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ABSTRACT
Despite several attacks have been proposed, text-based CAPTCHAs

1

are still being widely used as a security mechanism. One of the

reasons for the pervasive use of text captchas is that many of the

prior attacks are scheme-specific and require a labor-intensive and

time-consuming process to construct. This means that a change

in the captcha security features like a noisier background can sim-

ply invalid an earlier attack. This paper presents a generic, yet

effective text captcha solver based on the generative adversarial

network. Unlike prior machine-learning-based approaches that

need a large volume of manually-labeled real captchas to learn

an effective solver, our approach requires significantly fewer real

captchas but yields much better performance. This is achieved by

first learning a captcha synthesizer to automatically generate syn-

thetic captchas to learn a base solver, and then fine-tuning the base

solver on a small set of real captchas using transfer learning. We

evaluate our approach by applying it to 33 captcha schemes, includ-

ing 11 schemes that are currently being used by 32 of the top-50

popular websites including Microsoft, Wikipedia, eBay and Google.

Our approach is the most capable attack on text captchas seen to

date. It outperforms four state-of-the-art text-captcha solvers by

not only delivering a significantly higher accuracy on all testing

schemes, but also successfully attacking schemes where others have

zero chance. We show that our approach is highly efficient as it

can solve a captcha within 0.05 second using a desktop GPU. We

demonstrate that our attack is generally applicable because it can

bypass the advanced security features employed by most modern
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text captcha schemes. We hope the results of our work can encour-

age the community to revisit the design and practical use of text

captchas.

CCS CONCEPTS
• Security and privacy → Authentication; Graphical / vi-

sual passwords; Access control;

KEYWORDS
Text-based CAPTCHAs; deep learning; transfer learning; gener-

ative adversarial networks

ACM Reference Format:
Guixin Ye, Zhanyong Tang

∗
, Dingyi Fang, Zhanxing Zhu, Yansong Feng,

Pengfei Xu, Xiaojiang Chen, and Zheng Wang. 2018. Yet Another Text

Captcha Solver:, A Generative Adversarial Network Based Approach. In

2018 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’18), October 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY,

USA, 17 pages. https://doi.org/10.1145/3243734.3243754

1 INTRODUCTION
Text-based captchas are extensively used to distinguish humans

from automated computer programs [58–60]. While numerous al-

ternatives to text-based captchas have been proposed [2, 12, 44, 50],

many websites and applications still use text-based captchas as a

security and authentication mechanism. These include the majority

of the top-50 popular websites ranked by alexa.com as of April

2018, including Google, Microsoft, Baidu, and many others. Due

to the wide deployment of text-based captchas, a compromise on

the scheme can have significant implications and could result in

serious consequences.

Breaking captchas
2
is certainly not a new research topic. Over

the past decade, researchers have demonstrated different ways for

automatically recognizing text-based captchas [15, 16, 43, 64]. How-

ever, many of the prior attacks are hard-coded for a few specific

captcha schemes, and tuning the attacking heuristics or models

requires heavy expert involvement and follows a labor-intensive

and time-consuming process of data gathering and labeling. Since

2
In this paper, the term breaking captchas means automatically solving the captcha

challenge using a computer program, i.e., recognizing the characters within a text-

based captcha image.
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text captchas are keeping evolving and have become more robust,

the newly introduced security features make many of the previous

scheme-specific attacks no longer applicable [17]. Recently, some

more generic attacks were proposed [8, 10, 17]. However, these

methods only target text captchas with relatively simple security

features such as simple noisy backgrounds and a single font style.

The success of these generic attacks lies on the effectiveness of

character segmentation [11], but the recent development of text

captchas has made it more challenging by introducing e.g., more

complex backgrounds as well as distorted and overlapping charac-

ters.

This paper presents a generic, low-effort yet effective approach

to automatically solve text-based captchas based on deep learn-

ing [31, 48]. Unlike previous machine-learning-based attacks [55]

that all require a large volume of captchas (which are increasingly

difficult to gather) to train an effective solver, our approach signif-

icantly reduces the number of real captchas needed. We achieve

this by first using automatically generated synthetic captchas to

train a base solver and then fine-tune the basic model by applying

transfer learning [48] to a small set of real captchas of the target

scheme. Our approach is based on the recently proposed genera-

tive adversarial network (GAN) architecture that has demonstrated

impressive performance on image translation tasks [22, 31]. Our

method not only greatly reduces the human involvement and ef-

forts needed in building a successful captcha solver, but also yields

significantly better performance in solving a wide range of modern

captcha schemes. Since our attack requires little human involve-

ment, a captcha solver can be easily built to target a new or revised

captcha scheme. This makes our attack a particularly severe threat

for text-based captchas.

We evaluate our approach by applying it to a total of 33 text-

based captcha schemes, of which 11 are currently being used by 32

of the top-50 popular websites ranked by alexa.com as of April,

2018. These include schemes being used by Google, Microsoft, eBay,

Wikipedia and Baidu, many of which employ advanced security

features.We demonstrate that our generic attack needs as few as 500

real captchas instead of millions [21] to learn a text-based captcha

solver, but the resulting solver can significantly outperform four

state-of-the arts [8, 10, 17, 19]. Experimental results show that our

approach can successfully crack all testing schemes, judged by the

commonly used standard [10], and solve a captcha in less than 50

milliseconds using a desktop GPU.

This paper makes the following contributions:

• We present the first GAN-based approach for automatically

generating training data and constructing solvers for text-

based captchas (Section 4.1).

• We apply, for the first time, transfer learning to train text-

based captcha solvers. Our approach reduces the number

of real captchas needed for building an effective solver by

several orders of magnitudes when compared with prior

machine-learning-based attacks (Section 4.3).

• Our work provides new insights, showing that the security

features employed by the current text-based captcha schemes

are particularly vulnerable under deep learning methods

(Section 6).
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Figure 1: Captcha security features targeted in this work.
Examples in (a), (b), (c) and (d) are samples collected from
Baidu, Sina, Microsoft and JD captcha schemes, respectively.

2 BACKGROUND
In this section, we describe the threat model and introduce the

GAN architecture.

2.1 Threat Model
In this work, we assume that the adversary can access and cor-

rectly label some text-based captchas of the target scheme. Since

our approach can work effectively using no more than 500 captchas

collected from the target scheme, we consider the overhead of col-

lecting and labeling captchas to be low. We also assume the attacker

has the computation power to generate synthetic captchas, and to

train and deploy the solver. Later in the paper, we show that a mod-

ern GPU cloud server will provide sufficient computation power

for launching the attack.

Without loss of generality, to make our experiments manage-

able, we restrict our scope to six widely used security features

employed by the current text captcha schemes. These security fea-

tures (as illustrated in Figure 1), including anti-segmentation and

anti-recognition features. They are used by the top-50 popular web-

sites ranked by alexa.com at the time this work was conducted.

Specifically, an anti-segmentation feature makes it harder for a bot

program to segment the characters. The features labeled as 1, 2 and

6 in Figure 1 give some of the anti-segmentation features targeted

in this work. In a similar vein, an anti-recognition feature increases

the difficulty of character recognition by using a variety of font

styles. The features labeled as 3, 4 and 5 in Figure 1 illustrate some

of the anti-recognition features investigated in the work. More

details on how these features are used by each evaluated captcha

scheme is given later in Table 1.

