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Abstract

Supervised machine learning techniques have shown promis-
ing results in code analysis and optimization problems. How-
ever, a learning-based solution can be brittle because minor
changes in hardware or application workloads – such as fac-
ing a new CPU architecture or code pattern – may jeopardize
decision accuracy, ultimately undermining model robustness.
We introduce Prom, an open-source library to enhance the
robustness and performance of predictive models against
such changes during deployment. Prom achieves this by us-
ing statistical assessments to identify test samples prone to
mispredictions and using feedback on these samples to im-
prove a deployed model. We showcase Prom by applying it
to 13 representative machine learning models across 5 code
analysis and optimization tasks. Our extensive evaluation
demonstrates that Prom can successfully identify an average
of 96% (up to 100%) of mispredictions. By relabeling up to 5%
of the Prom-identified samples through incremental learn-
ing, Prom can help a deployed model achieve a performance
comparable to that attained during its model training phase.

CCS Concepts: • Software and its engineering→ Soft-

ware reliability; • Computing methodologies→ Artifi-

cial intelligence.

Keywords: Model reliability, Statistical assessment, Machine
learning
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1 INTRODUCTION

Supervised machine-learning (ML) is a powerful tool for
code analysis and optimization tasks like bug detection [28,
39, 73, 75] and runtime- or compiler-based code optimiza-
tion [18, 19, 52, 53, 68, 74, 76–78, 82, 84]. ML works by train-
ing a predictive model from training samples and then apply-
ing the trained model to previously unseen programs within
operational environments that often have diverse application
workloads and hardware [32, 79].

ML solutions, while powerful, can be fragile. Small changes
in hardware or application workloads can reduce decision
accuracy and model robustness [59]. This often arises from
“data drift” [51, 70], where the training and test data dis-
tributions no longer align. Data drift can occur when the
assumption that past training data reflects future test data is
violated. In code optimization, this can result from changes
in workload patterns, runtime libraries, or hardware micro-
architectures. It is a particular challenge for ML-based per-
formance optimizations, where obtaining sufficient perfor-
mance training data is difficult [20, 48].
Existing efforts to enhance ML robustness for code op-

timization have predominantly focused on improving the
learning efficiency or model generalization during the design
time. These approaches include synthesizing benchmarks
to increase the training data size [15, 20, 69], finding bet-
ter program representations [18, 73, 75, 82], and combining
multiple models to increase the model’s generalization abil-
ity [43, 65, 75]. While important, these design-time methods
are unlikely to account for all potential changes during de-
ployment [42]. Although there has been limited exploration
into the validation of model assumptions [25] for runtime
scheduling, existing solutions assume a specific ML architec-
ture and lack generalizability.
We introduce Prom, an open-source toolkit designed to

address data drift during deployment, specifically targeting
code optimization and analysis tasks. Prom is not intended to
replace design-time solutions but to offer a complementary
approach to improve ML robustness during deployment. Its
primary objective is to ensure the reliability of an already
deployed system in the face of changes and support continu-
ous improvements in the end-user environment. To this end,
Prom offers a Python interface for training and deploying
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supervised ML models, focusing on detecting data drift post-
deployment. Model and application developers can integrate
Prom into the ML workflow by implementing its abstract
class, usually requiring just a few dozen lines of code.

Prom adopts the emerging paradigm of prediction with re-

jections [11, 37, 63, 83], which identifies instances where pre-
dictions may be inaccurate, allowing for corrective measures
when data drift occurs. For instance, an ML-based perfor-
mance tuner can notify users when the model prediction, like
the compiler flags to be used for a given program, might not
yield good performance, prompting them to use alternative
search processes [7, 74] to find better solutions [35]. Like-
wise, a bug detector can alert users to potential false positives
for expert inspection. Essentially, this capability allows using
alternative metrics when predictive model performance de-
teriorates. By flagging likely mispredictions, Prom supports
continuous learning by using these mispredicted instances as
additional training samples to enhance model performance
in a production environment.
To evaluate whether a predictive model may mispredict

a test input, Prom computes the credibility and confidence

scores of the prediction during deployment. Credibility mea-
sures the likelihood that a prediction aligns with the learned
patterns. High credibility means the test input is highly con-
sistent with the training data, suggesting the model’s predic-
tion is likely to be reliable. Conversely, the confidence score
estimates the model’s certainty in its prediction. Prom uses
the two scores to determine whether the model’s outcome
should be accepted or requires further investigation. Our
intuition is that a prediction is reliable only if the model
shows high confidence in its predictions and these predic-
tions, along with the model’s confidence level, are credible.
Prom employs conformal prediction (CP) theory [10] to

assess the test input’s nonconformity to compute the confi-
dence and credibility scores of a prediction. Nonconformity
is measured by comparing the test input against samples
from a calibration dataset held out from the model training
samples. The idea is to observe the ML model’s performance
on the calibration set and then evaluate the test input’s simi-
larity (or “strangeness") to the calibration samples.

Prom draws inspiration from recent advances in applying
CP to detect drifting samples in malware prediction [11, 37]
and wireless sensing [83]. While CP has shown promise in
these domains, its effectiveness for code optimization tasks
remains unclear. This paper presents the first application of
CP to code optimization tasks like loop vectorization and
neural network code generation. Doing so requires address-
ing several key limitations of existing approaches. One major
drawback of prior methods is they rely on the entire calibra-
tion dataset to compute the nonconformity of test samples,
which is ill-suited for code with diverse patterns. For ex-
ample, if we want to estimate the model’s accuracy on a
computation-intensive program, including many calibration
samples with different characteristics (e.g., memory-bound

benchmarks) can mislead and bias the credibility estimation.
Furthermore, previous solutions employ a monolithic non-
conformity function that lacks robustness across different
ML models and tasks. They also do not support regression
methods and usually require changing the underlying ML
model [83]. Prom is designed to overcome these pitfalls.
Unlike prior work [11, 37, 83], Prom adopts an adaptive

scheme to measure a test sample’s nonconformity. Instead of
using the entire calibration dataset, Prom dynamically selects
a subset of calibration samples with similar characteristics to
the test sample in the feature space defined by the ML model.
When computing the nonconformity score, Prom assigns
different weights to these selected samples based on their
distance from the test sample, giving higher weight to closer
samples. This scheme allows Prom to construct a calibration
set that closely matches the test sample distribution, thereby
improving nonconformity estimation accuracy.
Prom improves conformity reliability by using multiple

statistical functions to compute nonconformity scores and
applying a majority voting scheme to approve or reject pre-
dictions. It is extensible, allowing easy addition of new non-
conformity functions. Prom also supports regression by com-
bining CP with clustering algorithms. Unlike [83], it uses
a model-free approach instead of learning a probabilistic
classifier for data drift detection.
As a potential mitigation of data drift, we showcase that

Prom enables a learning-based method to enhance its robust-
ness and maintain reliable performance over time. This is
achieved by adopting incremental learning [4, 30] to retrain
a deployed model using drifting samples from the production
environment. Depending on the specific application, one can
relabel a few test samples flagged by Prom and use the re-
labeled data to retrain the model, by only seeking feedback
and user intervention on instances showing data drift. We
stress that incremental learning is just one of the possible
remedies, but such mitigations hinge on accurately detecting
drifted samples - the main focus of this work.
We demonstrate the utility of Prom by applying it to

