
STRONGHOLD: Fast and Affordable Billion-Scale
Deep Learning Model Training

Xiaoyang Sun1,2, Wei Wang2, Shenghao Qiu1, Renyu Yang1, Songfang Huang2§, Jie Xu1, Zheng Wang1§

1University of Leeds, UK 2Alibaba Group, China
{scxs, sc19sq, r.yang1, j.xu, z.wang5}@leeds.ac.uk; {robot.sxy, hebian.ww, songfang.hsf}@alibaba-inc.com

Abstract—Deep neural networks (DNNs) with billion-scale
parameters have demonstrated impressive performance in solving
many tasks. Unfortunately, training a billion-scale DNN is out
of the reach of many data scientists because it requires high-
performance GPU servers that are too expensive to purchase
and maintain. We present STRONGHOLD, a novel approach for
enabling large DNN model training with no change to the user
code. STRONGHOLD scales up the largest trainable model size
by dynamically offloading data to the CPU RAM and enabling
the use of secondary storage. It automatically determines the
minimum amount of data to be kept in the GPU memory
to minimize GPU memory usage. Compared to state-of-the-art
offloading-based solutions, STRONGHOLD improves the trainable
model size by 1.9x∼6.5x on a 32GB V100 GPU, with 1.2x∼3.7x
improvement on the training throughput. It has been deployed
into production to successfully support large-scale DNN training.

Index Terms—Deep learning, Distributed training, DNNs train-
ing acceleration

I. INTRODUCTION

We are seeing exponential growth of deep neural network
(DNN) sizes. For example, in a short span of 3 years, model
size has grown by over 1000 folds from around 100 million
model weights in 2018 for ELMo [1] or BERT [2] to 175
billion for GPT-3 [3] in 2020 and 530B for MT-NLG [4] in
2021. At the same time, the GPU memory capacity is increased
by less than 3 folds per GPU generation. For instance, the
latest high-end NVIDIA A100 GPU has 80 GB of memory,
which is a 2.5x improvement on the GPU memory capacity
over the 32 GB V100 predecessor. As a larger model tends to
provide a better learning ability over the smaller counterparts,
many future DNNs will continue to integrate many more
parameters and consume more GPU memory. This will further
increase the gap between the memory demand of DNN training
and the available GPU memory, making entry into large model
training out of reach for many data scientists and academics.

Large DNN training can be achieved by utilizing aggregated
computing resources of multiple GPUs through parallel and
distributed computation. Examples of such strategies include
data [5], model [6] and pipeline [7], [8] parallelisms and by
placing the model parameters, gradients and optimizer states
across computing devices [9]. However, all these distributed
training schemes require sufficient computing resources, which
can incur significant infrastructure and operational costs [10].
For example, to efficiently train a 10B parameter model
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currently requires a computing system with 16 NVIDIA V100
GPUs, costing over $100K to purchase [11]. While such cost
may not concern big tech firms, it can place a big financial
burden on small businesses and academic organizations.

Efforts have been made to reduce the GPU memory pressure
and computing resource requirement for large DNN training.
This is done by either trading precision for lower storage
space [12] or leveraging CPU memory [13], [14], [15], [16].
The former uses low or mixed precision representations for
model states (e.g., model parameters, gradients and optimizer
states) to reduce GPU memory consumption, but it can slow
down the model convergence speed. The latter approaches
reduce the GPU memory requirement by either implement-
ing a software-managed cache or using a dedicated memory
allocation scheme. However, most of the techniques for using
CPU memory are designed for convolutional neural networks
(CNNs), where the memory consumption during training is
dominated by the dynamically generated activations rather
than the optimizer (e.g., SGD) states. Unfortunately, these
techniques are ill-suited for the latest attention-based language
models (e.g., Transformer-based DNNs) that have become the
de facto approach for building state-of-the-art DNNs [17],
[2], [3], where the model and optimizer (e.g., Adam) states
rather than activation memory is the memory bottleneck.

