
Exploit Dynamic Data Flows to Protect Software Against Semantic Attacks

Kaiyuan Kuang†, Zhanyong Tang†∗, Xiaoqing Gong†, Dingyi Fang†, Xiaojiang Chen†, Heng Zhang†, Jie Liu‡, Zheng Wang§
†School of Information Science and Technology, Northwest University, P.R. China.

‡Tencent Technology (Shenzhen) LI. §School of Computing and Communications, Lancaster University, UK.

Abstract—Unauthorized code modification based on reverse
engineering is a serious threat for software industry. Virtual
machine based code obfuscation is emerging as a powerful
technique for software protection. However, the current Vir-
tual machine code protection are vulnerable under semantic
attacks which use dynamic profiling to transform an obfuscated
program to construct a simpler program that is functionally
equivalent to the obfuscated program but easier to analyze.
This paper presents DSA-VMP, a novel VM-based code ob-
fuscation technique, to address the issue of semantic attacks.
Our design goal is to exploit dynamic data flows to increase
the diversity of the program behaviour. Our approach uses
multiple bytecode handlers to interpret a single bytecode and
hides the logics that determine the program execution path (it
is difficult for the attacker to anticipate the program execution
flow). These two techniques greatly increase the diversity of the
program execution where the protected code regions exhibit
a complex data flow across multiple runs, making it harder
and more time consuming to trace the program execution
through profiling. Our approach is evaluated using a set of
real-world applications. Experimental results show that DSA-
VMP can well protect software against semantic attacks at the
cost of little extra runtime overhead when compared to two
commercial VM-based code obfuscation tools.

Keywords-VM-based software protection; Data flow obfusca-
tion; Semantic attack; Data flow analysis

I. INTRODUCTION

Unauthorized code analysis and modification based on

reverse engineering is a major concern for software com-

panies. By making the program harder to be traced and

analyzed, code obfuscation based on a virtual machine(VM),

is a viable means to protect applications from unauthorized

code modification [1, 2]. The underlying principle of VM-

based code obfuscation is to replace the native instructions

with virtual bytecodes which will then be translated into

native instructions at runtime by a VM interpreter. This

forces the attacker to move from a familiar environment of

native instruction set (e.g. x86) into an unfamiliar computing

environment. As a result, such techniques can significantly

increase the cost of attacks. There are a number of VM-based

code obfuscation approaches have been proposed[1–6].

Despite much progress has made for VM-based code

obfuscation, it remains an open problem to protect software

against semantic code transformation, a technique that trans-

lates an obfuscated program to produce a simpler program

*Corresponding author. Email address: zytang@nwu.edu.cn

that is functionally equivalent to the obfuscated code but

easier to analyze. To extract the program semantics, existing

semantic code transformation techniques [7–9] all rely on

data flow analysis to understand how the virtual instructions

are scheduled. Existing VM-based code obfuscation cannot

effectively protect software against semantic attacks, because

traditional virtual machine protection methods pay their

attention to improve the security of virtual machine structure,

but ignore the security of data flow information and that

will cause the execution of the program and data flow

information to be easily obtained by an attacker. The key

to address this problem is to introduce a certain degree of

complexity and diversity into the program data flows.
This paper presents DSA-VMP (Defending Semantic

Attacks-Virtual Machine Protection), a novel VM-based

code obfuscation system, to protect software against se-

mantic attacks. The design methodology of DSA-VMP is

to increase the data flow complexity of the protected code

region. It will be more difficult for the attacker to analyze

the code if the data flow has dynamic and diverse behavior.

We employ multiple separated processes (two in our current

implementation) to execute the VM so that much virtual

bytecode interpretation is done across multiple processes

scheduled. To further increase the diversity and complexity,

we also employ multiple procedures (handlers) to translate

one bytecode instruction. For the same bytecode, multiple

handlers produce semantically equivalent results, but are

implemented (or obfuscated) in different ways and follow

different program execution paths. During runtime, our VM

instruction scheduler randomly selects a handler to translate

a virtual instruction to the native code. Since the handlers is

chosen randomly at runtime for each bytecode and the im-

plementation of different handlers are different, the dynamic

program execution path will likely vary in different runs.
We evaluated DSA-VMP on five widely used real-world

applications. Experimental results show that DSA-VMP can

successfully protect software against semantic attacks with

little extra runtime overhead when compared to two com-

mercial VM-based code obfuscation tools: VMProtect[1]

and Code Virtualizer[2]. The contributions presented in this

paper are summarized as follows:

• Employ multiple processes to provide stronger protec-

tion for VM-based code obfuscation;

• Exploit dynamic data flows to protect software against

978-1-5386-0435-9/17/$31.00 ©2017 IEEEAuthorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:27:11 UTC from IEEE Xplore. Restrictions apply.