13 representative ML methods developed by independent
researchers for code optimization and analysis [13, 18, 19,
28, 34, 39–41, 62, 75, 82, 84]. Our case studies cover five
problems, including heterogeneous device mapping [13, 18,
19, 82], GPU thread coarsening [19, 41, 82], loop vector-
ization [62, 82], neural network code generation [84] and
source-code level bug detection [28, 39, 40, 75]. Experimental
results show that Prom can successfully identify an average
of 96% (up to 100%) of test inputs where the underlying ML
model mispredicts with a false-positive rate1 of less than
14%. By employing incremental learning, Prom substantially
enhances prediction performance in the operational environ-
ment, allowing the deployedmodel tomatch the performance

1This occurs when the ML model gives an accurate prediction, but Prom
believes otherwise.
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achieved during its design phase. Notably, this improvement
is achieved with minimal user intervention or profiling over-
head. In our evaluation, Prom requires relabeling fewer than
5% of the samples identified as drifted by Prom, which are
then used to update the model through retraining.

This paper makes the following contributions:

• The first framework to address ML model reliability
after model deployment for code analysis and opti-
mization;

• A collection of ready-to-use conformity measurements
to support both classification and regression models
for code optimization and analysis during deployment
(Sec. 4);

• A new adaptive weighting scheme and ensemble ap-
proachwhen applying CP to detect data drift (Sec. 5.1.2)
and an ensemble approach to detect mispredictions;

• A large-scale study validating the effectiveness of CP
in code optimization and analysis tasks (Sec. 7).

2 MOTIVATION

As a motivating example, consider training and using an
ML model to detect source code bugs. In this pilot study, we
consider Vulde [39], which uses a long short-term memory
(LSTM) network for bug detection. Following the original
setup, we train and test the model on labeled samples from
the common vulnerabilities and exposures (CVE) dataset. We
use the open-source release of Vulde and ensure results are
comparable to those in the source publication of Vulde.
Figure 1(a) shows what happens if we train Vulde using

CVE data collected between 2012 and 2014 and then apply it
to real-life code samples developed between 2015 and 2023.
This mimics a scenario where the code and bug patterns may
evolve after a trained model is deployed. The trained model
achieves an F1 score of more than 0.8 (ranging from 0 to 1,
with higher being better) when the test and training data are
collected from the same time window. However, the F1 score
drops to less than 0.3 when tested on samples collected from
future time windows. This shows that data drift can severely
impact model performance, which was also reported in prior
studies [49, 75].
To illustrate code pattern changes, Figures 1(b) and 1(c)

show two cases of “double-free” vulnerabilities, one from
2012 and one from 2023. Earlier cases were simpler, where
the same memory was freed twice (e.g., name is freed on lines
6 and 8). A model trained on these samples is unlikely to
detect the later, more complex case in Figure 1(c), where a
“double-free” occurs due to concurrent threads calling the
same buffer-free routine. Because it is difficult to collect a
training dataset which covers all possible code patterns seen
in deployment time, data drift can happen in the real-life
deployment of ML models for code-related tasks.

12-14 15-17 18-19 20-21 22-23
Years

0.2
0.4
0.6
0.8

F1
 sc

or
e Vulde

(a) Data drift leads to deteriorating performance in software vulnera-
bility detection.

1 static sftp_parse_attr_3 (...) {

2 ssh_string name = NULL;

3 ...

4 if ((name = buffer_get_ssh_string(buf))...)

5 {...}

6 ssh_string_free(name);
7 ...

8 ssh_string_free(name);}

(b) CVE-2012-4559: A “double-free" for name at lines 6 and 8.

1 #define NUMT 100

2
3 CURLcode curl_easy_cleanup (...){
4 sts = ...;

5 if(sts) {...

6 hsts_free(sts);}}
7 ...

8 static void* pull_one_url (...){

9 for (i = 0; i < NUMT; i++) {

10 CURL* curl = ...;

11 ...

12 curl_easy_cleanup(curl); }}

13
14 int main (...) {...

15 for (i = 0; i < NUMT; i++) {

16 pthread_create(pull_one_url ,...);

17 ...}

(c) CVE-2023-27537: A potential “double-free" due to multiple con-
current threads can invoke hsts_free at line 6 at the same time.

Figure 1. Motivation example: impact of data drift on ML
models for code vulnerability detection.

3 BACKGROUND

3.1 The Need of Credibility Evaluation

To detect unreliable prediction outcomes, a straightforward
approach is to analyze probability distribution given by an
ML model. For instance, a high prediction probability for a
specific label might suggest high confidence in the prediction.
However, this alone does not fully capture the prediction’s
reliability, as ML models can produce skewed probabilities
for rarely seen samples. Consider multi-class classification
for example. An ML model predicts the likelihood, 𝑟 𝑖 , that a
given input belongs to each class (𝑐1 to 𝑐𝑛). However, if the
input’s pattern significantly differs from training samples,
the model might assign a low probability to some classes
(e.g., 𝑟 1 ≈ 0.0 for class 𝑐1). This can disproportionately in-
flate the probabilities of other classes (𝑟 2 to 𝑟𝑛) as the sum
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Figure 2. Workflow of Prom during deployment.

of probabilities needs to equal 1.0 [12]. In this case, a high
probability does not equate to high prediction confidence.
Therefore, assessing the model’s credibility requires an ap-
proach that evaluates how well the input aligns with the
training data.

3.2 Statistical Assessment

Prom uses statistical assessments to evaluate prediction cred-
ibility and confidence. Unlike typical probabilistic evalua-
tions in ML models, which assess the likelihood of a test
sample belonging to a certain class or value in isolation, sta-
tistical assessments draw from historical data distributions.
They answer questions like: “How likely is the test sample

to belong to a class compared to all other possible classes”?
By framing the sample within the broader context of his-
torical decisions and probabilistic distributions, statistical
assessments quantify the uncertainty of a prediction.

3.3 Conformal Prediction

Prom is built on conformal prediction (CP) [5, 10], which,
given a model 𝑔 and a significance level, defines a prediction
region that contains the true value with a certain probability.
CP constructs this region based on training data distribu-
tion, accounting for noise and variability. CP was designed
to improve prediction coverage by calculating a prediction
range. Prom utilizes CP, for a different purpose: evaluating
the reliability of a model prediction.
P-value. Prom uses the p-value [66], given by CP, to assess
the prediction credibility in its predictions and the confi-
dence of the credibility. We use it to quantify evidence that
contradicts a null hypothesis. For instance, in determining
the confidence of a classifier’s prediction, the null hypothesis
would assert that there is no substantial difference between
the predicted class and any other class, as observed from
the model’s probability distribution. Likewise, in assessing
the credibility of a prediction, the null hypothesis assumes
that the prediction does not fall within a specific prediction
region computed by CP. In Prom (see also Sec. 5.1.2), a high
p-value suggests that the likelihood of the observed data un-
der the null hypothesis is small, providing strong evidence
against it. Conversely, a low p-value indicates a high likeli-
hood of the observed data under the null hypothesis, thus
offering weaker evidence against it. In other words, a high
p-value suggests that the prediction is reliable.