2.2 Generative Adversarial Networks
Our attack is based on the recently proposed GAN architecture [22].

A GAN consists of two models: a generative network for creating

synthetic examples and a discriminative network to distinguish

the synthesized examples from the real ones. We use backpropaga-

tion [28] to train both networks, so that over the training iterations,

the generator produces better synthetic samples, while the discrim-

inator becomes more skilled at flagging synthetic samples. GANs
have shown impressive results in image [31, 67] and natural lan-

guage [39, 66] processing tasks. However, due to the newness of

the technique, no work to date has yet exploited GANs to develop a

generic solver for text-based captchas.
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Figure 2: Overview of our approach.We first use a small set of real captchas of the target scheme to learn a captcha synthesizer
1 . The captcha synthesizer is then used to automatically generate synthetic captchas (with and without background confu-
sion) to learn a pre-processing model to remove security features, e.g., noisy backgrounds and occluding lines, from the input
captcha image 2 . At the same time, the synthetic captchas (with and without security features) are used to train a base solver
3 . The base solver is then refined to build the final, fine-tuned solver using a few real clean captchas 4 .

3 OVERVIEW OF OUR APPROACH
Figure 2 depicts the four steps of building a captcha solver using

our approach. Each of the steps is described as follows.

Step 1. Captcha synthesis. The first step is to generate captchas

that are visually similar to the target captchas. Our GAN-based
captcha generator consists of two parts: a captcha generator that

tries to produce captchas which are as similar as possible to the

target captchas, and a discriminator that tries to identify the syn-

thetic captchas from the real ones. This generation-discrimination

process terminates when the discriminator fails to identify a large

portion of the synthetic captchas. Once training has terminated, we

can then use the trained generator (referred as captcha synthesizer)

to automatically generate an unbounded number of captchas (for

which the characters of each synthetic captcha are known). This is

detailed in Section 4.1.

Step 2. Preprocessing. Before presenting a captcha image to a

solver, we use a pre-processing model to remove the captcha se-

curity features and standardize the font style (e.g., filling hollow

characters and standardizing gaps between characters). The pre-

processing model is based on a specific GAN called Pix2Pix [14].

It is trained from synthetic captchas for which we also have the

corresponding clean captchas (i.e., captcha images without secu-

rity features). The trained model can then be used for any unseen

captchas of the target captcha scheme. This is detailed in Section 4.2.

Step 3. Training the base solver. With the captcha synthesizer

and the pre-processing model in place, we then generate a large

number of synthetic captchas together with their labels (i.e., corre-

sponding characters) and use this dataset to learn a base solver for a

target captcha scheme. Our captcha solver is a convolutional neural

network (CNN). The trained solver takes in a pre-processed captcha

image and outputs the corresponding characters. This process is

described in more details at Section 4.3.

Step 4. Fine-tuning the base solver. In the last step, we apply

transfer learning to refine the base solver by using a small set of

manually labeled captchas that are collected from the target website.

Transfer learning allows us to leverage knowledge learned from

synthetic captchas to reduce the cost of collecting and labeling

captchas, and to further improve performance of the base model.

This is described in Section 4.3.
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Figure 3: The training process of our GAN-based text captcha
synthesizer.

4 IMPLEMENTATION DETAILS
We now describe how to build the captcha synthesizer (Sec-

tion 4.1), pre-processing model (Section 4.2) and solver (Section 4.3)

in more details.

4.1 Captcha Synthesizer
Deep neural networks typically require a large volume of training

examples to learn an effective model. Prior work shows that to

build an effective CNN-based captcha solver would require over

2.3 million unique training images [19]. Collecting and manually

labelling such number of real captchas would require intensive

human involvement and incur significant costs. In this paper, we

show that it is possible to minimize the human involvement and

the associated costs via captcha synthesis. The idea is that using

a captcha synthesizer, we can populate the training data with an

unbounded number of synthetic captchas (that are similar to the

real captchas). This allows the training data to cover the problem

space far more finely than what could be achieved by exclusively

using human-labelled training data.

Figure 3 illustrates the process of training a captcha synthesizer

using GANs. The training process is largely automatic except that

a user needs to provide a small set of real captchas (500 in this

work) of the target captcha scheme, and to define the set of security

features. The security feature definition is achieved by configuring

a set of pre-defined parameters. Figure 5 lists the set of security

parameters considered in this work and the specific settings for

the Baidu captcha scheme. We stress that these parameters can be

easily extended and adjusted to target other captcha schemes.

Our captcha synthesizer consists of two components, a generator

and a discriminator. The generator,G , is trained to produce outputs
that cannot be distinguished from real captchas by an adversarially
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Figure 4: Our captcha generatormodel includes a image gen-
erator and a generator network. The image generator pro-
duces a captcha image at the word level, and the generator
network modifies the produced captcha image at the pixel
level to add security features.

trained discriminator, D, which is trained to do as well as possible

at detecting the synthetic captchas.

Captcha generator.As depicted in Figure 4, our captcha generator
model includes a captcha image generator which automatically

generates captcha images according to a given parameter setting

and captcha word, and a CNN model that modifies the generated

synthetic captcha at the pixel level. We provide the image generator

and the learning engine a large number of free fonts so that the

learning engine can learn which font best suits the target scheme.

The image generator takes in the security feature configuration

setting provided by a user and tries to find a set of configurable

parameter values so that the synthetic captchas are as similar as

possible to the ones from the target captcha scheme.We use the grid

search method presented in [4] to search for the optimal parameters

for a given captcha scheme. Like the image generator, the CNNmodel

learns how to modify the generated images at the pixel level so that

the resulting captcha contains security features that are similar to

the real ones of the target scheme. The similarity is measured by the

ratio of synthetic captchas that cannot be distinguished from the

real ones by the discriminator. In other words, the more synthetic

captchas that can “fool" the discriminator, the higher quality the

synthetic captchas are.

Captcha discriminator. We use the discriminator network de-

fined in [52], which is a convolutional network whose last layer

outputs the probability of an input captcha being a synthetic one.

We use batched captchas to train the discriminator, where each

mini-batch consists of randomly sampled synthetic captchas, xi
and real captchas, yj , and the target labels are 0 for every y and 1

for every x .
The discriminator network updates its parameters byminimizing

the following loss function:

LD = −
∑
i
logD(xi ) −

∑
j
log(1 − D(yj )) (1)

which is equivalent to cross-entropy error for a two class classifi-

cation problem where D(.) is the probability of the input being a

synthetic captcha, and 1 − D(.) that of a real one.We note that the

real captchas in training are different from the one used to test our

approach.

Training. We use the minibatch stochastic gradient descent (SGD)

and the Adam solver [34] with a learning rate of 0.0002 to train our

captcha synthesizer. The overall training objective follows the gen-

eral GAN approach [52], using the L1 norm with the regularization

term λ set to 0.0001. The training objective is defined as:

Security Feature  On/Off #Options Value Range
Noisy background(s) On 5 [10, img.width]
Occluding lines On 2 {Line, Sin, Quadratic, Bezieer}
Char. Overlapping On - [-3, 10]
Character set On 4 [A – Z]
Font style(s) On 1 Solid
Font color(s) On 1 RGB (65, 103, 141)
Distortion On - {[0.1, 0.2], [0.2, 0.3]}
Rotation On - [-30, 30]
Waving Off - -

(a) Real Baidu captchas of 
different security features

(b) Synthetic parameters

(c) Generated synthetic captchas (w/ security features)

(d) Generated synthetic captchas (w/o security features)

Figure 5: Example synthetic captchas for the Baidu scheme.
Our captcha synthesizer is trained using a set of real
captchas (a). The parameter setting (b) defines the security
feature space. The trained captcha synthesizer is used to pro-
duce synthetic captchas with (c) and without (d) the security
features (i.e., noisy backgrounds and occluding lines in this
example) included.