Figure 1: The effect of defending semantic attack. After the software
protected by the method of anti-semantic attack, the attacker cannot obtain
the Control Dependence and Constraint Solver of the program through the
data flow analysis, finally the attacker get a wrong or inaccurate control
flow graph.

semantic attacks.

II. BACKGROUND

VM based software protection method is to transform the

native code to virtual instructions which will be encoded

into bytecodes (VMdata). The VM interpreter will interpret

these bytecodes, it follows the decode-dispatch approach

and consists of a Dispatcher and the handling procedures

of bytecode (handlers).

As illustrated in the Figure 1, the key of semantic attack

is to analyze the control flow and data flow of the program.

Firstly, the attackers use test input generation tools to

explore the space of execution paths, and then use the taint

analysis and symbolic execution to analyze the accessibility

of the path, and finally obtain the Control Dependence

and Constraint Solver of the program. Since the number

of the execution paths maybe large when the program

is complicated, the attacker need to simplify the original

program control flow graph and the internal logical structure.

Using these well-known techniques, the core algorithm of

the program can be reversed. As stated above, this kind of

attack method is not limited to the structure of the virtual

machine, so the program protected based VM will cause

potential cracking risks. This paper mainly aims at this kind

of attack method to put forward a kind of the virtual machine

protection method that can defense the semantic attack.

III. ATTACK MODEL

In our attack model, we assume that the attacker has an

executable program of the target VM-protected software, and

he can run it in the malicious host environment [10]. The

attacker has full access to the system, he can execute the

program at any time and take advantages of any static and

dynamic analysis tools [11–13] to help trace and analyze

instructions, monitor registers and process memory, and

even change instruction bytes and control flows at runtime,

etc. We assume that the attacker completely understand the

virtual machine protection principle and the structure of

the virtual machine. The ultimate goal of the attacker is

to completely reverse the program’s internal structure and

logic.

Figure 2: The overview of DSA-VMP system framework. The basic idea of
the virtual machine software protection method is to transform the protected
native instructions(Intel x86) to virtual instructions which will then be
encoded into bytecodes(VMdata) and interpreted by VM interpreter, into
which the data flow obfuscation are also introduced to resist semantic attack.

IV. DESIGN DETAILS

The target program of DSA-VMP is the executable file on

Windows platforms (.exe, .dll , etc.), and it mainly focuses

on the virtualization protection of critical code in the target

program. Figure 2 shows the overview of the DSA-VMP.

A. DSA-VMP Fundamental Principles

The procedure for the DSA-VMP to protect the target

program as follows:

The key code are firstly extracted and converted into

native code (x86 instructions) using a disassembler. Then

convert the native x86 instruction into a virtual instruction on

the basis of ensuring semantic equivalence. Next encode the

virtual instruction to generate the corresponding bytecode

instruction. All of the virtual instruction will be stored

in the protected program in the form of bytecodes. Then

obfuscate the handlers set, the data stream of the Handlers

set is obfuscated by using the deformation engine. Finally

reconstruct the target file, embed the handler set, VMdata

and other key components of the VM into a new section, and

fill the critical code with junk instruction, and then redirect

the entry of the protected code region to the VM section.

B. The execution procedure of the protected software

The execution procedure of the protected software is

shown in Figure 3. Specific steps are as follows:

An added jump instruction jumps to VMinit when the

program runs on original cirtical code. Then initialize the

VMcontext, and map the actual register context to VMcon-

text (Step 1). Execute Dispatcher and Extract the handler

sequence is obtained after decryption, and an abnormal

interruption which is captured by an abnormal capture

mechanism in parent process is generated (Step 2). When

an abnormal interruption is captured by the mechanism,

the handling of this interruption will be performed, then

check the interruption information address table to determine

the address of the interruption (Step 3 & Step 4). Then

return to the handling mechanism and perform the next

step, jump to the corresponding handler to execute according

to the obtained address (Step 5 & Step 6). After the

Handler is executed, return to run Dispatcher repeatedly

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:27:11 UTC from IEEE Xplore. Restrictions apply.

Figure 3: The execution procedure of the protected
software.