PROM

Design phase Deployment phase

Unseen 
sample

Definition

Underlying model

Dataset

Training 
interface

Expert 
committee

. . .Scoren

Drifting 
data

Incremental learning

Feature 
distribution

Nonconformity 
scores

. . .Scoren

... Credibility score

Confidence score

Fun 1

Fun n
...

Calibration set

User involve.

Figure 3. At design time, Prom splits the training data into
training and calibration sets. During deployment, it calcu-
lates credibility and confidence scores, using majority voting
to detect drifting samples. These samples can then be labeled
for model updates via offline incremental training.

1 from prom import ModelInterface

2
3 class ModelDefinition(ModelInterface):

4 def __init__(self , model , cali_dataset):

5 # Setting the underlying model

6 self.model = model

7 self.calibration_data = cali_dataset

8 super ().__init__ ()
9
10 def data_partitioning(self , dataset ,

calibration_ratio =0.1):

11 # Splitting the training data into

training and calibration sets

12 ...

13 return training_data , calibration_data

14
15 def predict(self , X, significant_level =0.1):

16 ...

17 # Underlying model prediction function

also returns a probabilistic vector

18 pred , probability = self.model.predict(X)

19 #Call the expert committee

20 drifted = self.classifier(probability ,

significant_level)

21 return pred , drifted

22
23 def feature_extraction(self , X):

24 # Convert the model input into a feature

vector

25 ...

26 return self.model.feature_extraction(X)

27
28 if __name__ == '__main__ ':

29 model = ModelDefinition(mymodel , dataset)

30 pred , drifted = model.predict(sys.argv [1])

Figure 4. Simplified code template of Prom.

4 OVERVIEW of PROM

Figure 2 illustrates how Prom can enhance learning-based
methods during deployment. Users of Prom are ML model or
application developers. Prom requires no change to a user
model’s structure and working mechanism. In this paper, we
refer to the user model as the “underlying model".
User involvement. For a given input, the underlying model
works as it would without Prom during inference. Users of
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Prom need only provide the model training dataset and the
training interface to Prom.
Added values of Prom. Prom serves as an open-source
framework that provides: an adaptive scheme for construct-
ing the calibration set; a collection of conformal prediction
methods that take as input the intermediate results (e.g.,
probabilities of each class label produced by the underlying
model) to compute a credibility and confidence score, which
is used to suggest whether to accept the prediction outcome;
and an ensemble approach to detect mispredictions.
Scope. Prom goes beyond a standard CP library [44, 64] and
is not limited to code-related tasks. It tackles a key challenge
in ML for code analysis and optimization - insufficient data
for training robust models at design time - by offering an
orthogonal approach to enhance model reliability during
deployment. This makes it particularly useful for ML in code
analysis and optimization.

4.1 Implementation

We implemented Prom as a Python package, offering an API
for use during both the ML model design and deployment
phases. Prom provides interfaces to assess framework setup
(Sec. 5.2), automatically searches for hyperparameter set-
tings on the training and calibration datasets, and provides
examples to showcase its utilities. These include all the case
studies and ML models used in this work (Sec. 6) and simpler
examples for beginners. Prom supports classification and
regression methods built upon classical ML methods (e.g.,
support vector machines) and more recent deep neural net-
works. Figures 3 and 4 provide an overview of Prom’s role
during the model design and deployment phases, described
as follows.

4.1.1 Model design phase. As depicted in Figure 4, us-
ing Prom requires overwriting a handful of methods in
Prom’s ModelDefinition class and exposing the underlying
model’s internal outputs.
Training data partitioning. Prom is based on split CP [5,
10], which divides the training data into a “training dataset”
and a “calibration dataset”. Prom uses the calibration dataset
to detect drifting test samples during deployment. By default,
it randomly sets aside 10% of the training data (up to 1,000
samples) for calibration, a method shown to be effective
in prior work [5, 72]. Prom also offers a way to assess the
suitability of the calibration dataset (Sec. 5.2), or users can
provide their own holdout calibration dataset.
Changes to user models. For classification tasks, the user
model should implement a prediction function (line 15) that
returns both a prediction and a probability vector. Most ML
classifiers already associate probabilities with each class,
which can be easily accessed. Popular frameworks like scikit-
learn, PyTorch, and TensorFlow directly provide probabil-
ity distributions. For example, scikit-learn’s predict_proba
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score
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 .

31 2

0 . .
 .

n1 2
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Compute scores

. . . . . . 
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Figure 5. Prom integrates multiple nonconformity functions
that vote to reject or approve the ML prediction.

method offers probabilistic values for 33 commonMLmodels.
In neural networks, probabilities can usually be extracted
from the hidden layer before the output. For regression mod-
els [5, 56], Prom applies a similar approach.
Feature extraction. The user needs to provide a feature
extraction function to convert the model input into a feature
vector of numerical values. For example, this could be a neu-
ral network to generate embeddings of the input [22, 27] or
a function to summarize the input programs into numeri-
cal values like the number of instructions [74]. Since most
ML models already require this function, this requirement
should not incur additional engineering effort.
Process calibration dataset. The user model is trained out-
side the Prom framework using any method the user deems
appropriate. The trained model is loaded and passed as a
Python object to Prom. With the calibration dataset and the
trained user model, Prom automatically preprocesses the
calibration dataset offline before deploying the ML model
(Sec. 5). This is done by applying the learned model to each
calibration sample and using a nonconformity function de-
scribed in Sec. 5.1.1 to calculate a score. This score reflects
how ‘strange’ or ‘non-conforming’ each calibration example
is compared to the learned model.
Significant level. The user can set a significant level, 1−𝜖 , to
determine the severity of data drifts. A smaller 𝜖 can reduce
the probability of misprediction by Prom but can lead to a
higher false positive rate. By default, Prom sets 𝜖 to 0.1.
Overwrite the prediction function. As a final step, the
model developer needs to overwrite a prediction function
(predict) function to return the model’s prediction for a
test input. The original prediction function can be invoked
as a subroutine, and the Prom prediction function is used
during deployment.

4.1.2 Model deployment phase. During deployment, the
user model functions as usual, taking a test sample and mak-
ing a prediction. The difference with Prom is that it also
suggests whether to accept or reject the prediction. The user
can use this outcome to identify mispredictions and provide
ground truth, and Prom will use these relabeled drifting
samples to update the model.
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5 METHODOLOGY

As shown in Figure 5, during deployment, Prom uses mul-
tiple (default: 4) nonconformity functions to independently
compute the prediction’s credibility and confidence scores.
These scores are compared to a pre-defined significance level,
1 − 𝜀 (Sec. 4.1.1), to decide whether to accept the prediction.
If both scores fall below the threshold, the test sample is
flagged as drifting. The results are then aggregated using ma-
jority voting, where each nonconformity function (expert)
decides whether the prediction should be accepted, forming
an ensemble “expert committee”.