ZeRO-Offload [11] and L2L [18] were among the first
attempts to leverage CPU memory to train large Transformer-
based DNNs. ZeRO-Offload moves optimizer states from the
GPU to the CPU memory while keeping the entire model
parameters in the GPU memory. It is able to train a model
with 13B parameters on a 32GB V100 GPU. As ZeRO-Offload
requires storing the entire model parameters in the GPU, the
trainable model size is limited by the smallest part of the
available GPU and CPU memory capacity. L2L is specifi-
cally designed for Transformer-based models, only keeping
one Transformer block in the GPU memory by dynamically
offloading the model parameters. ZeRO-Infinity [19] adopts
a dynamic strategy to leverage the secondary storage (e.g.,
NVMe) and partitions the model parameters and optimizer
states across heterogeneous memory hierarchy. While these
approaches can increase the trainable model size, as we will
show later in the paper, they come with significant overhead,
leading up to 1.76x slowdown (up to 29.2x when NVMe
is used). Such magnitude of overhead greatly reduces the
practicability of these techniques in training and fine-tuning
large DNNs where the training time is a major concern [9].
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We present STRONGHOLD, a new approach for leveraging
heterogeneous memory resources to scale up the trainable
model size on GPUs without significantly compromising the
training efficiency. The key insight of STRONGHOLD is to
keep just a sufficient number of layers and their model param-
eters in the GPU to avoid GPU stalls during data offloading.
Doing so can increase the trainable model size because only
a small part of the model states are presented at the GPU
memory at any time. By keeping the GPU computation going
with overlapped data transfer, this strategy can also minimize
and even hide the CPU-GPU communication overhead. To this
end, STRONGHOLD implements a software pipeline between
the GPU and CPU to dynamically offload the required model
states between two memory spaces, without user code refac-
toring. Unlike ZeRO-Offload, STRONGHOLD does not store
all model parameters in the GPU. Instead, it implements a
dynamic working window to only store a few model layers
in the GPU. It then dynamically moves the required layers
and their parameters and the generated gradients between the
CPU and the GPU. The STRONGHOLD runtime automatically
determines a suitable working window size to ensure that
asynchronous CPU-GPU data transfer can be overlapped with
GPU computation to hide the data transfer latency.

A key challenge of STRONGHOLD is to decide how many
layers are kept in the GPU. Having an unnecessarily large
working window would waste the precious GPU memory with
little performance gain while using an insufficient working
window makes it difficult to overlap the CPU-GPU data
transfer with GPU computation to minimize the overhead. We
address this challenge by modeling the GPU computation with
data transfer and using an analytical model to derive the right
working window size based on profiling information collected
from a few initial iterations during the warm-up phase.

STRONGHOLD runs multiple concurrent optimizers on the
multi-core CPU to parallelize the model parameter update
process. Since parameter update, data transfer, and GPU com-
putation are asynchronous processes, they run in parallel to
utilize the hardware parallelism. To reduce the GPU memory
management overhead, STRONGHOLD employs a user-level
GPU memory management scheme for the working window to
avoid frequent invocations of the expensive GPU memory op-
erations. We show that by reducing the GPU memory footprint,
STRONGHOLD also opens up new opportunities to implement
data parallelism within a single GPU. This is achieved by
running multiple training workers across concurrently running
streaming multiprocessors (SM) of a GPU while keeping
one copy of model parallelism. This optimization leads to
comparable or even better training performance over expert-
tuned implementation when training a billion-scale model.

We implemented STRONGHOLD in PyTorch [20] and eval-
uated it in single and distributed GPU environments. We
compare STRONGHOLD to three state-of-the-art offloading
solutions [18], [11], [19]. Experimental results show that
STRONGHOLD can support larger DNNs with a higher
training throughput than competing schemes. Specifically,
STRONGHOLD supports the training of a model with 39.5B

and 82.1B parameters on a single 32GB V100 GPU and eight
distributed 24GB A10 GPUs respectively without significantly
compromising the training efficiency.

We envision STRONGHOLD to be attractive in two sce-
narios. It is useful in fine-tuning a large pre-trained DNN
or using a pre-trained DNN to guide the training of a small
model (a.k.a. knowledge distillation [21]) using limited GPU
resources. This feature makes large DNN fine-tuning more
accessible and affordable to small organizations and data
scientists. It is also useful for accelerating model training by
reducing cross-node communications or utilizing fine-grained
GPU parallelization. For this use case, STRONGHOLD has
been deployed to the production environment of Alibaba to
support the training of DNNs with hundreds of billions and
trillions of parameters.

This paper makes the following contributions:

• A new CPU-GPU offloading framework to scale up the
trainable model size (Section III);

• An analytic model to determine the right working window
for dynamic DNN training offloading (Section III-C);

• A new fine-grained GPU parallelism to speed up DNN
training (Section IV-A).

II. BACKGROUND AND MOTIVATION

A. Deep Learning Model Training

DNN training typically consists of millions of iterations per-
formed across multiple training epochs. Each iteration mainly
involves three stages: forward propagation (FP), backward
propagation (BP) and parameter update. In the FP stage, a
batch of the training samples are passed through the DNN
model to compute a loss based on an objective function. In
the BP stage, the loss value is propagated reversely through
model layers to compute the gradients. In the last stage, an
optimizer uses the aggregated gradients to update parameter
weights of individual model layers.

The memory consumption during DNN training largely
stems from model states and residual states. Model states
include model parameters, gradients and optimizer states (i.e.,
Adam optimizer [22] stores momentums and variances for
parameter updating). Residual states include activations (i.e.,
the intermediate tensors saved for BP stage to produce gradi-
ents) and other temporary buffers. When training large DNNs,
model states dominate the memory consumption, which can
account for 87.5% of the GPU memory footprint when low-
precision (i.e., 16-bit precision) is used [9].