Figure 4: An example of a simple hidden predi-
cate.

Figure 5: The program execution flow after DSA-
VMP protected.

until all the bytecode is explained, and then jump to VMexit

(Step 7). VMexit restores the virtual register context to the

actual register context, and then jump to the end address

of the original critical code section, continually running the

instruction following the critical code section (Step 8).

C. DSA-VMP key implementation

1) Data flow obfuscation of atomic handler: The byte-

code is ultimately interpreted and performed by the handler

of the virtual machine, so the obfuscation of handler data

flow is crucial. As shown in follows is a normal handler:
1 asm
2 {
3 l o d s b y t e p t r ds : [e s i]
4 xor a l , b l
5 add a l , 5 2
6 sub a l , 0AA
7 xor bl , a l
8 movzx eax , a l
9 push dword p t r ds : [e d i +eax *4]
10 }
The mission of this handler is to fetch a bytecode from

VMdata (line 3), and decrypt the cryptographic bytecode

(line 4-7), then calculate the address of the virtual register

according to the bytecode, and push the data of this address

into the stack (line 8-9). Here, esi points to the starting

address of the VMdata, and edi points to the starting address

of the VMcontext.

When analyzing a program, the attacker first given an

input value and marks it as a taint data (eg: to taint marks the

bytecodes), when the handler executes the instruction lods
byte ptr ds:[esi]. The taint will be spread to the register of

al, and in the subsequent calculation process, the taint will

continue to spread. So that the attacker can use the data flow

to accurately analyze the layout of the register in the virtual

context, and then follow-up analysis of the work.

The data flow obfuscation for the handler can effectively

prevent the attacker from using the taint propagation to

analysis program. The follows shows a handler which has

been obfuscated with the data flow:
1 asm
2 {
3 l o d s b y t e p t r ds : [e s i]
4 xor a l , b l
5 add a l , 52
6 sub a l , 0AA
7 xor bl , a l
8 push ebx / / I n t r o d u c e an u n t a i n t e d r e g i s t e r ebx
9 mov bl , 0 FF

10 i n c b l
11 cmp a l , b l
12 j n z 10
13 mov a l , b l
14 pop ebx
15 movzx eax , a l
16 push dword p t r ds : [e d i +eax *4]
17 }

we have added a register operation about ebx, and the role

of it is to block the taint propagation path. The obfuscated

handler implements the same operation as the normal han-

dler, they are functionally equivalent. In the process of eax
processing, the self-increment operation of the register ebx is

inserted, when the value of ebx is equal to that of al, assign

the ebx values to al (line 10-13), finally bleach the taint

data, blocking the taint propagation path. Basis on which

we can perform various transforming operation to handler to

increase the complexity of the program data flow, and it is

difficult for the attacker to collect the instruction information

in the program execution path.

2) Resistance symbol execution analysis: When the at-

tacker analyze program by the symbolic execution, it first

locate to the predicate information in the program, then

symbolizes the instruction to infer the accessibility of the

path, and finally constructs the control flow information of

the program. So the key of resistance symbolic execution is

to hide the predicate information in the program.

In the design of the virtual machine, after execution the

handler will have a jump instruction to jump back to Dis-

patcher, loop the decode and dispatch until finished all the

bytecodes. Based on this, we will hide jump instruction after

each handler, at the same time, randomly add some predicate

information to construct fake branches, make the control

flow graph constructed by the attacker is either incomplete

or is filled up with false branch structure information.

We hide the predicate information in the program using

the exception mechanism as shown in Figure 4, the specified

method is to modify the last jump instruction of the handler

into an abnormal instruction to produce an abrupt. When the

exception instruction is captured, according to the interrupt

address through the lookup table to find out the target

address of the jump instruction, and then jump to original

target address. Exception instructions are implemented using

the commonly used x86 instructions, such as zero division

exception, memory access exception and interruption excep-

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:27:11 UTC from IEEE Xplore. Restrictions apply.

tion. So that the attacker cannot easily find the exception

instruction from a large number of normal x86 instructions.

Further can construct the exception library, and random

select a exception instructions when replacing the original

jump instruction to achieve a certain variety.

3) Dual process confusing program: After introducing

the exception, there needs an exception handling mechanism

to catch exceptions, thus, making it possible to reach the

destination address of the original jump instruction without

changing functionality of the original code.

