. Specifically, CAMEL reduces the energy consumption

by at least 14.6% (up to 29%), but with at least 25.1% (up to

88.3%) lower QoE violations compared to prior methods.

C. Evaluation of transfer learning

We now evaluate our strategy for applying transfer learning

(TL) to tune baseline predictors for a new environment. On

average, TL delivers 27.4% (up to 53.1%) of energy savings

with less than 6% of QoE violations. This performance is

comparable to the one reported in Section VII-A when the

QoE and FPS predictors are trained from scratch every time.

1) Tuning FPS predictors. Figure 10 shows the results for

using TL to port a baseline FPS predictor for a new platform.

Although we only use 2.3% of the training examples (i.e., 18

webpages - see Section V-A3), performance of the TL-learnt

model is compared to training a completely new model using

800 webpages. We see only a marginal increase of 4.46% in

the error rate. As subgraphs b and c in Figure 10 show, on

average, TL gives 29.7% of energy reduction with 4.9% of

QoE violations for porting an FPS predictor to a new platform.

Figure 10d shows how the error rate changes as we increase

the number of training webpages when using TL to port an

FPS model built for XiaoMi 9 to Huawei P9. Using more

webpages does improve prediction accuracy. However, the

performance reaches a plateau when using 18 webpages, and

a further increase in the number of training webpages does

not justify the increased profiling overhead.

2) Tuning QoE predictors. We divide the 30 participants

of our user study into 3 groups based on their minimum

acceptable FPS. The low-expectation group has 10 users with

an averaged FPS target of under 35; the moderate-expectation

group has 14 users with an averaged FPS target of between

35 and 49; and the high-expectation group has 6 users with

an averaged FPS target of over 49.

Figure 11a reports the performance for applying TL (with

cross-validation) to port a QoE predictor to another user from

the same or a different group. As expected, TL within the

same user group gives the lowest error rate of between 3.1%

(1.1 FPS) and 4.58% (2.08 FPS). We see a slight increase

in the error rate when applying TL across user groups, but

the average error rate is 6.9% (2.94 FPS). In practice, we can

further improve the performance by choosing a pre-trained

model that is as close as possible to the target user based on

observations seen from the first few webpages, e.g., using a

recommendation system [39], [40]. We leave this as our future

work. Figure 11b shows the error rate when applying TL to

a QoE model from a different group to the LEG group. Like

the previous experiment, we see the accuracy improvement

reaches a plateau when using 18 webpages.

D. Evaluation of Continuous Learning

To mimic the impact of changing web workloads on a

deployed QoE or FPS predictor, we train an initial predictor on

50% of the training samples and test the trained predictor on
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Figure 11: Applying transfer learning for QoE predictions.

the remaining webpages using cross-validation. To isolate the

impact of TL, the initial models in this evaluation are learned

using data collected from the target environment.

Detect ageing models. Our first experiment aims to evaluate

CAMEL’s ability in using CP to detect an ageing QoE predictor

due to workload changes. We do not apply CP to the FPS

predictor because the ground-truth can be directly measured.

We are interested in knowing how often our CP function (see

Section V-B) successfully detects when a predicted QoE target

has an error of more than 5%. Our CP scheme successfully

catches 96.4% of the inputs where the QoE predictor gives a

wrong prediction under our criterion. Our scheme also has a

low false positive (i.e., when the CP model thinks the QoE

predictor is wrong but it is not) rate of 5%.

Model update. We can use user feedback (for QoE predic-

tions) or automated profiling information (for FPS predictions)

on the first few mispredicted webpages flagged by CAMEL

to update an existing model. We found that CAMEL updated

using five mispredicted webpages delivers on average 98%

(for QoE predictions), and 97% (for FPS predictions) of the

performance given by a model trained using the entire dataset

on the target platform. This translates into an improvement of

over 23.4% for the initial predictor in this experimental setting.

Because profiling only needs to be performed on incorrectly

predicted inputs, the model retraining process is fast, taking

less than 2 minutes on a XiaoMi 9 phone; in comparison,

profiling on the entire training dataset would take hours.

In practice, one would first use TL to tune the baseline

predictors during the first installation. Then, the CF scheme

can be used to update the installed models. This experiment

shows that CAMEL is highly effective in detecting and updat-

ing ageing models without incurring significant overhead.

E. Model Analysis

1) Impact of neural layers and training samples. Figure 12a

gives the error rate when an ANN-based FPS predictor is
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Figure 12: Impact of the number of hidden neural layers (a)

and training webpages for our ANN-based FPS predictors (b).
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Figure 13: Distributions of optimal processor settings.

constructed with different numbers of hidden layers. To isolate

the impact of TL, we first train the model using 800 webpages

and then test the trained model on another 200 webpages.

Using 7, 14 and 8 hidden layers give the best performance for

scrolling, flinging and pinching respectively. We choose to use

a unified model structure with 7 hidden layers as it requires

fewer training examples and the performance is not far from

the optimal settings. Looking at Figure 12b, we see a steady

decline in error rates when using more examples to train the

baseline predictors. This is not surprising, as the performance

of a predictive model generally improves as the number of

training samples increases. Since a baseline model only needs

to be trained once, this is a one-off cost.