G∗ = argmin

G
,max

D
LcGAN (G,D) + λLL1(G) (2)

where the generator,G , tries to minimize the difference between

the generated captchas and the real ones, while the discriminator,D,
tries to maximize it. During training, when updating the parameters

of the generator, we fix the parameters of the discriminator; and

when updating the discriminator, we fix the parameters of the gen-

erator. Training terminates when the discriminator fails to identify

more than 5% of the synthetic captchas. Training the synthesizer

takes around 2 days for one captcha scheme on our platform. The

trained generator network (together with the captcha image gener-

ator) can then be used to quickly generate synthetic captcha images.

In our case, it takes less than one minute to generate one million

captchas images.

Example. We use the Baidu captcha scheme to explain the pro-

cess for training the captcha synthesizer. To initialize the training,

we provide a set of real captchas for the GAN learning engine and
initial parameter values for the image generator. The generator

then produces a batch of synthetic captchas which are examined

by the discriminator. If the discriminator can successfully distin-

guish a large number of synthetic captchas from the real ones, the

grid search method is employed to adjust the parameter values

for synthesizing another batch of captchas. This process continues

until the discriminator can distinguish less than 5% of the synthetic

captchas from the real ones (see Section 6.6). When the process is

terminated, the learning engine will output the optimal parame-

ter values that are used by the image generator and the generator

network for synthesizing captcha images. As an example, Figure 5

(a) shows a real Baidu captcha while (b) and (c) in Figure 5 are the

synthetic captchas with and without background security features

produced by our approach. As can be seen from the figure, the
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Figure 6: The training process of our GAN-based pre-
processing model. The generator tries to remove as much
noisy backgrounds and occluding lines from the input
captchas, while the discriminator tries to identify which
of the input clean captchas are produced by the generator.
All the captchas used in the training are generated by our
captcha synthesizer.

security features of the synthetic captchas are visually similar to

the real captchas.

4.2 Captcha Preprocessing
Previous successful attacks have led to the development of more

robust text-based captchas that include advanced security features

like occluding lines (e.g., Figure 1a) and distorted hollow fonts (e.g.,

Figure 1 b and c). These features make the previous pre-processing

methods like [16, 64] inapplicable (see Section 6.3).

To remove these security features, we turn again to employ

deep learning to build a pre-processing model. The goal of our

pre-processing model is to remove noise and occluding lines from

the background and to standardize the font style (such as filling

hollow parts of characters and widening and standardizing the

gap between two characters - see also Section 6.3). Specifically, we

adapt the Pix2Pix image-to-image translation framework [14]. This

algorithm was developed to transform an image from one style to

another. In our case, the images to be translated are captcha images

with background noises such as the Baidu captchas (Figure 1a)

or different font styles such as the Microsoft captchas (Figure 1c).

Our model is also able to remove multiple security features (e.g.,

Figure 5b) at once. It is to note that we train a pre-processing model

for each captcha scheme using synthetic data.

Our pre-processing model is also a GAN consisting of a gener-

ator and discriminator. The training goal is to learn a generator

to remove security features and standardize the font style. Fig-

ure 6 illustrates the training process of our pre-processing model.

The generator works at the pixel level, which tries to amend some

pixels of the input captcha image to e.g., remove noise from the

background (Figure 6b). By contrast, the discriminator tries to dis-

tinguish the pre-processed captchas from the clean captchas that

are produced by the captcha synthesizer described in Section 4.1.

To train the pre-preprocessing model, we first learn an initial dis-

criminator and generator using some synthetic captchas (Figure 6a).

The training captchas are organized as pairs where each pair con-

tains a synthetic captcha with the target security features enabled

(e.g., noisy backgrounds and occluding lines) and a corresponding

captcha with these security features excluded. Since the training

captchas are generated by our captcha synthesizer, it is trivial to

exclude the security features from the generation process. After

having the initial discriminator and generator, we then train them

under the generative adversarial framework. The process is similar

to how we train our captcha synthesizer (Section 4.1). Over time,

the generator would become better in removing security features,

i.e., the resulting captchas are increasingly like the clean captchas;

and the discriminator would become better in recognizing security

features of the captcha (even the changes are small). Training termi-

nates when the discriminator fails to identify more than 5% of the

generated captchas from the clean counterparts (Figure 6c). After

that, we use the trained generator to pre-process unseen captcha

images of the target scheme.

4.3 Captcha Solvers
To build a captcha solver, we follow a two-step approach. We

first learn a base solver from synthetic captchas. We then fine-tune

the base solver using the same set of real captchas used to build the

captcha synthesizer.

4.3.1 Solver model structure. Our captcha solver tries to recognize

the characters of a pre-processed captcha image. The solver is based

on a classical CNN called LeNet-5 [38]. We have also considered other

influential CNN structures including ResNet [27], Inception [56] and

VGG [53]. We found that there is little difference for solving text-

based captchas among these models. We choose LeNet-5 due to

the simplicity of the network, which gives the quickest inference

(i.e., prediction) time and requires least training data for applying

transfer learning. We use the same network structure for the base

and the fine-tuned solvers, but we train a solver for each captcha

scheme using synthetic data.

LeNet-5 was originally proposed to recognize single characters

but we introduce some additional layers (2x convolutional and

3x pooling layers) to extend its capability to recognize multiple

characters. Figure 7a shows the structure of our solver which has

five convolutional layers, five polling layers followed by two fully-

connected layers. Each of the convolutional layer is followed by

a pooling layer. We use a 3 × 3 filter for the convolutional layer

and a max-pooling filter for the pooling layer. We use the default

parameters of LeNet-5 for the rest of the network structures.

The output layer of our solver consists of a number of neurons,

one neuron for a character of the target scheme. For example, if a

captcha scheme uses n characters, the output layer will consist of n
neurons where each neuron corresponds to a candidate character.

Each neuron applies an activation function f(x) over its inputs. The

activation of each neuron represents the model’s confidence that

the corresponding character is the correct one. To obtain the pre-

dicted characters, we find the neurons with the largest activations

for a given captcha scheme and map the chosen neurons to the

corresponding characters. For example, for a captcha scheme of

four characters, we will choose the four neurons with the largest

activation values and then translate the chosen neurons to the

corresponding characters.
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Figure 7: Overview of our CNN based captcha solver. The base solver is trained using synthetic captchas (a), which is then refined
using a small number (500 in this work) of real captchas (b).

4.3.2 Training the base solver. We train a base solver for each target

captcha scheme. If the number of characters in a captcha from a

scheme is not fixed, we also train a base solver for each possible

number of characters. We use 200,000 synthetic captchas generated

by our scheme-specific captcha synthesizer to train a base solver.

Each training sample consists of a captcha image (without security

features) and an integer vector that stores the character IDs of

the captcha. Note that we assign an unique ID to each candidate

character of the target captcha scheme. We use a Bayesian based

parameter tuner [20] to automatically choose the hyperparameters

for training the base solver. Training a base solver takes around five

hours using 4x NVIDIA P40 GPUs on a cloud server (see Section 5.2).

The trained base solver can then be applied to any unseen captcha

image of the target scheme. Note that before passing a raw captcha

image to the solver, we first use the pre-processing model to remove

the security features of the captcha image.