There are many forms of exception handling mechanism

in the Windows environment, such as structured exception

handling (SEH), vectored exception handling (VEH), C++

exception handling mechanism, etc. We handle the exception

mechanism with the idea of double process, as shown in

Figure 5, P is the original process of the program, M is an

exception capture and handling process, process of the mu-

tual cooperation of process P and M complete the function

of the original program. Meanwhile adding a certain process

for monitoring, real-time monitors process P completes the

mission according to the semantics of the source program,

so as to avoid the hijacked by an attacker.

V. SECURITY EVALUATION

Collberg and others[14] proposed three indicators to e-

valuate obfuscating algorithm: strength, flexibility, and the

cost. In this section, we will analyze the effectiveness of the

protection method, and the next part is mainly on the system

overhead assessment

A. Protection Effect Analysis

DSA-VMP is proposed to mainly deal with the present

semantic based analysis, attackers usually use the following

two techniques, symbolic execution and taint analysis tech-

nology, or combination of both. The first step is collect a

complete program execution path using the taint analysis,

and then do reachability analysis of this path combining

symbolic execution, so as to analyze the other path informa-

tion of the program. But an attacker is unable to collect the

complete implementation path of the program through the

taint analysis after we protect. Because when a tainted data is

marked, as the program executing, the program will bleach

the tainted data, thus an attacker cannot collect any path

of complete execution. In addition, the protected program

hides a large number of predicate information, making it

impossible for an attacker to perform an analysis using

symbolic execution, that eventually lead to attackers to give

up to analysis the program. The following examples are

analyzed to illustrate the effectiveness of protection.

Figure 6 shows a code segment, which is divided into the

basic block according to the jump instruction, the right is the

control dependent relationship corresponding to basic block.

It is easy to known that execution result of L3 will determine

whether B1 and B2 are executed, it also will determine the

Figure 6: The code basic blocks and control flow graph of the program.

Table I: Symbolic execution of binary code.

Num Assembly code Symbolic execution process
1 mov eax,edx eax=fmov(var1)= var1
2 cmp ecx,eax fcmp(ecx,var1)

3 jz 004010BF
if(ecx-var1 ==0)

goto: 004010BF
4 mov ecx,0x01 ecx=fmov(0x01)=0x01
5 jmp 004010C4 goto:004010C4
6 mov ecx,0x02 ecx=fmov(0x02)=0x02
7 jmp[edi+ecx*4] goto:[edi+ecx*4]

register of ecxs value, and ultimately will determine which

is the destination address the basic block B4 jump to.

When attackers analyze on this program segment, the

operation is as follows, use the taint analysis technology

to mark edx as a tainted data, instruction L1 propagate

taint to ecx, ecx is also marked as the taint data. At this

point, if the ecx is equal to eax, then execute the jump

instruction between L3 and L6, and then execute L7 jump to

the corresponding destination address. This process collect

an execution path: B1→B2→B4. And then use the execution

path combine with symbolic execution to deduce the rest

of execution path. As shown in the table I, instruction

1 transfers variable var1 to eax via the mov instruction,

instruction 2 compares register ecx with variable, instruction

3 judges the compared results and determines to execute

instruction 4 or instruction 6, thus the corresponding value

of ecx is 1 or 2. If the instruction does not jump, then

the constraint expression for the execution path is ecx-

var1!=0, if the expression is satisfied, the execution path

is B1→B3→B4. Or else change the constraint expression

deducing another execution path is B1→B2→B4. Eventually

get the logical structure of the program.

As shown in Figure 7, it is a program information after

protection (here we only analyze added exception instruc-

tion), in which we use the instruction exception using simple

int3 exception specification. What it is shown in right figure

is the block relationship between basic program blocks and

does not represent the specific execution process.

Using the same method to carry on the analysis, we

found that taint propagates to L2 instruction, when encoun-

tered exception interruption of L3 could not continue to

propagate downward. In addition, we also added the taint

bleaching technology in the program, such as it is shown in

section IV-C, further blocking the propagation of pollution

source, so the attacker is not able to collect a complete exe-

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:27:11 UTC from IEEE Xplore. Restrictions apply.

Figure 7: The program basic blocks and control flow graph after hiding
predicate information.

Table II: Symbolic execution of the protected program.

Num Assembly code Symbolic execution process
1 mov eax,edx eax=fmov(var1)= var1
2 cmp ecx,eax fcmp(ecx,var1)
3 int3 Null
4 mov ecx,0x01 ecx=fmov(0x01)=0x01
5 int3 Null
6 mov ecx,0x02 ecx=fmov(0x02)=0x02
7 jmp[edi+ecx*4] goto:[edi+ecx*4]

cution path information. Table II is the result of performing

symbol execution analysis on this basis. We can find that the

attackers cannot calculate path constraint expression from

symbolic expressions, therefore, it is impossible to further

speculate other paths to construct the control logic structure

of the internal program.