2) Processor configuration distributions. Figure 13 shows

the distribution of the most optimal processor settings. Here,

we use the notation < ERF - event response frequency, GPU-

freq, rendering CPU core - rendering CPU core freq, other

CPU core freq> to denote a processing configuration. For

example, <ERF-10, GPU-0.48, A53-1.3, 0.8> means that we

response to 1 out of every 10 input events of the same type,

the painting process running on the GPU at 480MHz, and

the render process running on the little A53 core at 1.3 GHz

while the big core operates at 800MHz. Although some of

the configurations are being optimal more frequently than
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runtime overhead.

others, the distribution varies across event types and hardware

platforms. This diagram reinforces the need for an adaptive

scheme. CAMEL is designed to offer such a capability.

3) Alternative modeling techniques. Figure 14 compares

our ANN-based FPS predictor against four alternative regres-

sion methods used in prior relevant works: Linear Regression

(LR), Polynomial Regression (PR), Support Vector Regression

(SVR), and Random Forest (RF). All the alternative techniques

were trained and evaluated by using the same method and

training data as our models. Our approach achieves the lowest

error rate and enables us to employ transfer learning.

4) Overhead breakdown. Figure 15 gives a breakdown of

the runtime overhead of CAMEL (which was already included

in our experimental results). CAMEL introduces little overhead

to the end to end turnaround time and energy consumption,

less than 1% and 4% respectively.

F. Discussions and Future Work

Multi-tasking environment. CAMEL can be extended to a

multi-tasking environment for optimizing the front-running

application. On mobile systems, background workloads are

typically put into a sleeping or closed status, and thus not

require a quick response at the background. CAMEL can also

be integrated with an interference-aware scheduler like [9] to

minimize the impact on concurrently running workloads.

Display optimization. Our experimental results already in-

clude energy consumption of the screen, but we do not

optimize the display setting. Since the display setting does not

affect the processing latency, CAMEL can be easily integrated

with a display optimization scheme like [41] and [42].

Dynamic content. Our work does not consider network la-

tency as most of the web content would already be downloaded

before a user interaction commences. However, it is possible

that user interaction will trigger new network activities. Meth-

ods on latency-aware optimizations for page loading [8] or

dynamic content [43] are thus complementary to CAMEL.

Apply to other applications. CAMEL can be directly applied

to WebView-based applications without modification to the

application code. From Android 4.4, WebView is based on the

Chromium rendering architecture on which CAMEL is tested.

VIII. RELATED WORK

Our work is broadly related to the literature in four areas:

Mobile web workload optimization. Prior work has focused

on the initial page loading phase through e.g., dynamic fre-

quency scaling [4], [8], [9], accumulating traffics [5], [10]

and parallel downloading [44]. CAMEL targets the later user

interaction phase. It is closely related to event-based power

management for mobile web browsing [6], [7], [11]. However,

these previous methods have three drawbacks: (1) by assuming

a fixed response deadline, (2) have intensive overhead for

targeting new hardware and user, and (3) cannot examine

whether a decision model still fits. eBrowser [12] uses image

entropy to characterize the web content, but it requires all web

contents to be rendered ahead of time, introducing significant

start up delays and could waste computation cycles. CAMEL is

designed to address these limits, offering a better and practical

way to target a wider range of computing environments.

QoE modeling. Prior research models user experience through

usability studies [45], contextual inquiries [46] or data log-

ging [2], by considering generic metrics like power consump-

tion, response time and network latency. Unlike these works,

CAMEL is a content-aware QoE estimation scheme by directly

modeling the impact of web workloads on QoE.

Energy optimization. Other relevant works include opti-

mizations for the display [47] and radio [48], dynamic

content caching [49] or prefetching [50], optimizations for

JavaScript [43], and multi-event scheduling [25]. As pointed

out in [50], mobile web browsing requires novel techniques

across the computing stack; CAMEL thus benefits from tech-

niques from different computing layers.

Machine learning for systems optimizations. Machine learn-

ing has been used to model power consumption [51], task

scheduling [14], [52] of mobile systems and program tuning

in general [53]–[72]. Our work tackles an outstanding problem

of porting a model to a new computing environment. Transfer

learning was recently used for wireless sensing [73] through

randomly chosen samples. CAMEL improves [73] by carefully

choosing representative tracing examples for transfer learning.

Conformal prediction was used for malware classification [74],

but not the regression problem addressed by CAMEL. We

note that the novelty of CAMEL is a new way of combining

statistical learning and techniques, rather than improving the

learning algorithm itself.

IX. CONCLUSIONS

This paper has presented CAMEL, a novel energy optimiza-

tion scheme for interactive mobile web browsing. Unlike prior

work, CAMEL models how the web content and interactive

speed affects the QoE. To develop a practical solution, CAMEL

employs transfer learning and conformal predictions to auto-

matically adapt an existing policy to the changes of users,

hardware platforms or web workloads. We apply CAMEL to

Chromium and evaluate it on four mobile systems across

1,000 webpages and 30 users. Experimental results show that

CAMEL consistently outperforms existing web-optimizers, and

has less overhead when targeting a new user or device.
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