5.1 Nonconformity Measures

Prom computes the p-value of a prediction using noncon-
formity functions, which are then used to derive credibility
and confidence scores. Previous work on using CP to detect
drifting samples [11, 37, 83] focuses primarily on classifica-
tion tasks and does not extend to regression. Prom is the
first framework to support both classification and regression
for data drift detection. Additionally, prior methods only
consider the predicted label, ignoring the probability distri-
bution across labels, whereas Prom accounts for probabilities
across all labels in classification tasks (Sec. 3.1).

5.1.1 Nonconformity functions. Prom integrates mul-
tiple ready-to-use nonconformity functions, and the choice
of nonconformity functions can be customized by passing
a list to the relevant Prom interface. By default, Prom uses
4 nonconformity functions: LAC [58], TopK [6], APS [57]
and RAPS [6]. Other nonconformity functions can be easily
incorporated into Prom by implementing an abstract class.
For regression tasks, our nonconformity functions com-

pute the nonconformity score using the residual error be-
tween the prediction and the ground truth. Since we do not
have the ground truth during deployment, we approximate
it using the k-nearest neighbour algorithm [17, 36]. This
approximation is based on the null hypothesis that the test
sample is similar to those encountered during design time.

Specifically, Prom finds the k-nearest neighbors (we set 𝑘
to be 3 in this work), denoted as 𝑁𝑘 (𝑛 + 1), of 𝑠𝑛+1. The dis-
tance is measured by computing the Euclidean distance [21]
between the test sample 𝑠𝑛+1 and calibration samples on the
feature space. We then approximate the true value of 𝑠𝑛+1

by averaging the distance of k-nearest neighbors, 𝑦𝑠𝑛+1 =
1
𝑘

∑
𝑖∈𝑁𝑘 (𝑛+1) 𝑦𝑠𝑖 . The estimated value is then passed to a

regression-based nonconformity function to compute the
nonconformity score of the test sample. Essentially, we ap-
proximate the ground truth by assuming the samples seen
at the design time are sufficient to generate an accurate pre-
diction. If this assumption is violated due to drifting test
samples, it will likely result in a large residual error (and a
greater nonconformity score).

5.1.2 Computing p-value. Prom uses a p-value to assess
whether a test sample 𝑠 fits within the prediction region de-
fined by the calibration dataset, which reflects the training
data distribution. To compute the p-value, a subset of cali-
bration samples is selected, their nonconformity scores are
adjusted, and these scores are used to derive the p-value for
the model’s prediction.
Calibration nonconformity scores. As shown in Figure 6,
Prom dynamically selects a subset of calibration samples to
adjust the nonconformity score. Specifically, it computes the
Euclidean distance between each calibration sample and the
test input based on their feature vectors, sorting the samples
by distance. By default, the closest 50% of calibration samples
are selected. If the dataset contains fewer than 200 samples,
all of them are selected; a threshold that can be configured
via the Prom API. This nearest subset of calibration samples
is chosen to estimate the nonconformity of the test data
relative to the training data. These distances are also used as
weights to adjust nonconformity scores.

For a calibration dataset with 𝑛 samples, (𝑎1, 𝑎2, . . . , 𝑎𝑛),
Prom computes nonconformity scores and feature vectors
(𝑣1, 𝑣2, . . . , 𝑣𝑛) offline. For a new test sample 𝑠𝑛+1, it extracts
the feature vector 𝑣𝑛+1, calculates the distances to calibra-
tion samples, and selects 𝐾 samples. The weight𝑤𝑖 for each
selected sample 𝑖 is given by:

𝑤𝑖 = exp
(
− ∥𝑣𝑖 − 𝑣𝑛+1∥2

𝜏

)
, 𝑖 ∈ {1, ..., 𝑘} (1)

where ∥𝑣𝑖 − 𝑣𝑛+1∥2 is the l2-norm, and 𝜏 is a temperature
hyperparameter (default 500). This weight is used to adjust
the nonconformity score: 𝑎𝑖 = 𝑤𝑖 × 𝑎𝑖 .
P-value for classification. After selecting the calibration
samples and adjusting their nonconformity scores, Prom cal-
culates the p-value for each test sample. First, it determines
the nonconformity score 𝑎𝑦

𝑝

𝑛+1 for the predicted outcome 𝑦𝑝 .
Then, it evaluates the similarity of the test sample to the
chosen calibration samples to compute the p-value, 𝑝𝑠𝑖 , as:

𝑝𝑠𝑖 =

COUNT
{
𝑖 ∈ {1, ..., 𝑛} : 𝑦𝑖 = 𝑦𝑝 and 𝑎𝑦

𝑝

𝑖
≥ 𝑎𝑦

𝑝

𝑛+1

}
COUNT {𝑖 ∈ {1, ..., 𝑛} : 𝑦𝑖 = 𝑦𝑝 }

(2)

This counts the proportion of calibration samples with the
predicted label 𝑦𝑝 whose nonconformity scores are ≥ than
the test sample’s score. A low p-value (near 1/𝑛) suggests
high nonconformity, meaning the test sample is significantly
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different from the training samples. A high p-value (close
to 1) indicates strong conformity, showing the test sample
closely matches the calibration samples for label 𝑦𝑝 .
P-value for regression. We extend classification p-values
to regression tasks by generating labels in the calibration
dataset using K-means clustering [9]. Specifically, we parti-
tion the calibration set into 𝐾 clusters, 𝑦1, 𝑦2, . . . , 𝑦𝐾 , based
on the feature vectors of each sample. The optimal number of
clusters (𝐾 ) is determined using the Gap statistic method [67],
which compares the within-cluster sum of squares from K-
means to that of random clustering over 𝐾 values from 2 to
20. The Euclidean distance between feature vectors is used as
the clustering metric. A larger gap indicates better clustering
quality, and Prom selects the 𝐾 with the highest gap. During
deployment, test sample labels are assigned based on the
nearest neighbour in the feature space. Prom then computes
the p-value, as in classification, using Equation 2 during both
design and deployment.

5.2 Initialization Assessment

Prom provides a Python function to evaluate whether the
framework is properly initialized at design time after ob-
taining the calibration dataset (Sec. 4.1.1) and the trained
underlying model. This is achieved by computing the cov-
erage rate by performing cross-validation on the holdout
calibration dataset. Specifically, Prom automatically splits
the calibration dataset 𝑅 times (𝑅 = 3 by default) into two
internal datasets for calibration (80%) and validation (20%).
It then applies the trained model to the internal validation
set and calculates the coverage as:

1
𝑅

𝑅∑︁
𝑗=1

1
𝑛val

𝑛val∑︁
𝑖=1
⊮
{
𝑦
(val)
𝑖

∈ 𝐶
(
𝑥
(val)
𝑖

)}
≈ 1 − 𝜀 (3)

where 𝑛val is the size of the validation set,𝑦 (val)
𝑖

is the ground
truth of the 𝑖th validation example, and 𝐶 (𝑥 (val)

𝑖
) is the pre-

diction region of the 𝑖th validation example computed by
Prom using the calibration data. The coverage ratio should
be approximately the pre-defined significant level, 1−𝜀, with
minor fluctuations in deviation [5]. A large deviation indi-
cates an ineffective initialization, which usually stems from
a poorly trained or designed underlying model. In this case,
Promwill alert the users when the deviation is more than 0.1,
enabling them to enhance the underlying model or adjust
the significance level during the design time.
A parameter selection function with a grid search algo-

rithm is provided to help users set the optimal parameters
automatically, such as the significant level and cluster size
(Sec. 5.1.2). After evaluating the candidate parameters on the
validation dataset, Prom will save the selected parameters
and use them to predict the confidence in the underlying
model at deployment time.