VI. EXPERIMENTAL EVALUATION

We evaluated DSA-VMP on a PC with an 3.3 GHz

Intel(R) Core(TM) i3-2120 processor and 4GB of RAM. The

PC runs the Windows 7 Pack Service 1 operating system.

A. Experimental use cases

In order to test performance overhead of virtualization

software protection method of anti-semantic attack, we se-

lected five programs using known algorithm achievement as

test cases. They contain a calculator, compression, message

transmission, matrix multiplication, recursive algorithm, and

to some extend all of them are representative. Details are

shown in table III, in the table, IP represents the number of

x86 instructions for the key code segment of the protection

program, IE represents the number of the instructions that

actual program execute, and the data is obtained and traced

dynamically by Pin[15]. Among them, the IP of calcula-

tor and IpMsg are higher than the IE of them, and this

is because that the branch instructions exist in programs

and the programs have not implemented these instructions

actually. The IP of Compress, MatrixMul, Hanoi, are lower

than IE of them, and this is because there are large amount

of circulation, recursion instruction, and there will be more

instructions are executed during the actual execution.

B. DSA-VMP system performance analysis

Using DSA-VMP to protect test programs, we recorded

the execution time (average execution time) and file size

Table III: Test case description.

Program Critical Code IP IE
Calculator

Windows calculator,
Multiplication operation

48 31

Compress
File compression algorithm,
Processing 8KB size text file

110 312686

IpMsg
Simple communication tools,

Send message algorithm
363 257

MatrixMul
Matrix multiplication algorithm,
Computing the 6 order matrix

60 9150

Hanoi
Hanoi algorithm,

Enter the plate number is 6
82 2628

(a) (b)
Figure 8: (a) The comparison of impact on file size (KB) with VMProtect
and Code Virtualizer. (b) The comparison of average runtime overhead (us)
with VMProtect and Code Virtualizer.

Table IV: Average runtime overhead per dynamically executed critical
instruction (μs/per instr).

Calculator Compress IpMsg MatrixMul Hanoi
1.032 0.008 6.124 0.346 4.700

of the original programs and the protected programs. The

results are shown in Figure 8.

The impact caused by DSA-VMP on the size of files is

mainly because that DSA-VMP adds new virtual machine

sections in the protected programs, and in each part of virtual

machine, only the bytecode size is not fixed, and the others

are fixed, this is no relationship to the test programs. In

Windows, the each section of PE files are aligned according

to a certain alignment number (0.5kb or 4 kb). So, from

the data in Figure 8, we can see that the size of IpMag files

increases by 16kb,and other four test programs increases by

8kb.It is because that the number of instructions protected

by IpMsg is more than that of other test programs. In the

meanwhile, the bytecode produced are relatively large.

We calculated the average consumption time of each exe-

cution instruction to represent the performance consumption

from system, and the expressions are as follows:

Costper instr = (TA − TB)/IE

• Costper instr: Performance overhead for each instruc-

tion(μs/per instr);

• TA: The execution time of the program after the pro-

tection;

• TB : The execution time of the original program;

• IE : The number of the instructions that actual program

execute.

The table IV shows the average performance consumption

caused by DSA-VMP for each x86 instruction in the test

programs. From the data in the table, we can see that

the performance consumption of the every instruction in

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:27:11 UTC from IEEE Xplore. Restrictions apply.

IpMsg are relatively large, which is because that, most of

the key code segments in IpMsg are arithmetic instructions

and logical operation instructions, and need more handler to

explain and execute. As a result, the consumption is larger,

and others are mainly based on data transmission instruc-

tions. In the meanwhile, it need less executed handler, and

the consumption is less as well. In addition, we compared

the protection effect of DSA-VMP with two commercial

code virtualization protection system, Code Virtualize[2]and

VMProtect[1]. The Figure 8 shows the impact on test pro-

grams about file size and execution time after the protection

of Code Virtualize and VMProtect.