Large DNN models are trained with parallelization tech-
niques. For a model that can fit into the device memory
for training, data parallelism is commonly used to distribute
the training samples across multiple devices to improve the
training throughput. When the model cannot fit into the
device memory, model parallelism [23], [24] and pipeline
parallelism [25], [7] can be leveraged to split the model layers
or parameters to make the best use of the memory across
multiple devices. While these three parallelism strategies can
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Figure 1: Performance of Megatron-LM and ZeRO-based solutions measured
on a 32GB V100 GPU by the trainable model size (a) and throughput on a
1.7B model (b).

produce a synergy, model and pipeline parallelism often re-
quire additional code refactoring to split a DNN into model
and pipeline components.

B. CUDA Streams

Modern GPUs consist of a large number of processing units,
which are organized as streaming multiprocessors (SMs). For
example, the NVIDIA V100 GPU supports 80 SMs, where
each SM has a fixed number of cores. In the CUDA pro-
gramming model, instructions placed within a single CUDA
stream are executed sequentially. However, operations placed
in different CUDA streams can be executed concurrently in
different hardware SMs. STRONGHOLD uses multiple CUDA
streams to accelerate DNN training when possible.

C. Motivation

As a motivation example, consider Figure 1 that shows
the performance given by ZeRO-Offload [11] and ZeRO-
Infinity [19] - the state-of-the-art offloading solutions for large
DNNs. This experiment was conducted on a GPU server with
a 32GB NVIDIA V100 GPU and 755GB of DDR4 RAM
(see Section V-A). As a reference, we use Megatron-LM,
NVIDIA’s heavily-optimized library for Transformer-based
model training.

Figure 1a shows the largest trainable model size for each
approach, while Figure 1b shows the throughput (i.e., the
number of samples processed per second) on a common
1.7B Transformer-based model (the largest model supported
by Megatron-LM on our platform). Although techniques like
ZeRO-Offload and ZeRO-Infinity can scale up the trainable
model size, this comes at the cost of significantly lower
throughput and poor efficiency. For example, ZeRO-Offload
enables training of a model that is 3x larger than Megatron-
LM, but the training throughput on the 1.7B model is 6.7x
less than Megatron-LM. By offloading some of the model
parameters and states to the secondary NVMe SSD, ZeRO-
Infinity (w/ NVMe) scales up the trainable model size by
29x over Megatron-LM, but its throughput drops by over
800x compared to Megatron-LM on a 1.7B model. This poor
training efficiency of existing offloading solutions makes them
impractical to train large models due to the long training time.
STRONGHOLD aims to avoid this pitfall.

III. OUR APPROACH

STRONGHOLD is our open-source framework designed to
enable efficient training of large DNNs on single or distributed
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Figure 2: Dynamic model state offloading of STRONGHOLD. STRONGHOLD
stores some DNN layers in the GPU memory and swapping out the finished
layer states to the CPU RAM. Actions ➊ and ➌ indicate offloading layers
that have been used during FP and BP from GPU memory to CPU RAM.
These actions also trigger ➋ and ➍ to prefetch the future-used layers from
CPU RAM to GPU memory.

GPUs. This is achieved by implementing dynamic software
prefetching and offloading techniques to only store part of
the model states - the main GPU memory consumer for large
DNN training - in the GPU memory. STRONGHOLD utilizes
the CPU memory and secondary storage to reduce the GPU
memory pressure for training large DNNs. By doing so, the
trainable model size is no longer bounded by the GPU device
memory but the system’s storage capacity. STRONGHOLD is
designed to be used without any user code refactoring similar
to standard data-parallel training in PyTorch.

STRONGHOLD advances ZeRO-Offload [11], the state-of-
the-art static CPU-GPU DNN training offloading framework,
by offloading optimizer states onto the CPU side. Like ZeRO-
Infinity [19], STRONGHOLD can also leverage secondary
storage, but it delivers a higher throughput than ZeRO-Infinity.

A. Overview of STRONGHOLD

Figure 2 gives a high-level overview of the STRONGHOLD
dynamic offloading scheme. The idea is to store model states
(parameters, gradients and optimizer states) for selected DNN
layers in the GPU memory. This is achieved by managing a
working window in the GPU, where layer states are dynam-
ically moved between the GPU and CPU memory. Precisely,
the STRONGHOLD runtime swaps the already computed layer
states (blue shaded boxes in Figure 2) from GPU memory
to the CPU RAM (and potentially between the CPU RAM
and secondary storage). It then adaptively prefetches the
parameters of the subsequent layers in the FP or BP processing
pipeline into the working window. STRONGHOLD leverages
asynchronous data transfer to hide the CPU-GPU communi-
cation overhead by overlapping data transmission with GPU
computation. By doing so, STRONGHOLD greatly reduces the
CPU-GPU communication overhead, and in many cases, it
can completely hide the data transfer overhead. Therefore,
STRONGHOLD only causes modest slowdown in the training
speed. Crucially, the asynchronous operations do not introduce
stale model updates nor not affect the training precision.