5.3 Credibilty and Confidence Evaluation

Credibility score. For each nonconformity function, we use
the p-value (Sec. 5.1) computed for the predicted class as the
credibility score. The higher the p-value is, the more likely
the test sample is similar to the training-time samples, hence
a higher credibility score.
Confidence score. Prom estimates the confidence score by
evaluating the statistical significance of the prediction using

a Gaussian function, 𝑓 (𝑥) = 𝑒−
(𝑥−1)2
2×𝑐2 , where 𝑐 (default 3) is a

constant, and 𝑥 is the prediction set size for the test sample.
The prediction set includes labels likely associated with the
test sample, where the nonconformity score exceeds the sig-
nificance level, 1−𝜀. An empty set suggests the test sample is
not linked to any known class, while multiple labels indicate
uncertainty, resulting in a low confidence score. As with the
credibility score, the prediction set is built from the p-value
(Sec. 5.1). Regression tasks apply the same approach, using
the labels introduced by clustering (Sec. 5.1.2). According to
our prediction with rejections strategy, a sample is flagged as
drifting if both scores fall below the significance level.

5.4 Improve Deployment Time Performance

Prom can enhance the performance of deployed ML systems
through incremental learning [4, 30]. For example, suppose a
predicted compiler option is likely to be sub-optimal. In that
case, the compiler system can use auto-tuning to sample a
larger set of configurations to find the optimal one. The idea
is to apply other (potentially more expensive) measures to
drifting samples. The ground truths can then be added back
to the training dataset of the underlying model in a feedback
loop for offline retraining. Since model retraining occurs
only during instances of data drift, it reduces the overhead
associated with the collection of training data.
As we will show later, updating a trained model with up

to 5% of identified drifting samples significantly enhances ro-
bustness post-deployment. The goal is not to reduce training
time but to provide a framework for assessing robustness.
Without such a system, frequent retraining or risking perfor-
mance degradation is required. In code optimization tasks,
the main expense is labeling data, not training, and by fo-
cusing only on mispredicted samples (e.g. for relabeling),
our approach reduces labeling overhead and shortens re-
training time. By filtering out mispredictions, Prom detects
ageing models and supports implementing corrective meth-
ods. This, in turn, will improve user experience and trust in
ML systems.

6 EXPERIMENTAL SETUP

Evaluation methodology. As shown in Table 1, we ap-
ply Prom to detect drifting samples across 5 case studies,
covering 13 representative ML models for classification and
regression. We faithfully reproduced all methods following
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Table 1. Case studies and their setups

#Use cases #Test methods Models Tasks

Magni et al. [41] MLP
DeepTune [19] LSTMC1: Thread Coarsening
IR2Vec [71] GBC [45]

Class.

K.Stock et al. [62] SVM
DeepTune [19] LSTMC2: Loop Vectorization
Magni et al. MLP

Class.

DeepTune [19] LSTM
Programl [18] GNNC3: Heterogeneous Mapping
IR2Vec [71] GBC

Class.

Vulde [39] Bi-LSTM
CodeXGLUE [40]C4: Vulnerability Detection
LineVul [28] Transformer Class.

C5: DNN Code Generation Tlp [84] BERT [22] Reg.

themethodologies in their source publications and used avail-
able open-source code. We adhered to the original training
methods to ensure comparable design-time results.
Introduce data drift. We introduce changes by separating
the training and testing data. We try to mimic practical sce-
narios by testing the trained model on a benchmark suite
not used in the training data or code samples newer than the
model training data and the Prom calibration dataset. Note
that our primary goal is to detect whether Prom can success-
fully detect drifting samples, not to improve the design of
the underlying model.
Prior practices. Prior work often assumes an ideal scenario
by splitting training and test samples at the benchmark or
method level, where both sets may share similar characteris-
tics [8]. In contrast, our evaluation introduces data drift to
reflect real-world scenarios where workload characteristics
change during deployment. As a result, baseline ML models
performworse on test samples than reported in their original
publications [13, 31].

6.1 Case Study 1: Thread Coarsening

This problem develops a model to determine the optimal
OpenCL GPU thread coarsening factor for performance opti-
mization. Following [41], an MLmodel predicts a coarsening
factor (ranging from 1 to 32) for a test OpenCL kernel, where
1 indicates no coarsening.
Underlying models. We consider three ML models de-
signed for this problem: a Multilayer Perceptron (MLP) used
in [41], a long-short-term memory (LSTM) used in Deep-
Tune [19], and a Gradient boosting classifier (GBC) used in
IR2Vec [71]. Like these works, we train and test the models
using the labeled dataset from [41], comprising 17 OpenCL
kernels from three benchmark suites on four GPU platforms.
Methodology. As in [19, 82], we train the baseline model
using leave-one-out cross-validation, which involves train-
ing the baseline model on 16 OpenCL kernels and testing on
another one. We then repeat this process until all benchmark
suites have been tested once. To introduce data drift, we train

the ML models on OpenCL benchmarks from two suites and
then test the trained model on another benchmark suite.

6.2 Case Study 2: Loop Vectorization

This task constructs a predictive model to determine the
optimal Vectorization Factor (VF) and Interleaving Factor
(IF) for individual vectorizable loops in C programs [34, 47].
Following [34], we explore 35 combinations of VF (1, 2, 4, 8,
16, 32, 64) and IF (1, 2, 4, 8, 16). We use LLVM version 17.0
as our compiler, configuring VF and IF individually for each
loop using Clang vectorization directives.
Underlying models. We replicate three ML approaches:
K.Stock et al. [62] (using SVM), DeepTune [19], and Magni
et al. [41], which use neural networks. We use the 6,000
synthetic loops from [34], created by changing the names of
the parameters from 18 original benchmarks in the LLVM
vectorization test suite. We used the labeled data from [82],
collected on amulti-core systemwith a 3.6 GHzAMDRyzen9
5900X CPU and 64GB of RAM.
Methodology. Following [82], we initially allocate 80% (4,800)
of loop programs to train the model, reserving the remaining
20% (1,200) for testing its performance. To introduce data
drift, we use programs generated from 14 benchmarks for
training and evaluate the model on the programs from the
remaining 4 benchmarks.

6.3 Case Study 3: Heterogeneous Mapping

This task develops a binary classifier to determine if the CPU
or the GPU gives faster performance for an OpenCL kernel.
Underlying models.We replicated three deep neural net-
works (DNNs) proposed for this task: DeepTune [19],
Programl [18], and IR2Vec [71]. We use the DeepTune
dataset, comprising 680 labeled instances collected by profil-
ing 256 OpenCL kernels from 7 benchmark suites.
Methodology. Following [19], we train and evaluate the
baseline model using 10-fold cross-validation. This involves
training a model on programs from all but one of the subsets
and then testing it on the programs from the remaining
subset. To introduce data drift, we train the models using 6
benchmark suites and then test the trained models on the
remaining suites. We repeat this process until all benchmark
suites have been tested at least once.