4.3.3 Building the fine-tuned solver. In the final step, we apply

transfer learning [65] to update later layers (i.e., those that are

closer to the output layer) of the base solver using a small set of

manually-labeled real captchas. The idea of transfer learning is

that in neural network classification, information learned at the

early layers of neural networks (i.e. closer to the input layer) will be

useful for multiple classification tasks. The later the network layers

are, the more specialized the layers become [48]. Our work exploits

this property to caliberater the base solver to avoid any bias and

over-fitting that may arise from the synthetic training data.

Figure 7b illustrates the process of applying transfer learning to

refine the base solver. Transfer learning in our context is as simple

as keeping the weights of the early layers and then update the

parameters of the later layers by applying the standard training

process using the real captchas. The fine-tuning process is quick,

taking then less than 5 minutes on our training platform.

5 EXPERIMENTAL SETUP
In this section we describe our experimental parameters and

evaluation platforms.

5.1 Data Preparation
We use two sets of captchas in this work: one for training and the

other for testing. Most of our training data are synthetic captchas

generated by our captcha synthesizer. To train and test our GAN-
based synthesizer and the fine-tuned solver, we use in total 1,500

labeled, real captchas collected from the target website. From the

1,500 real captchas of a captcha scheme, we use 500 captchas for

training and the remaining 1,000 captchas for testing. We make

sure that the testing captchas are different from the ones used to

train our models.

Captcha schemes. Our main evaluation targets 11 current text-

based captcha schemes used by 32 of the top-50 popular websites

ranked by Alexa
3
. We note that some of the websites use the same

captcha scheme, e.g., Youtube uses the Google scheme, and Live,

Office and Bing use the Microsoft scheme. The websites we exam-

ined cover a wide range of domains including e-commerce, social

networks, search, and information portals. Table 1 lists the captcha

schemes tested in this work and the target websites. We note that

many captcha schemes exclude characters that are likely to cause

confusion after performing the character distortion. Examples of

such characters include ‘o’ and ‘0’, ‘1’ and ‘l’, etc. These excluded

3
Data were collected between May, 2017 and April, 2018.



Security FeaturesScheme Website(s) Example Anti-segmentation Anti-recognition Excluded Characters

Wikipedia wikipedia.org
Overlapping characters,

Enligh letters

Rotation, distortion, waving –

Microsoft

{live, bing, miscosoft}.com
{office, linkedin}.com

Overlapping characters,

solid background

Different font styles,

varied font sizes,

rotation, waving

0, 1, 5,

D, G, I, Q, U

eBay ebay.com
Overlapping characters,

Only arabic numerals

Character rotating,

distortion and waving

–

Baidu {baidu, qq}.com
Occluding lines, overlapping,

only Enligh letters

Varied font size, color,

rotation, disortion and waving

Z

Google

google.{com,co.in,co.jp,
co.uk,ru,com.br,fr
com.hk,it,ca,es,com.mx}
youtube.com

Overlapping characters,

Enligh letters

Varied font sizes & color,

rotation, disortion, waving

–

Alipay

{alipay, tmall}.com
{taobao, login.tmall}.com
alipayexpress.com

English letters and

arabic numerals,

overlapping characters

Rotation and distortion

0, 1,

I, L, O

JD jd.com
English letters and

arabic numerals,

overlapping characters

Rotation and distortion

0, 1, 2, 7, 9,

D, G, I, J, L, O, P, Q, Z

Qihu360 360.cn
English letters and

arabic numerals,

overlapping characters

Varied font sizes,

rotation and distortion

0,

I, L, O, T,

i, l, o, t, q

Sina sina.cn
English letters and

arabic numerals,

overlapping characters

Rotation, distortion, waving

1, 9, 0,

D, I, J, L, O, T,

i, j, l, o, t, g, r

Weibo weibo.cn

English letters and

arabic numerals,

overlapping characters,

occluding lines

Rotation and distortion

0, 1, 5,

D, G, I, Q, U

Sohu sohu.com
Complex background,

occluding lines,

and overlapping

Varied font size, color

and rotation

0, 1,

i, l, o, z

Table 1: Text-based captcha schemes tested in our experiments.

characters are also given in Table 1. When compared to prior at-

tacks, we extend our evaluation to 22 other captcha schemes used

in prior studies. These captcha schemes are listed in Table 4. It

is worth mentioning that while we collected the captchas from

the official websites, many of the captcha schemes we tested are

also used by third-party websites and applications as a security

mechanism.

Synthesizing training captchas. To generate synthetic captchas

for a target scheme, we first initialize the security feature parame-

ters as described in Section 4.1. We then use the initial parameters

to generate the first batch of synthetic captchas which are used to-

gether with 500 real captchas to automatically train our synthesizer.

Once we have trained the synthesizer, we then use it to generate

synthetic samples to learn the preprocessing model and the base

solver. Specifically, we use 20,000 and 200,000 synthetic captchas to

train the pre-processing model and the base solver respectively.

Collecting testing captchas. The real captchas are automatically

collected using a web crawler written in Python. Each collected

captcha is manually labeled by three paid participants (nine partici-

pants in total) recruited from our institution. We use only captchas

where a consensus has been reached by all the three annotators. In

total, we have used 1,500 real captchas for each target scheme. We

randomly divided the collected captchas to two sets, one set of 500

captchas for training our synthesizer and final solver, and the other

set of 1,000 captchas for testing our solver. It takes up to 2 hours

(less than 30 minutes for most of the scheme) to collect 500 captchas

and less than 2 hours to label them by one user. This means that

the effort and cost for launching our attack on a particular captcha

scheme is low.

5.2 Implementation and Evaluation Platforms
Our prototype system

4
is implemented using Python. Specifi-

cally, the pre-processing model is built upon the Pix2Pix frame-

work [14], implemented using Tensorflow v. 1.2.1, and the captcha

solver is coded using Keras v. 2.1.2.

We use two different hardware platforms. For training, we use

a cloud server with a 2.4GHz Intel Xeon CPU, four NVIDIA Tesla

P40 GPUs and 256GB of RAM, running Centos 7 operating system

with Linux kernel 3.10. The trained solver is then run and tested

4
Code and data will be released at: https://goo.gl/92VxXC

https://goo.gl/92VxXC


Success rateScheme Base Solver Fine-tuned Solver
Running Time per
Captcha (ms)

Sohu 83% 92% 43.78

eBay 52% 86.6% 4.22

JD 60% 86% 43.18

Wikipedia 7% 78% 4.71

Microsoft 36.6% 69.6% 46.06

Alipay 23% 61% 3.75

Qihu360 48.6% 56% 3.10

Sina 40.6% 52.6% 42.81

Weibo 4.7% 44% 3.41

Baidu 6% 34% 41.57

Google 0% 3% 4.02

Table 2: The overall success rate and solver running time for
each captcha scheme.

(a) Real Google captchas 

(b) Synthetic Google captchas 

Figure 8: Real Google captchas and the synthetic versions
generated by our captcha synthesizer.

on a workstation with a 3.2GHz Intel Xeon CPU, a NVIDIA Titan

GPU and 64GB of RAM, running the Ubuntu 16.04 operating system

with Linux kernel 4.10. All trained models run on the NVIDIA Titan

GPU for inference.

6 EXPERIMENTAL RESULTS
In this section, we first present the overall success rate of our ap-

proach on 11 current captcha schemes, showing that it can break all

the testing schemes – judged by the criterion commonly used by the

captcha community [10] . We then compare our approach against

prior attacks on another 22 text captcha schemes, demonstrating

that our approach significantly outperforms all prior attacks. Fi-

nally, we analyze the working mechanism our approach before

discussing the implications of the attack.