STRONGHOLD is a low-level runtime library. It automati-
cally identifies offloading sequence and determines the work-
ing window size. It then dynamically partitions the tensor
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graph and manages BP, FP and parameter updates without
user code refactoring.

B. Preprocessing

During the model loading stage, STRONGHOLD extracts
DNN layers and their execution order from the tensor graph.
Most Transformer-based models follow a sequential layer
execution order by stacking multiple Transformer blocks (Fig-
ure 3a), resulting in a static relationship. Extracting the layer
execution order of such model architectures is straightforward.
However, there are also other model structures with residual
components [26] or gating mechanisms [27], [28] like mixture
of experts (MoE) models [29], where the execution path
can change dynamically at inference time. For these non-
linear structures, STRONGHOLD either offloads all units/layers
directly connected to a branch to the GPU working window (if
possible), or delays the layer movement until it knows which
layer will be computed to avoid GPU out-of-memory (OOM)
errors. This can be further improved by leveraging techniques
that pre-compute the activated layers [15] to proactively deter-
mine which layers to be moved to the GPU working window
ahead of time. When loading a model, for each DNN layer,
STRONGHOLD also computes the required storage size for the
parameter tensors and the associated gradients and optimizer
states. This storage size is then used to determine the GPU
working window size during FP and BP1.

During the first few iterations (5 by default) of model
training (i.e., the warm-up phase), the STRONGHOLD runtime
profiles the GPU computation time and the data transfer time
of model states of each layer. It then uses this information
to derive the working window size for later training iterations.
At the warm-up phase, STRONGHOLD ensures that the chosen
GPU working window size does not cause out-of-memory
(OOM) errors by using the storage size information of the DNN
layers to compute the right working window size. Despite the
initial working window size may not lead to the optimal GPU
memory use, the overhead is negligible since the profiling
is only performed on the first few iterations. The dynamic
working window size derived for later training iterations (see
Section III-C) is designed to overlap the CPU-GPU data
transfer with the GPU computation while minimizing the
GPU memory consumption. We note that the computation
performed in the warm-up phase also contribute to the final
training outcome, so no computation cycle is wasted.

C. Dynamic GPU Offloading

As a working example, we use a simplified Transformer-
based model shown in Figure 3a to illustrate the dynamic
GPU working window mechanism of STRONGHOLD. In this
subsection, we assume STRONGHOLD does not use secondary
storage (which will be discussed later in Section III-G).

The STRONGHOLD runtime maintains a GPU working
window with the layer-specific inputs, model parameters, and
gradients (for BP). Within STRONGHOLD, the basic offloading

1The current implementation of STRONGHOLD stores most of the optimizer
states in the CPU RAM.

unit under data and pipeline parallelism is an entire DNN layer.
However, under tensor parallelism, this can be a sliced layer
on the GPU defined by the user code. The working window
essentially contains GPU buffers for the tensor operator im-
plementations (kernels) and the data that the kernel operates
on. CPU-GPU data movement is automatically handled by the
STRONGHOLD runtime, which registers callback functions for
each layer through the hooking mechanism provided by main-
stream deep learning frameworks. STRONGHOLD supports
activation checkpointing as long as the working window size
is larger than the number of layers between two consecutive
checkpoints. Conceptually, this mechanism resembles applying
a sliding window to the DNN model along the FP or BP
direction, described as follows.

FP stage. As shown in Figure 3b, before executing each layer
in the working window, the pre forward hook function is
called to issue an asynchronous load operation to fetch the
next layer right outside the current working window from
the CPU RAM to the GPU memory (step 1 ). Next, the
GPU performs FP computation as normal on the first layer
in the current working window (step 2 ). At the end of the
layer computation, the post forward hook function invokes
another asynchronous operation to move model parameters of
the already computed layer back to the CPU RAM (step 3 ).
The computation result will then be passed to the next layer
in the working window. At the end of the GPU-CPU transfer,
the GPU buffer used by a computed layer will be recycled by
a newly fetched layer. After these steps, the working window
moves toward the successive layer of the DNN, following the
direction of FP. The asynchronous CPU-GPU data transfer
takes place concurrently with the GPU computation and will
not block the STRONGHOLD runtime.

BP stage. As depicted in Figure 3c, this step moves the work-
ing window along the BP direction. Before computing a layer
in the working window, the pre backward hook function
invokes an asynchronous operation to fetch the parameters of
the layer that is just outside the current working window in the
BP direction (step 1 ). The pre backward function also issues
an asynchronous operation to move the model parameters (and
gradients) of the last computed layer in the working window
to the CPU (step 2 ), followed by a call to the optimizer to
update the majority of the model parameters on the CPU (step
3 ). Finally, the GPU computes gradients for the second-last

layer of the working window (step 4 ). Once again, the CPU-
GPU data communications run concurrently with the GPU
computation and the windows moves towards the BP direction.