6.4 Case Study 4: Vulnerability Detection

This task develops anML classifier to predict if a given C func-
tion contains a potential code vulnerability. Following [75],
we consider the top-8 types of bugs from the 2023 CWE [26].
Underlying models. We replicated four representative ML
models designed for bug detection: CodeXGLUE [40], Line-
Vul [28], both based on Transformer networks, and Vulde
[39] which based on a Bi-LSTM network. We evaluate this
task with a dataset comprising 4,000 vulnerable C program
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samples labeled with one of the eight vulnerability types,
each with around 500 samples. The vulnerable code samples
cover 2013 and 2023 and are collected from the National
Vulnerability Database (NVD), CVE, and open datasets from
GitHub.
Methodology. As with prior approaches, we initially train
the model on 80% of the randomly selected samples and eval-
uate its performance on the remaining 20% samples. Then,
we introduce data drift by training the model on data col-
lected between 2013 and 2020 and testing the trained model
on samples collected between 2021 and 2023.

6.5 Case Study 5: DNN Code Generation

This task builds a regression-based cost model to drive the
schedule search process in TVM [16] for DNN code gen-
eration on multi-core CPUs. The cost model estimates the
potential gain of a schedule (e.g., instruction orders and data
placement) to guide the search.
Underlying model. We apply Prom to Tlp [84], a cost
model-based tensor program tuning method integrated into
the TVM compiler v0.8 [16]. We use 2, 308 × 4 samples col-
lected from 4 Transformer-based BERT models of different
sizes in the TenSet dataset [85].
Methodology. For the baseline, we trained and tested the
cost model on the BERT-base dataset, where the model is
trained on 80% (400K) randomly selected samples and then
tested on the remaining 20% (100K)samples. To introduce
data drift, we tested the trained model on the other three
variants of the BERT model. We ran the TVM search engine
for around 8 hours (4,000 iterations) for each DNN on a
12-core 2.7GHz AMD EPYC 9B14 CPU server.

6.6 Performance Metrics

Performance to the oracle. For code optimization tasks
(case studies 1 to 3), we compute the ratio of the predicted
performance to the best performance obtained by exhaus-
tively trying all options. A ratio of 1.0 means the prediction
leads to the best performance given by an “oracle" method.
Misprediction threholds. For code optimization, we con-
sider a prediction to be a misprediction if runtime perfor-
mance is 20% or more below the Oracle performance (case
studies 1–3) or if predicted performance deviates by 20% or
more from profiling results (case study 5). For bug detec-
tion (case study 4), a misprediction happens when the model
misclassifies a test input.
Coverage deviation. This “smaller-is-better” metric mea-
sures the difference between the confidence level and Prom’s
true coverage rate on the model. A zero deviation means the
coverage rate matches the predefined significance level.
Metrics for data drift detection.We consider the following
“higher-is-better” metrics for detecting drifting samples:

Table 2. Summary of our main evaluation results

Perf. to the Oracle Prom performence

Training Deploy. Prom on deploy. Acc. Pre. Recall F1

0.836 0.544 0.807 86.8% 86.0% 96.2% 90.8%

Accuracy. The ratio of the number of correctly predicted
samples to the total number of testing samples.
Precision. The ratio of mispredicted samples that were cor-
rectly rejected to the total number of mispredicted samples.
This metric answers questions like “Of all the rejected predic-
tions, how many are actually mispredictions?”. High precision
indicates a low false-positive rate, meaning Prom rarely in-
correctly rejects predictions.
Recall (or Sensitivity). The ratio of mispredicted samples
that were correctly rejected to the total number of mispre-
dicted samples. This metric answers questions like “Of all the
mispredicted test samples, how many are rejected by Prom?”.
High recall suggests a low false-negative rate, indicating
Prom can identify most mispredictions.
F1 score. The harmonic mean of Precision and Recall, calcu-
lated as 2× 𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . It is useful when the test data has
an uneven distribution of drifting and normal samples. The
highest possible F1 score is 1.0, indicating perfect precision
and recall.

7 EXPERIMENTAL RESULTS

Highlights. Table 2 summarizes the main results of our eval-
uation. All the tested models were impacted by changes in
the application workloads (Sec. 7.1), where the performance
relative to the Oracle predictor drops significantly from train-
ing time to deployment time. Prom can detect 96.2% of the
drifting samples on average (Sec. 7.2). When combined with
incremental learning, Prom enhances the performance of
deployed models, improving prediction performance by up
to 6.6x (Sec. 7.3). Prom also outperforms existing CP-based
methods and related work (Sec. 7.5).

7.1 Impact of Drifting Data

This experiment assesses the impact of data drift by applying
a trainedmodel to programs from an unseen benchmark suite
or CVE dataset (Sec. 6). For code optimization tasks (case
studies 1-3 and 5), we report the performance ratio relative to
the oracle (Sec. 6.6). In case study 4, we report the accuracy
of bug prediction.

Figure 7 shows the classifiers’ performance (case studies 1-
4) during design and deployment, while Table 3 presents the
regression model’s performance (case study 5). The violin
diagrams in Figure 7 show the distribution of test sample per-
formance, with the violin’s width representing the number
of samples in each range. The line inside shows the median,
and the top and bottom lines indicate the extremes. Outliers
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Figure 7. The resulting performance when using an ML model for decision making. The performance of all learning-based
models can suffer during the deployment phase when the test samples significantly differ from the training data.
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Figure 8. Prom’s performance for detecting drifting samples
across case studies and underlying models (higher is better).

are marked as circles. Ideally, a model’s violin would be wide
at the top, reflecting good performance for most samples.
Design time performance. For case studies 1-4, we assess
design-time performance by holding out 10% of the training
samples as a validation set and applying the trained model to
it. In case study 5, the training data covers all DNN models,
but the model is tested on samples from unseen schedules.
This process is repeated 10 times, and the average perfor-
mance is used as the design-time result. This ideal setting
assumes that validation and training samples come from the
same project or benchmark, with similar workload patterns,
yielding comparable results to those reported in the original
model publications.
Deployment time performance. An ML model’s robust-
ness can suffer during deployment. From Figure 7, this can be
observed from the bimodal distribution of the violin shape or
a lower prediction accuracy at the deployment stage. From
the violin diagrams, we observe a wider violin shape towards
the bottom of the y-axis and a lower median value compared
to the design-time result. From Table 3, this also can be seen
from a lower deployment-time prediction accuracy than the

Table 3.C5: DNN code generation (performance to the oracle
ratio) - trained on BERT-base and tested on BERT variants.

Network BERT-

base

BERT-

tiny

BERT-

medium

BERT-

large

Native deployment 0.845 0.224 0.668 0.703
Prom assisted deployment / 0.794 0.810 0.808

design-time performance. The impact of drifting samples is
clearly shown in vulnerability detection of Figure 7(d), where
the prediction accuracy drops by an average of 62.5%. For
DNN code generation (Table 3), the accuracy of performance
estimation can also drop from 84.5% to as low as 22.4%. The
results highlight the impact of data drift.