6.1 Evaluation on Current Captcha Schemes
Table 2 shows the success rate given by our base and fine-tuned

solvers, as well as the average time in solving a captcha. All the tests

were performed on real captchas which are not used for training

the solvers. Since the base and the fine-tuned solvers use the same

network structure, there is no difference in their running time. For

each captcha scheme, we report the average running time across

1,000 tested captchas. We observe little variation in the running

time, less than 0.5% across test runs.

Scheme Captcha Image Ground Truth Solver Output

Sohu d4sk d4sh

eBay 934912 994912

JD BHER BFER

Wikipedia mewsboxes mewsbores

Microsoft XK6NK XK6VK

Alipay B7JK B7YK

Qihu360 s34Ea s3VFa

Sina nG3uu nG3uv

Weibo 4TXB 4TX8

Baidu WFIH WFEH

Google irgandoca igiruloca

Table 3: Example incorrectly labeled captchas.

Our base solver, built from synthetic data, is able to solve most of

the captcha schemes with a success rate of over 20%. This demon-

strates the capability of CNN models in performing image recogni-

tion. However, it gives a low success rate for some of the schemes

such asWeibo (4.7%) and Google (0%). The fine-tuned solver, refined

using transfer learning, significantly boosts the performance of the

base solver. In particular, it improves the success rate for Wikipedia

from 7% to 78%, Weibo from 4.7% to 44%, Alipay from 23% to 61%

and Microsoft from 36.6% to 69.6%. This result shows that transfer

learning in combination of captcha synthesis can reduce the data

collection efforts for building an effective text-based captcha solver.

Furthermore, the fine-tuned solver also improves the success

rate for Google from 0% to 3%. While this success rate is lower than

other schemes because of the strong security features like distorted

characters and dynamic font styles employed by the Google scheme.

The strong security features make it difficult our synthesizer to

generate high-quality synthetic data. This is depicted in Figure 8

where our synthetic captchas are not similar enough to the real

captchas (especially for the font styles). However, 3% is still above

the 1% threshold for which a captcha is considered to be ineffec-

tive [10]. We also note that there is no prior attack can successfully

crack the current Google captcha scheme under this criterion.

Table 3 gives some example captchas that are incorrectly labeled

by our fine-tuned solver. For most of these captchas, our solver only

incorrectly labels one character and the mis-identified character

is similar to the ground-truth character. For example, for the eBay

captcha shown in Table 3, our solver incorrectly label character

“3" to “9" due to character overlapping. For the Google scheme,

our solver often fails to label several characters in the middle due

to excessive character distoration and overlapping. Note that for



(a) reCaptcha (b) Microsoft

(c) QQ (d) Yahoo! 

Figure 9: Examples of the captcha schemes (left) tested in
prior work, and the synthetic versions (right) generated by
our captcha synthersizer. Our captcha synthesizer is highly
effectively in synthesizing captcha images.

many of these incorrectly labeled captchas, our annotators were

also struggling to recognize the characters in the first attempt.

Finally, the running time for solving a captcha using our solvers is

negligible, taking less than 50 milliseconds on a NVIDIA Titan Desk-

top GPU. Overall, our approach can solve all the testing schemes

under the commonly used criterion [10] with a quick running time.

6.2 Compare to Prior Attacks
In this experiment, we compare our approach against four state-

of-the-art attacks [8, 10, 17, 19] on 24 distinct captcha schemes,

including the eBay and Wikipedia schemes from Table 1 and other

22 schemes. To provide a fair comparison, we try to use captchas in

total) that these methods were tested on.Whenever possible, we use

the same dataset or captchas from the original scheme where the

prior work was tested on. For those obsolete schemes (21 out of 24

schemes), we collected the test data from public datasets, or using

captcha generation tools developed by independent researchers.

Specifically, we use (1) public datasets of previous captcha schemes,

(2) online captcha generators, such as captchas.net which was

used by some of the previous captcha schemes, and (3) open-sourced

captcha generators used in the prior work.

For each captcha scheme, we collected 1,500 samples for which

we use 500 for training and 1,000 for testing. Figure 9 gives some

examples of the real captchas and the one produced by our synthe-

sizer. The figure suggests that our synthesizer can produce captchas

that are visually similar to real examples from the target scheme.

Table 4 compares our fine-tuned solver to previous attacks. In

this experiment, our approach outperforms all comparative schemes

by delivering a significantly higher success rate. For many of the

testing schemes, our approach boosts the success rate by 40%. It

can successfully solve all the captchas of Blizzard, Megaupload and

Authorize used in [10]. Our approach achieves a success rate of

87.4% and 90% for reCAPTCHA 2011 and 2013 respectively. This

scheme was previously deemed to be strong where the human accu-

racy is 87.4% [19]. As a result, our solver matches the capability of

humans in solving reCAPTCHA. To achieve a comparable accuracy

for reCAPTCHA, a CNN-based captcha solver [21] would require

2.3 million unique real captcha images [19].

We want to stress that unlike all the competitive approaches

which require manually tuning a character segmentation method,

our approach bypasses this process by learning an end-to-end solver.

(a) Input Baidu captchas

(e) Applying our pre-processing model

(b) Applying a 2   1 filter kernel ×

(c) Applying a 2   2 filter kernel ×

(d) Applying a 3   1 filter kernel ×

Figure 10: Comparing a filtering-based method with our ap-
proach for removing noisy backgrounds and occluding lines.
The filtering-basedmethod fails to remove security features
from the latest captcha schemes while our approach can.

As a result, our approach requires less expert involvement, yet it

delivers better performance.

6.3 Pre-processing Security Features
One of the key steps in solving text-based captchas is to remove

the security features and standardize the font style of an input

captcha image. In this evaluation, we compare our pre-processing

model against prior pre-processing methods on removing noisy

backgrounds [8, 10, 32]and standardize font styles [11, 16].

Remove security features. Filtering is often used in prior at-

tacks for pre-processing text-based captchas [8, 10, 32]. The idea

is to apply a fix-sized window, or filter kernel, throughout the im-

age to remove the occluding lines and noise while keeping edges

of the characters. Figure 10 compares a previously used filtering

method [8, 10, 32] against our automatically learned pre-processing

model. Finding the right filter kernel size for the input captchas

shown in Figure 10a is non-trivial, because the filter either fails to

eliminate the background and occluding lines (b and c in Figure 10)

or it over does it by eroding edges of the characters (which makes

it harder to recognize the characters). While filtering was effec-

tive for prior text-based captchas, the latest captcha schemes have

introduced more sophisticated security features which make filter-

ing no longer feasible. In contrast to filtering, our pre-processing

model can successfully eliminate nearly all the background noise

and occluding lines from the input image, leading to a much cleaner

captcha image while keeping the character edges, as depicted in

Figure 10a. This experiment shows that our pre-processing model

is highly effective in processing and removing security features

from the latest text captcha schemes.