VII. RELATED WORK

Software protection are used to protect the intellectual

property encapsulated within software programs from been

pirated and modified, by transforming target program into

a more obscure and hard-understanding one. In the early

years, the protection of the binary code mainly depend-

s on some simple encryption and obfuscation methods,

these methods can improve code complexity. Typically, junk

instructions[16], equivalent instructions, packers[17, 18],

code encryption, above technology usually are used to

resist disassembly and some static analysis. There are also

other code protection techniques like code obfuscation[19],

Control flow and data flow obfuscation[20–22],etc. these

protection methods can only provide limited obscurity, so in

practical applications, these approaches are seldom caught

alone, and they usually combine with each other to protect

an instance.

Code virtualization protection in recent years has been

used increasingly to protect the code from malicious reverse

engineering [1–6]. We’ve already introduced some of the

research work focuses on the protection based on code

virtualization in section I, introduced the general process

of classical virtual machine software protection method in

section II and some possible attacks in section III.

DSA-VMP put forward a method of defending semantic

attack to improve VM protection security for software. (i)

Improving the atomic handlers, introduce data flow obfus-

cation to improve the flow of data complexity. (ii) Adopting

double process, the virtual machine’s structure is distributed

in different processes, which makes the implementation

of the program more complex and diverse. Our system

increases the complexity of the VM’s data flow by applying

the approach above to resist semantic attack technology.

VIII. CONCLUSION

This paper presents DSA-VMP, a novel VM-based code

protection scheme to deal with the attacks based on seman-

tic analysis. We obfuscates the data flow of the program

by using anti-taint techniques in the handler to hide the

predicate information. The double process is also introduced

to confuse the execution flow of the program. Eventually

making the program execution flow and data flow more

complex, greatly improve the ability to resist semantic

attack. Through theoretical and experimental analysis, the

results show that method can resist attacks based on semantic

analysis and has little effect on performance.

IX. ACKNOWLEDGMENT

This work was partial supported by projects of the Na-

tional Natural Science Foundation of China (No. 61672427,

No. 61572402), the International Cooperation Foundation of

Shaanxi Province, China (No.2015KW-003), the Research

Project of Shaanxi Province Department of Education (No.

15JK1734), the Service Special Foundation of Shaanxi

Province Department of Education (No.16JF028), the Re-

search Project of NWU, China (No.14NW28). Especially

this work was supported by Tencent.

REFERENCES

[1] “Vmprotect software protection,” http://vmpsoft.com/.

[2] “Code virtualizer,” http://www.oreans.com/.

[3] H. Fang et al., “Multi-stage binary code obfuscation using
improved virtual machine.” in ISC, Xi’an, China, 2011.

[4] H. Wang, D. Fang et al., “Nislvmp: Improved virtual
machine-based software protection,” in CIS, 2013.

[5] H. Wang et al., “Tdvmp: Improved virtual machine-based
software protection with time diversity,” in PPREW, 2014.

[6] A. Averbuch et al., “Truly-protect: An efficient vm-based
software protection,” IEEE Systems Journal, 2011.

[7] K. Coogan et al., “Deobfuscation of virtualization-obfuscated
software: a semantics-based approach,” in CCS, 2011.

[8] M. Sharif et al., “Automatic reverse engineering of malware
emulators,” in S&P, 2009.

[9] B. Yadegari et al., “A generic approach to automatic deob-
fuscation of executable code,” 2015.

[10] C. S. Collberg et al., “Watermarking, tamper-proofing, and
obfuscation - tools for software protection,” IEEE TSE, 2002.

[11] “Ida pro,” https://www.hex-rays.com/index.shtml.

[12] “Ollydbg,” http://www.ollydbg.de/.

[13] “Sysinternals suite,” https://technet.microsoft.com/enus/
sysinternals/bb842062/.

[14] C. Collberg et al., “A taxonomy of obfuscating transforma-
tions,” Department of Computer Science the University of
Auckland New Zealand, 1997.

[15] “Pin tool,” https://software.intel.com/en-us/articles/.

[16] C. Linn et al., “Obfuscation of executable code to improve
resistance to static disassembly,” in CCS, 2003.

[17] “Execryptor,” http://strongbit.com/execryptor.asp.

[18] “Upx,” http://upx.sourceforge.net/.

[19] Z. Wu et al., “Mimimorphism: A new approach to binary
code obfuscation,” in CCS, 2010.

[20] V. Balachandran et al., “Function level control flow obfusca-
tion for software security,” in CISIS, 2014.

[21] C. Liem et al., “A compiler-based infrastructure for software-
protection,” in PLAS, 2008.

[22] J. Ge et al., “Control flow based obfuscation,” in DRM, 2005.

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:27:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