7.2 Detecting Drifting Samples

Figure 8 reports Prom’s performance in predicting drifting
samples across case studies and underlying models. For all
tasks, Prom achieves an average precision of 0.86 with an av-
erage accuracy of 0.87. This means it rarely filters out correct
predictions. For the binary classification task of heteroge-
neous mapping (Figure 8(c)), Prom achieves an average F1
score of 0.74. In this case, Prom sometimes rejects correct
predictions. This is because the probability distribution of
binary classification is often less informative for CP than in
multiclass cases [64]. For the regression task of case study 5,
Prom can detect most of the drifting samples with a recall of
0.95 and an average precision of 1. Furthermore, the under-
lying model’s quality also limits the performance of Prom.
When the information given by the underlying model be-
comes noisy, Prom can be less effective. Averaged across case
studies, in detecting mispredictions, Prom achieves a recall
of 0.96, a false-positive rate of 0.14 and a false-negative rate
of 0.04, suggesting that Prom is highly accurate in detecting
drifting samples.

7.3 Incremental Learning

In this experiment, we use Prom to identify drifting sam-
ples and update the underlying models by retraining with
a small set of Prom-identified samples. Prom preserves the
performance of the methods close to their original levels, as
shown by improved accuracy (Figure 9(d)), the performance-
to-oracle ratio (Table 3), and violin plots (Figures 9(a) to
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Figure 9. Prom enhances performance through incremental learning in different underlying models.
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Figure 10. Geometric mean and variances across models of
the F1 score in classification tasks.

9(c)), where test sample distributions shift towards higher
performance with a better median than native deployment
without Prom. Overall, Prom requires labeling at most 5%
(sometimes just one) of drifting samples to update the model.
Without it, one would need to label random test samples,
leading to higher maintenance costs and unnecessary user
confirmations for samples the model can predict correctly.

7.4 Individual Case Studies

We now examine case studies showing how Prom improves
the underlying model with incremental learning.
Case study 1: thread coarsening. In this experiment, we
tested the trained model on kernels from OpenCL bench-
marks unseen at the model training stage. Figure 7(a) and 9(a)
show that the performance of all ML models drops as the
test dataset changes. By relabeling just one drifting sample
using incremental learning, Prom improves the performance
to the oracle ratio from an average of 77.6% to 99.0% (21.4%
improvement) during deployment.
Case study 2: loop vectorization. This experiment intro-
duced changes by testing the underlying model on loops ex-
tracted from unseen benchmarks. Figure 7(b) and 9(b) show
that drifting data led to a performance reduction for all meth-
ods, averaging 9%. Retraining the model using only 5% of
the Prom-identified drifting samples helps restore the under-
lying model’s initial performance, leaving only a 1.6% gap to
the design-time performance.
Case study 3: heterogeneous mapping. This experiment
tests the underlying models on OpenCl kernels from unseen

benchmarks. Figures 7(c) and 9(c) show that all ML models
deliver low performance on unseen benchmarks. Prom also
successfully detects 100% of the drifting samples (recall) on
average with an accuracy rate of 58%. Further, by utilizing
incremental learning on 5% of the drifting samples, Prom

improved the performance to oracle ratio of all systems from
63.1% to 78.9% (15.8% improvement) on average.
Case study 4: vulnerability detection. In this experiment,
we tested a trained model on a vulnerability dataset from
a time period not covered by the training data. Figures 7(d)
and 9(d) show that all models initially had low prediction
accuracy, ranging from 12.5% to 15.6% when facing new code
patterns. Prom correctly identified all mispredictions with
a recall of 1. By relabeling up to 5% of the Prom-identified
drifting samples and updating the model, we improved the
accuracy from an average of 13.5% to 72.5%, achieving 95.3%
of the design-time performance.
Case study 5: DNN code generation. In this experiment,
we apply the cost model trained on the Bert-base dataset
to three other variants of the BERT network. Once again,
from Table 3, we see the performance of the trained model
experiences a reduction from 84.5% to 53.2%. For BERT-tiny,
the performance drops as much as 65.3%. Prom can detect
95.3% of drifting data and achieve a precision of 1. After
profiling just 5% of the Prom-identified drifting data and
using them to retrain the cost model online during the TVM
code search process, the average performance of the cost
model improves to 80.4%, resulting in a 2.0x enhancement.

7.5 Comparison to CP Libraries and Methods

We compare Prom with Mapie [64] and Puncc [44], two CP
libraries used for outlier detection, as well as RISE [83] and
TESSERACT [49], which use a single nonconformity func-
tion. RISE also trains an SVM for misprediction detection
but, like TESSERACT, supports only classical classifiers, so
we evaluate them on cases 1 to 4. Figure 10 shows average
results, with min-max bars indicating variation across mod-
els. Prom outperforms TESSERACT by 17.6%, achieving a
higher F1 score due to its improved nonconformity strategy.
RISE struggles with uneven data or tasks with many labels,
while Prom’s model-free ensemble approach handles these
cases better. Naive CP yields the lowest F1 score, showing
its limitations in detecting drift in large-scale tasks.

7.6 Further Analysis

Nonconformity functions. Figure 11 shows the average
performance of the four default Prom functions in detecting
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(c) Case study 3: heterog. mapping
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(d) Case study 4: vuln. detection

Figure 11. Performance of individual nonconformity functions. Min-max bar shows the performance across ML models.
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Figure 12. The average training and incremental learning
overhead of individual case studies.
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(a) Prom performance as the
threshold increases in loop vector-
ization
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Figure 13. Sensitive analysis of Prom hyperparameters.

drifting samples across case studies, with min-max bars in-
dicating variance across models. Prom’s ensemble strategy
outperforms individual functions in all metrics, demonstrat-
ing that no single function performs well across all case
studies. By combining multiple functions, Prom enhances
the generalization of statistical assessments.
Sensitive analysis. Figures 13(a) to 13(c) show how the
significance threshold and other parameters (e.g. cluster size
and Gaussian scale) impact Prom’s performance for data
drift detection. A larger significance threshold reduces false
positives, improving precision but potentially lowering recall.
Prom automatically determines the optimal cluster size using
the Gap statistic method [67]. Deviations from the optimal

cluster size affect detection performance. For the Gaussian
scale parameter, prediction set sizes smaller or larger than
1 lead to reduced confidence by suggesting too few or too
many classes for a sample.
Coverage deviation. Figure 13(d) shows the coverage de-
viation across five cases. The min-max bar represents the
variance across the underlying models. The geomean of de-
viation is 2.5%, which is a benign fluctuation and indicates a
good fit for conformal prediction on the underlying models.
The thread coarsening task shows a 4.4% deviation due to
the small calibration dataset, which could be mitigated by
adding more calibration samples.
Training overhead. Figure 12 reports the overhead of initial
model training and incremental learning. Initial training
takes several hours to one day, while incremental learning
with fine-tuning takes less than one hour on a multi-core
CPU or a desktop GPU - a negligible overhead compared to
the initial training time.
Runtime overhead. During deployment, the main runtime
overhead in Prom comes from computing nonconformity
scores and detecting drifting samples. This overhead is mini-
mal: on a low-end laptop, computing confidence and credi-
bility scores and performing drift detection take less than 10
and 2 milliseconds, respectively.