Success rate Success rateCaptcha Scheme Captcha Example
Ref. [10] Our approach

Captcha Scheme Captcha Example
Ref. [17] Our approach

Megaupload 93% 100% Baidu (2016) 46.6% 97.5%

Blizzard 70% 100% QQ 56% 94%

Authorize 66% 100% Taobao 23.4% 90.7%

Captcha.net 73% 99.6% Sina 9.4% 90%

NIH 72% 99% reCAPTCHA (2011) 77.2% 87.4%

Reddit 42% 98% eBay 58.8% 86.6%

Digg 20% 95% Amazon 25.8% 79%

eBay 43% 86.6% Wikipedia 23.8% 78%

Slashdot 35% 86.4% Microsoft 16.2% 72.1%

Wikipedia 25% 78% Yahoo! (2016) 5.2% 63%

Success rate Success rateCaptcha Scheme Captcha Example
Ref. [8] Our approach

Captcha Scheme Captcha Example
Ref. [19] Our approach

reCAPTCHA (2013) 22.3% 90% PayPal 57.1% 92.4%

Baidu (2013) 55.2% 89% reCAPTCHA (2011) 66.6% 87.4%

reCAPTCHA (2011) 22.7% 87.4% Yahoo! (2016) 57.4% 63%

eBay 51.4% 86.6%

Baidu (2011) 38.7% 83.1%

Wikipedia 28.3% 78%

Yahoo! (2014) 5.3% 75.1%

CNN 51.1% 51.6%

Table 4: Comparing our approach against four prior attacks [8, 10, 17, 19] on 24 captcha schemes where the prior methods
were tested on. These captcha schemes include eBay and Wikipedia evaluated in Section 6.1 and other 22 schemes.



(b) Results given by [16]

(a) Example hollow captchas from Sina and Microsoft schemes

(c) Results given by our pre-processing model

Figure 11: Comparing font style standardization between
a state-of-the-art hollow captcha solver [16] and our pre-
processing model. Our pre-processing model is able to fill
the hollow parts more effectively.

(a) Wikipedia (b) Microsoft 

(c) Sina (d) Baidu 

Figure 12: Character segmentation produced by our pre-
processing model. For each scheme, the left image is the in-
put captcha, and the right image is the output of our pre-
processing model.

Filling hollow characters. Figure 11 compares our pre-processing

model against a state-of-the-art hollow captcha solver [16]. The

task in this experiment is to fill the hollow parts of the characters.

Here, we apply both schemes to the testing hollow captchas from

Sina and Microsoft schemes. Figure 11a gives some of the examples

from these two schemes, while Figure 11b and Figure 11c present

the corresponding results given by the hollow filling method in [16]

and our approach respectively. As can be seen from the diagrams,

our pre-processing model is able to fill most of the hollow strokes,

while the state-of the-art method leaves some hollow strokes un-

filled. Therefore, our approach is more effective in standardizing

the font style. We also note that unlike prior attacks which require

manually designing and tuning an individual method to process

each security feature, our approach automatically learns how to

process all features at one go. As a result, our approach requires

less effort for implementing a holistic pre-processing model.

Standardizing character gaps. Prior research suggests that the

robustness of text captchas largely relies on the difficulty of finding

where the character is (i.e., segmentation) rather than what charac-

ter it is (i.e., recognition) [11]. This segmentation-resistance princi-

ple has become a crucial part for designing text captcha schemes.

The examples given in Figure 12 suggest that our pre-processing

model is effectively not only in removing security features (like

noisy backgrounds and occluding lines) and standardizing font

styles, but also in segmenting characters by widening and stan-

dardizing the gap between collapsed characters. The high-quality
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Figure 13: How the beginning layer for transfer learning af-
fects the resulting performance of the fine-tuned solver.

character segmentation produced during pre-processing has a pos-

itive contribution to the success rate of our solver, helping it to

achieves a higher accuracy compared to existing attacks.

6.4 Transfer Learning
Recall that we only use 500 real captchas to refine the base

solver by employing transfer learning (Section 4.3). Our strategy

for transfer learning is to only retrain some of the latter neural

network layers of the base solver (see Figure 7). In this experiment,

we investigate how the choice of transfer learning layers affects

the performance of the fine-tuned solver. To that end, we apply

transfer learning to different levels of the base solver, by changing

the starting point of transfer learning from the 2nd convolutional

layer (CL) all the way down to the first fully-connected layer (FC).
Figure 13 reports performance of the resulting fine-tuned solvers

trained under different transfer learning configurations for the 11

captcha schemes given in Table 1. Overall, applying transfer learn-

ing to the second or third CL onward leads to the best performance.

To determine the best starting layer for transfer learning, we apply

cross-validation to the real captcha training dataset. Specifically,

we divide the 500 real captchas into two parts, the first part of 450

captchas is used to refine the base solver, and the rest 50 captchas

are used to validate the refined solver. We vary the beginning layer

for transfer learning, and then test the refined base solver on the

validation set to find out which beginning layer leads to the best

performance. Since we only train and validate on 500 captchas, this

process for finding the optimal beginning layer only takes several

minutes on our training platform.

6.5 Impact of Fine-tuning Training Data Sizes
In this experiment, we evaluate how the number of real captchas

used in transfer learning affects the success rate of the fine-tuned

solver. Figure 14 shows the success rates of the fine-tuned solver

when using different numbers of real captchas in transfer learning.

When the number of training examples is 500, our approach reaches

a high success rate. Formost captcha schemes, the success rate drops

significantly when the number of training examples less than 400.

Nonetheless, our approach can achieve a high success rate when
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Figure 14: The achieved success rates when the fine-tuned
solver is trained using different number of real captchas.
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Figure 15: How the synthesizer training termination crite-
rion affects the solver performance. Training terminates
when the discriminator fails to classify a certain ratio of syn-
thetic captchas.

the number of training examples is 500. Such a number allows an

attacker to easily collect from the target website.

6.6 Synthesizer Training Termination Criteria
Our captcha synthesizer is trained under the GAN framework, and

training terminates when the discriminator fails to classify a certain

ratio of synthetic captchas (Section 4.2). Figure 15 reports how the

termination criterion affects the quality of the synthetic captchas.

The x-axis shows the ratio (from 0.8 to 0.97) of synthetic captchas

that are misclassified as a real captcha by the discriminator when

training terminates. The y-axis shows the success rate achieved

by the fine-tuned solver for five current captcha schemes, where

the base solver is trained on the resulting synthetic captchas using

different termination criteria but the fine-tuned solver is trained

on the same set of real captchas.

In general, the more synthetic captchas that the discriminator

fails on, the higher the quality the generated synthetic captchas

(a) Overlapped characters

(b) Rotated characters

(c) Distorted characters

(e) Waved characters

Figure 16: Example captchas with single security features.

will be, which in turns leads to a more effective captcha solver.

However, the increase in the success rate reaches a plateau at 0.95.

Further increasing the similarity of the synthetic captchas to real

ones does not improve the success rate due to overfitting. Based

on this observation, we choose to terminate synthesizer training

when the GAN discriminator can successfully distinguish less than

5% (i.e., fail on 95% or more) of the synthetic captchas. We found

that this threshold works well for all the captcha schemes tested in

this work.

6.7 Impact of Captcha Security Features
In this experiment, we evaluate how security features affect the

effectiveness of our solver. Having this knowledge is crucial for

designing a more robust captcha scheme. This experiment consid-

ers four common security features for text captchas: overlapping,

rotation, distoration, and waving. We exclude noisy backgrounds

and occluding lines when evaluating individual features, as the two

features have been shown to be vulnerable under our GAN-based
pre-processing model in Section 6.3. We use a third-party captcha

generator [36] to generate captchas of different security feature

settings. For each setting, we generate 220,000 synthetic captchas.

We then train our CNN-based solver on 200,000 captchas and test it

on the remaining 2,000 captchas. Note that we do not fine-tune the

solver in this experiment because the test data are also synthetic

captchas.

Overlapping. By decreasing the space between adjacent charac-

ters, overlapping is a widely for anti-segmentation [10]. For captcha

images of 150 × 70 pixels, when the overlapping area of adjacent

characters are 4, 6, 8 and 10 pixels (as depicted in Figure 16a), the

success rate of our solver is 65%, 50.1%, 42.6% and 25.1%, respectively.