D. Modeling Offloading Parameters

STRONGHOLD uses an analytical model to automatically
find a suitable GPU working window size during FP and
BP. The key here is to find the right window size where
the asynchronous CPU-GPU data transfer can overlap with
GPU computation to hide the data transfer latency, without
oversubscribing the GPU memory.
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Figure 3: Dynamic offloading of STRONGHOLD during the FP and BP stages using a simplified Transformer-based architecture as an example. STRONGHOLD
keeps the first and the last layers of the DNN (the embedding and pooling layers) in the GPU memory to reduce the initialization overhead.

Notations. We use the following notations to model CPU-
GPU offloading. We use sifp and sibp to denote the memory
consumption of layer i during FP and BP respectively, and
tifp and tibp

2 to denote the GPU computation time on layer
i during FP and BP respectively, tic2g and tig2c to denote the
CPU to GPU and GPU to CPU data transfer respectively for
layer i, and tasync and toptgpu to denote the overhead on an
asynchronous function call and one layer’s parameter update
respectively. We let N =

∑m
k=0 Sk be the GPU working

window size, where Sk is the model state (parameters and
gradients) of layer k within the m-layer window.

FP offloading. We use the following formulation, P1, to
ensure layer fetching does not become a bottleneck of FP.

P1 : min m (1a)

s.t.

m∑
i=0

tifp ≥ tjc2g, (1b)

m∑
i=0

sifp + sjfp ≤ Savail, (1c)

m∑
i=0

tifp ≥
m∑
i=0

tic2g +

m∑
i=0

tig2c, (1d)

where m is the number of layers in the GPU working window,
layer j is the layer outside the current working window along
the FP direction, sm+1

fp is the buffer size required for fetching
the layer outside the current working window (step 1 in
Figure 3b), and Savail is the available GPU memory (by
excluding the runtime memory consumption). Here, terms (1b)
and (1c) are hard constraints to ensure that the data transfer
time is less than the layer computation time, and no GPU
OOM will happen. The FP computation time for one layer is
tifp+2 tasync. Term (1d) is a soft constraint to ensure that we
can recycle the buffer of the computed layer (steps 2 and 3
in Figure 3b) to further reduce the GPU memory consumption.

BP offloading. Like FP, we use the following formula, P2, to
ensure gradient and parameter offloading does not become the

2Note that tibp also includes the FP re-computation time with activation
checkpointing.

bottleneck during BP:

P2 : min m (2a)

s.t.

m−1∑
i=0

tibp ≥ tjg2c, (2b)

m∑
i=0

sibp ≤ Savail, (2c)

m−1∑
i=0

tibp ≥
m−1∑
i=0

tig2c +

m−1∑
i=0

tic2g, (2d)

where layer j is the layer outside the current working window
along the BP direction. The time for BP computation of one
layer is tifp + 3 tasync. The soft constraint in (2d) is used to
further reduce the GPU memory consumption when possible.

Parameter update. With conventional DNN training, the GPU
performs the parameter update layers by layers. This gives a
total parameter update time of

∑n
i=0 t

i
optgpu , where n is the

total number of layers of the DNN model. STRONGHOLD
utilizes the CPU cores to perform most parameter update,
which runs concurrently with the GPU gradient computation.
As a result, the parameter update time in STRONGHOLD is∑m

i=0 t
i
optgpu +

∑n
i=m tioptcpu . To hide the CPU computation

overhead, the CPU-directed parameter update time should
satisfy:

tkoptcpu ≤
k∑

i=0

(tifp + tibp) +

m∑
i=0

toptigpu , k ∈ [m,n]. (3)

To avoid introducing additional overhead during a training
iteration, we need to ensure the computation time incurring
by STRONGHOLD during FP and BP is not greater than the
time for conventional training, i.e.,

n∑
i=0

tifp + n ∗ 2 tasync +

n∑
i=0

tibp + n ∗ 3 tasync +

m∑
i=0

tioptgpu ≤

n∑
i=0

tifp +

n∑
i=0

tibp +

n∑
i=0

tioptgpu

which gives us:

5 n tasync ≤
n∑

i=m

tioptgpu (4)

When applying into a DNN where most of the layers
are homogeneous with the same number of parameters, e.g.,

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:47:32 UTC from IEEE Xplore.  Restrictions apply. 



Figure 4: Real GPU computation and offloading profiling trace when applying
STRONGHOLD to train a 4B model on a 32GB V100 GPU. The profiling
measurement supports our analytical modeling of computation-communication
overlapping optimization. Here, GPU computation and communication are
overlapped when P1 and P2 are satisfied.

Transformer-based models, GPU computation time can be
approximated as

∑n
i=m tioptgpu ≈ (n−m) toptgpu and hence:

5 n tasync ≤ (n−m) toptgpu (5)

Since the overhead of asynchronous function calls is largely
constant regardless of the DNN model size, we can easily
satisfy (5) with a deep (i.e., a large n) or a wide network (i.e.,
a large toptgpu due to more parameters that a layer has).