8 DISCUSSIONS

Naturally, there is room for improvement and further work.
We discuss a few points here.
Overfitting.Tomitigate overfitting, Prom retrains themodel
using the original dataset and a few Prom-identified mispre-
dictions. Incorporating additional data from the deployment
environment likely enhances the model’s generalization. In
our experiments, cross-validation shows that this retraining
approach effectively improves generalization.
Robustness. Prom employs a model-free approach to detect
drifting samples, avoiding reliance on supervised learning.
The calibration dataset can be updated during incremental
learning, and our detection framework is updated during
ML model retraining. Thus, Prom can adapt over time to
changes in model training samples.
Combining with reinforcement learning. Prom is a good
fit for RL in code optimization, which usually requires a cost
model to estimate the reward to avoid expensive program
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profiling. Prom can assess the RL cost model’s robustness,
guiding RL to profile only samples likely to be mispredicted
by the cost model (similar to case study 5). This profiling
information can then be used to update and improve the cost
model during the RL search.
Applicability. Prom targets probability-based classifiers [23,
24, 55, 80], making it broadly applicable across ML algo-
rithms. It can also be used during training to evaluatewhether
adding new data would improve performance, helping re-
duce costly data labeling for code optimization [48].
Rejection costs. Handling rejected predictions varies by ap-
plication. Simple cases may involve manual review or other
optimization strategies, such as iterative compilation for op-
timal compiler settings [38, 46]. Rejections incur costs, and
Prom allows users to adjust the significance level to balance
benefits against these costs. While Prom does not eliminate
human intervention, it detects data drift and ageing ML mod-
els post-deployment, only requesting user verification when
data drift is likely. User feedback is then added to the training
dataset to retrain the model.
Privacy. Since Prom only uses information available to the
underlying ML model, it should not raise privacy concerns.
Integration with non-Python environments. Prom is
easy to integrate into non-Python compilers. For example,
for C/C++ code, Prom provides a pyblind11 API [2] to take
the probabilistic vector of the model prediction as input and
returns a boolean value to suggest whether the prediction
should be accepted.

9 RELATEDWORK

Supervised ML is a powerful tool for code analysis and opti-
mization [18, 19, 28, 39, 75, 82, 84]. It relies on the assumption
that training data will closely resemble future test data [54].
However, this assumption can be violated in deployment en-
vironments due to evolving hardware andworkloads, leading
to compromised ML model robustness [3, 42, 60].
Efforts to enhance ML model robustness during design

time include data augmentation through code synthesis [15],
learning program representations [18, 75], and tuning ML
model architectures [74]. Prom complements these design-
time methods by improving trained model performance at
deployment without altering the model architecture.
Some recent works evaluate DNN prediction accuracy

using test data from the operational environment [33], re-
quiring representative data collection from the deployment
environment first. Prom, however, assesses prediction relia-
bility in real-time. Other methods quantify prediction uncer-
tainties using entropy and mutual information [29] or train
DNN models to estimate prediction confidence for specific
applications [61]. Unlike Prom, which is model-agnostic,
these methods depend on specific DNN operators.

Prom focuses on detecting incorrectML predictions caused
by changes in input characteristics, combining anomaly
detection [11, 50, 83] and adversarial attack analysis [14].
Grounded in Conformal Prediction (CP), guarantees confi-
dent predictions.While standard CP libraries likeMAPIE [64]
and PUNCC [44] estimate where the ground truth likely lies,
Prom uses CP differently—assessing the credibility of pre-
dictions to reject unreliable ones. Additionally, it offers a
framework to automate CP setup and usage.
Prom improves upon prior CP methods [37, 49, 81, 83],

which rely on full calibration datasets and single nonconfor-
mity measures. By using adaptive weighting and multiple
nonconformity functions, it enhances misprediction detec-
tion. Additionally, Prom extends CP beyond classification to
support regression tasks.

10 CONCLUSIONS

We have introduced Prom, an open-source library designed
to enhance the robustness of learning-based models dur-
ing deployment for code-related tasks. Prom measures the
credibility and confidence of predictions to detect likely mis-
predictions. We evaluated Prom on 13 ML models across
five code optimization and analysis tasks. Prom can effec-
tively detect samples that an ML model can mispredict by
successfully identifying an average of 96% of mispredictions.
It also improves deployed model performance by updating
the trained model with a few identified test samples. As an
example of the practical use of Prom, we are working with
two companies to integrate PROM into their internal tools to
enhance the reliability of ML models for code optimization.
There is growing interest in applying ML to systems re-

search [59, 79], yet prior work has primarily focused on
model optimizations during the design phase. Prom addresses
post-deployment optimization. While this work focuses on
code-related tasks, Prom can be applied to a wider range
of problems with a generic API. We hope that Prom will
be an enabling technology to support deployment model
optimization, thereby enhancing the ML model robustness
across various domains.

Data-Availability Statement

The open-source release of Prom is available at https://
github.com/HuantWang/PROM. Additionally, an archival
copy of our Artifact can be downloaded from [1] with de-
tailed step-by-step instructions for replicating our results
using a Docker image can be found at https://github.com/
HuantWang/PROM/blob/ae_cgo/AE.md.
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Appendix: Artifacts Evaluation Instructions

To facilitate the reproduction of our results, we provide a
Docker image with a pre-configured environment and de-
tailed README instructions for local evaluation. We assume
reviewers are familiar with Python and Linux in a Docker
environment. While the Docker image should run on a stan-
dard PC, a full-scale evaluation requires a decent multi-core
system with sufficient RAM (≥ 64GB) and disk space (≥
200GB).

Delivery

Weprovide a Docker imagewith step-by-step instructions for
running the tool locally, supporting customization and reuse.
For a step-by-step instruction to replicate our results using
a docker image on your machine locally, please refer to our
GitHub repository (https://github.com/HuantWang/PROM/
blob/ae_cgo/AE.md). Our scripts automatically generate nu-
merical results and diagrams corresponding to figures and
tables in the paper.

Main Results

Our AE enables a reduced-scale evaluation of the main re-
sults of our work, specifically Figures 7-11 and Tables 2-3 in
Sections 7.1 to 7.5 of the paper. These results show how the
tested ML models are impacted by the changes in applica-
tion workloads and how our framework (PROM) identifies
drifting samples to enhance model performance. We com-
pare the detection performance with closely related works.
Additionally, we present a small-scale experiment demon-
strating the construction of drift detection models to identify
mispredictions using our technique and how it can leverage
feedback on these samples to improve a deployed model,
corresponding to Case 1 of Section 6 of the paper.

Artifact Check-list (Meta-information)

• Tool chains: LLVM v10, Python 3.7 and 3.8 included
• Experiments: The experiments can be run with the
included scripts.

• Howmuchdisk space is required (approximately)?:

200 GB
• How much time is needed to prepare workflow

(approximately)? : Two hours
• Publicly available? : Yes, code and data are available
at: https://github.com/HuantWang/PROM/;

• Code licenses: CC-BY-4.0 License
• Archived: 10.5281/zenodo.14077780
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