The success rate is still significantly higher than the 1% threshold

at which captchas are considered to be ineffective. It is worth men-

tioning that prior study has shown that if the resulting overlapping

area is greater than 6 pixels, the resulting captcha will significantly

affect user experience because it becomes difficult for humans to

recognize characters from the image [8].



No. Sample Overlapping Rotation Distortion Waving Success

Rate

1

√ √
74.85%

2

√ √
65.05%

3

√ √
58.8%

4

√ √
64.95%

5

√ √
82.35%

6

√ √
62.45%

7

√ √ √
57.50%

8

√ √ √ √
52.50%

9 All security features 46.30%

Table 5: Impacts of multiple combined security features.

Rotation. In this experiment, we apply our solver to captchas

where the characters are rotated clockwise/anti-clockwise with an

angle of 15, 30, 45 and 60 degrees. Figure 16b illustrates some of the

rotated captchas generated by our synthesizer. Our solver correctly

recognizes all (100%) the captchas when characters are rotated at a

15- or 30-degree angle. It only fails to recognize 3 (99.85%) and 9

(99.55%) out of 2,000 captchas when characters are rotated at a 45-

and a 60-degree angles respectively. Our solver fails to recognize

some captchas because some of the characters of these captchas

are largely overlapping with each due to rotation. We note that the

rotation angle used by most of the current captcha schemes is under

30 degrees, because a greater rotation angle may have a negative

impact on user experience. The results indicate that rotation alone

does not enhance the security of text captchas under our attack.

Distortion.Character distortion can confuse bot programs as two

different characters could look similar when they are distorted. For

example, “O" and “0" are visually similar when they are distorted.

Figure 16c gives some of the synthetic, distorted captchas that are

used to test our solver. For this set of testing captchas, our solver

correctly labels 92.9% of the captchas. This experiment suggests

that distortion alone is not strong enough to defeat our attack.

Waving. Figure 16d shows some of the testing captchas with vari-

ous waving degrees. Our solver is able to successfully label 98.85%

of the captchas, outperforming the 93.6% success rate presented in

[36]. Our solver only fails on 23 captchas which contain characters

that are similar after waving, such as “O" and “0", and “l" and “1".

For some of those failed captchas, our annotators also did not reach

a consensus.

Combining security features. Table 5 shows how the combina-

tion of security features affect the accuracy of our solver. Combining

multiple security features does improve the robustness of a captcha

scheme. This can be seen from the drop in the solver’s success rate

when using two or more security features together. Specifically,

character overlapping and distortion are more effective compared

to rotation and waving, because overlapping and distortion can

result in significant alterations to the shape of a character. This

observation is also confirmed by the relatively lower success rate

presented in rows No. 1 to No. 4 (where overlapping or distortion

is used) compared with the 82.35% success rate at row No. 5 when

rotation and waving (but not overlapping nor distortion) are used.

Moreover, while using more security features results in a stronger

captcha scheme, it reduces the usability of captchas. For example,

our annotators struggle to recognize the captcha presented in row

No. 8 in the first attempt. If we now consider Row No. 9, an example

with all the security features considered in this work (including

background noise and occluding lines), all our annotators consider

this captcha to be user unfriendly and fail to correctly recognize

it in the first attempt. For all the cases presented in Table 5, our

solver success rate is above 46%, which is still greater than the 1%

threshold when a captcha scheme is considered to be ineffective.

Therefore, the results of this experiment suggest that balancing the

security strength and usability of a text captchas under our attack

is non-trivial.

6.8 Captcha Usability Study
Captcha is designed to be easy for humans to recognize while

hard for bots. However, balancing the security strength and user

experience is becoming increasingly difficult. In this experiment,

we perform user study to quantify the impact of security features

on user experience (i.e., captcha usability) and the success rate

of our solver. To do so, we have conducted an online survey by

recruiting 20 participants to fill in an anonymous questionnaire.

Our participants are at the age group of under 30s and are familiar

with text captchas. In the questionnaire, we present 100 synthetic

captchas with different security strengthes. We give each partic-

ipant one minute to label a captcha. We divide the captchas into

six categories based on the number of characters and the security

parameters used for generating the captacha. In the user study, we

ask each participant to rate the usability of five captchas from each

category on a 5-point Likert-scale, where 1 = very poor and 5 =

excellent usability.

Table 6 gives the criteria used to determine the captcha diffi-

culties and an example captcha image for each category. For each

captcha category, we also give the averaged success rates achieved

by our participants and our solver, as well as the averaged rating

given by the participants.

While using more security features increases the difficulty for

a computer program to solve a captcha challenge, doing so also

makes it harder for a user to recognize the content of the captcha.

For example, the averaged human success rate for the captchas

in category 6 of Table 6 is below 70%, meaning that nearly one-

third of the time a user will enter a wrong answer for captchas in

this category. Therefore, captchas in this category were given the

lowest usability score of 2.1 is not surprising. Also, as we expected,

humans in general are better than computers at solving captchas,

and the success rate of a computer solver drops as the difficulty of

the captcha increases.



Security Features Success Rate
No. Example

Anti-segmentation Anti-recognition Humans Our approach
Usability

1 English letters and arabic numerals Rotation, varied font sizes 95.25% 100% 4

2 English letters Rotation, varied font sizes 90.25% 88% 2.75

3 English letters, complex background Rotation, distortion 91% 96% 2.8

4 English letters, overlapping characters,

complex background

Varied font sizes, rotation, distortion 89.25% 86% 2.7

5 English letters Varied font sizes, ratation, distortion 79.75% 77% 2.8

6 English letters, overlapping characters Varied font sizes, rotation, distortion, wav-

ing

68.75% 40% 2.1

Table 6: Example captchas used in our user study, the success rates of humans and our approach, and the usability rating.

If we now consider categories 3 and 4 in Table 6 where back-

ground confusion is used, we find that noisy backgrounds have a

negative impact on the user experience because our participants

gave an overaged usability score of less than 3 for captchas in these

categories. On the other hand, background confusion has little con-

tribution to the security strength of captchas under our attack. This

can be confirmed from the similar, or even better solving perfor-

mance given by our solver when compared to human participants

for captchas in the two categories. This finding suggests that com-

plex background confusion perhaps should be abandoned in future

text captcha schemes.

Overall, this user study shows that a deep-learning-based captcha

solver can achieve comparable performance for solving text captchas

when compared to humans, but balancing the security and usability

of a text captcha scheme is non-trivial.

7 DISCUSSIONS
In this section, we discuss the limitations of our approach and

the potential countermeasures for our attack.

7.1 Limitations
Naturally there is room for further work and possible improve-

ments. We discuss a few points here.

Captchas with variable numbers of characters. Our current
implementation targets text-based captchas with a fixed number

of characters, but it can be extended to captachs with a variable

numbers of characters. This can be achieved by first predicting

how many characters are in the captcha and then selecting a model

specifically trained for that number of characters. Our preliminary

results show that we can learn a CNN model to predict the number

of characters of an input captach image with a accuracy of 89% and

70% for Wikipedia and Google schemes respectively.

Multi-word captchas. Our approach can be easily extended to

multi-word captchas too. This can be done by either treating all

words as a sequence of characters, or first segmenting the words

and then recognizing individual words.

Extend to other captcha schemes. Our approach is generally ap-

plicable and can be naturally extended for video and image captchas

by adapting the network architecture to recognize objects from the

inputs; and favorably, the process of synthetic data generation,

model training and tuning still is unchanged. This flexibility allows

one to attack various types of captchas, not just text-based ones.