Determining the working window size. For an n-layer DNN,
STRONGHOLD automatically finds a suitable working window
size m that meets all P1 and P2 across all layers during a
training iteration. It is possible that there is not enough GPU
memory to find an optimal m to meet all the constraints. In
this scenario, STRONGHOLD still uses the largest possible m
layers permitted by the avaiable GPU memory to train a large
DNN (that would not be possible using conventional training
methods) but the training efficiency may be sub-optimal. By
default, STRONGHOLD finds an available GPU buffer for
m layers. This strategy improves the GPU cache locality
for Transformer-based models that have a large number of
identical layer structures (and computation kernels). However,
STRONGHOLD also supports having a fixed-size GPU buffer
where the number of DNN layers stored can dynamically
change, which can be turned on by users to improve GPU
memory utilization for DNN models with a heterogeneous
layer structure.

As a working example, Figure 4 shows the profiling data of
one training iteration when applying STRONGHOLD to train
a 4B model on a 32GB V100 GPU. The profiling results
show that the CPU-directed offloading is largely overlapped
by the GPU computation when criteria P1 and P2 set in our
analytical models are met. In this case, the communication
overhead can be hidden by the GPU computation, suggesting
the effectiveness of our analytical model.

E. Offloading Optimization

STRONGHOLD utilizes the gRPC module of Ray [30] and
concurrent library for communications among parallel CPU
workers. As a result, STRONGHOLD can support concurrent
and asynchronous parameter updates and data transfer. To this
end, STRONGHOLD maintains a thread pool. All workers are
initialized with the model code, and a worker remains idle until

a task has been assigned to it through a callback function. By
default, STRONGHOLD uses all available CPU cores, but the
user can change this.

1) Concurrent parameter update: Unlike conventional
training schemes (including ZeRO-Offload) that employ a
single optimizer for parameter update, STRONGHOLD creates
multiple optimizers during the model initialization stage. It
then dispatches several optimizers to run as asynchronous
actors to perform parameter updates on multiple layers simul-
taneously (step 3 in Figure 3c). This optimization leverages
multiple CPU cores to process the parameter updates of mul-
tiple layers simultaneously, reducing the chance for the CPU
becoming a bottleneck. As parameter updates are performed
by the CPU, this process runs concurrently with the GPU
computation during BP. By default, STRONGHOLD keeps the
first few layers of the model (i.e., layers of the first working
window) in the GPU memory. Since the last m layers in BP
(i.e., the first m layers of the model) remain in the GPU
working window before the start of FP, there is no GPU stall
when computing BP of the last layers in Figure 3c 2 .

2) Heterogeneous collective communications: For dis-
tributed training involved multiple computing devices, gradi-
ents communications are realized through collective commu-
nication operations like all-scatter and all-gather. With a native
deep learning framework (e.g., PyTorch and Tensorflow),
only one type of tensors (CPU or CUDA) can participate
in collective communications at a time. STRONGHOLD lifts
this restriction to support concurrent heterogeneous collective
communications on CPU and CUDA tensors. This feature is
essential for STRONGHOLD to support concurrent CPU and
GPU processing. This is achieved by extending the low-level
collective communication libraries, NVIDIA NCCL [31] and
Gloo [32] for GPU and CPU communications, respectively.

3) Runtime memory management: During DNN training,
many temporary tensors will be allocated and deallocated.
Frequent device memory operations using the native CUDA
memory (de)allocation API can result in expensive runtime
due to explicit and implicit synchronizations. Frameworks
like PyTorch and Tensorflow avoid this issue by reusing
the previously allocated buffers through a software caching
mechanism. For an n-layer DNN, where each layer has k
tensors, such a caching mechanism incurs up to n × k GPU
memory allocation operations. After the first training iteration,
these n∗k GPU buffers are then reserved by the runtime, which
can then be reused for future training iterations. This strategy
is ill-suited for our scenarios when the model is too large to
be fit into the GPU memory (i.e., the n∗k buffers are beyond
the GPU memory capacity). STRONGHOLD addresses this
issue by employing a user-level software memory management
scheme on the CPU and GPU. For an m-layer GPU working
window, STRONGHOLD only needs to incur a one-off m ∗ k
CUDA memory operation at the warm-up stage. Since the
working window size, m, is smaller than the number of layers
(i.e., m < n) of the DNN, STRONGHOLD reduces the GPU
memory footprint while incuring fewer memory allocation
operations than existing caching mechanisms.
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Specifically, when loading the DNN, STRONGHOLD allo-
cates pinned memory on the CPU for each DNN layer. The
pinned (or page-locked) memory permits STRONGHOLD to
asynchronously transfer the CPU data to the GPU using an
idle CUDA stream so that the GPU will not be blocked during
data transfer. At the same time, STRONGHOLD also reserves
GPU buffers for layers of the first working window. The
reserved buffers will be managed by STRONGHOLD in future
training iterations. The reserved GPU buffer may grow (but
not shrink) if larger buffers are needed once STRONGHOLD
has determined the working window size after the warm-up
stage. When prefetching a layer from the CPU memory to the
GPU (e.g., step 1 in Figure 3b), STRONGHOLD first allocates
a free GPU buffer from the reserved GPU memory in a round-
robin manner. It then copies the corresponding data content
to the corresponding GPU tensor (e.g., through the PyTorch
tensor.copy_() API). Similarly, when offloading a layer

from the GPU to the CPU memory, STRONGHOLD copies the
data property back to the corresponding CPU buffer. It then

returns the GPU buffer to the STRONGHOLD managed GPU
buffer queue. Whenever STRONGHOLD requests or releases
device memory, the STRONGHOLD runtime always reuses the
reserved GPU memory by overwriting the in-place memory
management methods of the layer implementation.

F. Cross-server Communication Optimization
Another benefit of STRONGHOLD is that it can eliminate

the cross-server communications introduced by traditional
model parallelism in certain cases. For example, if a model
cannot fit into the GPU memory under a traditional training
method, model parallelism is typically adopted to break the
model layers (and their parameters) across multiple GPUs. In
contrast, if the same model can fit into the same GPU under
STRONGHOLD, we can then use the additional GPUs to run
data parallelism training without incurring the synchronization
and communication overhead of model parallelism. The reduc-
tion of cross-server communications when converting model
parallelism to data parallelism for Transformer-based models
can be estimated as follows. The communication volume
for an n-layer Transformer model is Vdp = (w − 1)w ×
(12 × n × hd2 + hd × vs) for w-way data parallelism, and
Vmp = (w − 1)w × n × bs × seq × hd for w-way model
parallelism. Here, hd, bs, seq, and vs are the the hidden size,
batch size, sequence length and vocabulary size, respectively.
Furthermore, we obtain the constant number 12 summing
4 × hd2 for attention and 2 × 4 × hd2 in the feed-forward
network in one Transformer block. By converting w-way
model parallelism to w-way data parallelism, STRONGHOLD
reduces the communication volume by Vmp

Vdp
.

Using a typical training setup where the training sentence
sequence length is set to 1024 (seq = 1024) and vocabulary
size is set to 30k (vs = 30K), we can simplify Vmp

Vdp
as

Vmp

Vdp
= bs

3×hd/256+30/n . Let k = 1
3×hd/256+30/n , we now

have Vmp/Vdp = k × bs. Here, the saving in cross-node
communication depends on n, hd,w, and bs. By increasing
the trainable model size, STRONGHOLD allows one to use a

w-way data parallelism to replace the traditional w-way model
parallelism. For a 20B model with a typical bs = 16, n = 50,
hd = 4K, STRONGHOLD halfs the communication traffics by
comparing to model parallelism (see also Section VI-D2).

G. Utilizing Secondary Storage

Like ZeRO-Infinity, STRONGHOLD provides an option to
use NVMe SSDs to further increase the trainable model size.
This is achieved by memory-mapping a swap file on the
secondary storage to the CPU memory space and using the
read/write library to optimize asynchronous bulk read/write
requests between the CPU and the device. The support for
asynchrony allows STRONGHOLD to overlap the I/O requests
with CPU-GPU communication or computation. Since the I/O
bandwidth between the CPU and an NVMe SSD (up to 7GB/s
for PCIe 4.0) is an order of magnitude slower than the CPU-
GPU bandwidth, we do not expect the user to train a large
DNN from scratch with this option. It is also not advised to
train a large model with this strategy because frequent random
reads and writes can increase the chance of NVMe disk failure
[33]. However, this option can be useful in fine-tuning a pre-
trained model with fewer training iterations.

IV. STRONGHOLD-ENABLED OPTIMIZATIONS

By reducing the GPU memory footprint, STRONGHOLD
not only permits training larger DNNs but also opens up
new optimization opportunities. For example, STRONGHOLD
allows training a large DNN that previously was would
otherwise only possible using model parallelism to split the
DNN layers across GPU servers. With STRONGHOLD, the dis-
tributed GPU servers can be used to run data-parallel training
workers, where each computing node holds the entire model
parameters. This can massively reduce the communication and
synchronization overhead imposed by model parallelism (see
also Section VI-D2). Another use case is to support teacher-
student based knowledge distillation [21] by supporting large
DNN inference on a single GPU (Section VI-D3). The third
interesting optimization is to support data parallel training
within a single GPU by utilizing multiple CUDA streams (see
also Section II-B) to use the GPU parallelism to improve the
training throughput, which was not attempted in accelerating
DNN training before. This is described in the next subsection.

A. Multi-streamed GPU Execution

As depicted in Figure 5, STRONGHOLD enables the use
of multiple CUDA streams to accelerate training if there is
enough GPU memory to store the gradients and model inputs
for at least two training workers.