For example, to target NuCAPTCHA [2], a motion-based captcha

scheme, we need to replace our CNN solver with a model similar to

the Mask R-CNN [26]. The idea is to first segment the video frames

into images and then recognize characters from individual images.

After replacing the solver structure, we also need to extend our

GAN-based captcha synthesizer to generate a sequence of synthetic

images (as recognition is performed at the image level). For motion-

based captchas, the key is to maintain the temporal relationships

among images, for which a temporal CNN can be useful [37].

7.2 Countermeasures
Recent studies have shown that adversarial examples generated

by GANs can confuse machine learning classifiers [57]. By insert-

ing some imperceptible perturbation on captcha images, one can

mislead a machine learning model [47, 57] and at the same time

the small perturbation does not interfere with a successful recogni-

tion of the image contents by humans. However, the perturbation

to be put on the captcha image is tightly coupled to not only the

captcha image itself, but also the captcha solver and its parameters.

To generate effective adversarial examples requires having a way to

observe the solver behavior. Doing so is difficult in practice because

an adversary is unlikely to release the solver, while a small change

in the solver structure (e.g., by changing the number and types of

some neural network layers) is often sufficiently enough to invalid

the adversarial mechanism. This work shows that it is possible to

quickly learn a highly accurate captcha solver using a small set of

real captchas. This means the structure of the solver can be quickly

changed to invalid a adversarial mechanism used by a captcha

scheme. While our work does not necessarily pronounce a death

sentence to text-based captchas – as they are keeping evolving, we

hope the high success rate achieved by our deep-learning-based



attack can encourage the community to carefully think about the

implications of this widely used security mechanism.

Numerous alternative schemes have been proposed to replace

text-based captchas. These include video-based captachas such as

NuCAPTCHA [2] and game-based CAPTCHAs [43]. The former

was shown to be vulnerable [7, 62]. The later seemly offers some

promises but the recently breakthrough of deep reinforcement

learning in game playing may pose a threat to such schemes [42]. To

develop a robust countermeasure for deep-learning-based attacks,

one probably need to combine multiple mechanisms similar to the

multi-factor authentication protocol [33, 51]. Nonetheless, how

to balance the security strength and usability of a scheme is an

outstanding problem.

8 RELATEDWORK
Text-based captchas are a dominant captcha scheme used by

many websites. There is an extensive body of prior work investi-

gates ways to improve the security of text-based captchas, building

upon attacks on existing schemes. However, text captchas are going

through an iterative development process, just like cryptography

and digital watermarking, where the previously successful attacks

have led to the development of more secure schemes. While there

are alternative captcha schemes available, text captchas are still

preferred by many users due to familiarity and a sense of security

and control [35].

Mori et al.were among the first attempts to break text captchas [25].

Their attack employs a set of analytical models and heuristics to

break Gimpy and EZ-Gimpy, two early simple text-based captcha

schemes. Yan et al. show a simple character segmentationmethod [63],

which counts the number of pixels of individual characters, can

breakmost of the captchas from Captchaservices.org. Later, they
show an improved segmentation method can be used to attack the

early captcha schemes used by Yahoo!, Microsoft and Google [64].

The work presented by Gao et al. targets captchas of hollow charac-

ters [15]. Their approach first fills the hollow character strokes, and

then searches for the possible combinations of adjacent character

strokes to recognize individual characters. While are effective on

hollow characters, this approach is ineffective on captcha images

with overlapping and distorted characters. Unlike our approach,

all the aforementioned attacks are tightly coupled to the captcha

scheme and hard to generalize. This means to target a new captcha

scheme, they would require human involvement to revise the exist-

ing heuristics and possibly to design new heuristics.

Decaptcha [8] employs machine-learning-based classifiers to

develop a generic attack for text-based captchas. It is able to break

13 captcha schemes but achieves zero success on more difficult

schemes including reCAPTCHA and Goolge’s own scheme. By

contrast, our approach not only gives a higher accuracy on the

schemes where Decpatcha succeeds, but also delivers a success rate

of 87.4% on reCAPTCHA for which Decaptcha has a success rate of

zero (see Table 4). A more recent work presented by Gao et al. [17]

uses the Log-Gabor filter, a classical signal processing algorithm,

to first extract character components from the captcha image; it

then uses the k-Nearest Neighbor algorithm to recognize individual

characters using the extracted information. Due to the limitation

of the Log-Gabor filter, their approach is ineffective for captcha

images with noisy backgrounds. For example, their approach fails to

recognize the Baidu captcha shown in Figure 1a. Recently, George

et al. presents a hierarchical model called the Recursive Cortical

Network (RCN) for image recognition [19]. The RCN is effective in
recognizing individual characters but are less effective for solving

text-based captchas when compared to our approach. Our approach

outperforms all the three captcha schemes showcased in the RCN
work (on the same testing dataset from the RCN paper) [19]. In

particular, on the PayPal dataset, our approach boosts the success

rate from 57.1% to 92.4%. Stark et al. [55] show that active learning

can be used to reduce the number of captchas required to learn a

solver. However, this approach requires having access to a captcha

generator of the target scheme, which is often not available to the

adversary. On the other hand, active learning is complementary

to our approach as it allows the learning engine to use a fewer

number of training samples to speed up the training process [45, 46].

Compared to these prior generic attacks, our approach is by far

the most effective generic attack – it delivers a higher success rate

and can successfully attack some current captcha schemes where

others failed.

It is worth mentioning that there are also other captcha schemes

built around images [1, 3, 13, 24, 44] or audio data [6, 50]. Many of

these were proposed to replace text-based captchas. Unfortunately,

these alternative schemes are less popular than text captchas and

were shown to be vulnerable too [9, 18, 40, 43, 54, 58]. In particular, a

significant weakness of an image-based scheme is that the number

of images used by the scheme is typically limited. As result, an

adversary may exploit side channels to obtain and label a large

portion of the images used by a scheme [29].

As a final remark, we would like to point out that our work

builds upon the foundations of adversarial machine learning [22, 30].

This technique is shown to be useful in constructing adversarial

applications to bypass malware detection [49, 61], escape from spam

mail filtering [5], or confuse machine learning classifiers [23, 41].

However, no work to date has employed the technique to construct

a generic solver for text captchas and our work is the first to do so.

9 CONCLUSION
This paper has presented the first generative-adversarial-network

based solver for text-based captchas. Our solver is automatically

learned from training examples and hence can target a wide range

of schemes. As a departure from prior machine-learning-based at-

tacks, our approach requires significantly fewer real captchas to

construct the solver. We achieve this by first learning a captcha

synthesizer to automatically generate synthetic training examples

to build a base solver, and then refining the base solver by applying

transfer learning to a small set of real captchas. The key advantage

of our attack is that it needs less human involvement when target-

ing a new captcha scheme. This means that our attack can be easily

adjusted to catch up with the ever-changing captcha scheme.

Our approach was evaluated on 33 text captcha schemes, includ-

ing 11 schemes that were being used by 32 of the top-50 popular

websites at the time the work was conducted. Our approach out-

performs four prior state-of-the arts by successfully solving more

captchas. We show that our approach is robust and generally ap-

plicable, which can break many advanced security features used



by modern text captchas. Our results suggest that these advanced

features only make it difficult for a legitimate user but would fail to

stop automated programs. Given that deep learning and generative

adversarial based approaches are making great progress in solving

image-related tasks, the insights provided in this work can help

security experts to revisit the design and usability of text captchas.
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