Conceptually, this is achieved through applying data paral-
lelism within a single GPU by partitioning the training batch
into mini-batches. To this end, STRONGHOLD introduces ‘ex-
ecutors’ within its runtime to manage the GPU kernel execu-
tion context across training workers. An executor is a process
of the STRONGHOLD runtime that manages the working win-
dow for a training worker. The executor dispatches kernels to
run on a CUDA stream. Note that only one copy of the model
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parameters and kernel code is stored in the GPU memory,
despite that there may be more than one training worker and
working window on the GPU. Furthermore, STRONGHOLD’s
strategy of dividing a larger batch into micro-batches to be
processed by concurrently running does not affect the model
consistency since parameter update takes after the entire batch
has been processed, i.e., data-parallel training.

During runtime, we bind each executor to an available
CUDA stream and allocate dedicated buffers on the CPU to
allow the executor to manage the host-device communications
for the corresponding GPU working window. Each executor
runs as a multi-staged pipeline to process a mini-batch, and
each pipeline stage of an executor can execute a kernel
for FP, BP, computation, communication or another user-
defined kernel. As depicted in Figure 5, by mapping different
concurrent executors onto multiple CUDA streams, we can
allow different processing pipelines to run in parallel on a
single GPU to improve the throughput. STRONGHOLD uses
an all-reduce operation to synchronize the gradients among
parallel training workers before performing parameter updates,
similar to data parallel training across multiple GPUs (but
STRONGHOLD has the advantage of only keeping one copy of
model parameters). The number of concurrent streams used is
determined during the warm-up phase, where STRONGHOLD
computes the GPU memory consumption of the GPU working
window size to determine how many CUDA streams to use so
that multi-streamed execution does not cause GPU OOM.

STRONGHOLD essentially creates a lightweight parallel
execution environment for individual executors within a single
user program. This is different from existing GPU virtual-
ization schemes such as NVIDIA MIG (Multi-Instance GPU)
[34], which aim to provide an isolated execution environment
for different user programs running on the same GPU. MIG
is ill-suited for our purpose because CUDA streams or pro-
cesses in different virtualized environments cannot directly
communicate with each other. To implement our idea within
MIG would also require each GPU process holds a copy
of model parameters, resulting in multiple model parameters
being stored on a single GPU, increasing the GPU memory
pressure. Our lightweight approach can avoid such pitfalls by
only storing one copy of the model parameters on the GPU
and enabling CUDA streams to directly communicate with
each other through the GPU hardware communication scheme.

Table I: Transformer-based model configurations.

Model Size (B) #Layers Hidden Size #Heads Model
Par-
al-
lelism

1.7, 4.0, 5.9, 6.0, 6.6,
20.5, 23.7, 39.4

20, 50, 74, 75, 83,
260, 300, 500

2,560 16 1

4.0 19 4,096 16 1
6.2, 10.0 19, 31 5,120 16 1
3.4, 4.7, 7.8, 23.2,
63.2, 75.7, 82.0, 103.2,
367.6, 524.5

10, 12, 24, 72,
200, 240, 260,
328, 1174, 1676

5,120 16 8

19.8, 25.4 24, 31 8,192 16 8
28.7, 32.1, 66.7 31 8,704, 9,216,

13,312
16 8

Since our goal is to accelerate a single user program, we do
not need a heavy and strongly isolated execution environment.

V. EVALUATION SETUP

A. Evaluation Platforms

We evaluate STRONGHOLD on two hardware platforms.
Our main evaluation platform is a V100 GPU server with
one 32GB NVIDIA Tesla V100 GPU, 2x 24-core Intel Xeon
Platinum 8163 CPU at 2.50GHz and 755GB of DDR4 RAM.
We also evaluate STRONGHOLD on an 8-node A10 GPU
cluster where servers are connected through a 800 Gbps
network. Each computing node of the cluster has 2x 64-core
Intel Xeon Platinum 8369B CPUs at 2.90 GHz with 1TB of
DDR4 RAM, and a 24GB GPUDirect-RDMA-enabled A10
GPU based on the latest Ampere architecture. The platforms
run Ubuntu 20.04 operating system with Linux kernel 4.19.91.
We use CUDA 11.2 and PyTorch 1.10.2.

B. Workloads

We evaluate STRONGHOLD on GPT-like Transformer-based
models [35], [3] – the current de facto approach to building
large-scale models [2], [3]. Following the evaluation setup
of ZeRO-Offload [11], we vary the hidden dimension of a
layer to increase the model width and the number of layers to
scale the model depth. Table I lists the model parameters. For
each model, we consider a batch size of 2, 4, 8, and 16 per
GPU. Note that scaling the depth alone is often not sufficient
because it would make training harder to converge [36]. Unless
stated, we use training hyperparameters like weight decay and
learning rate from [23], [11].

C. Competing Baselines

We compare STRONGHOLD against the following billion-
scale model training solutions:

Megatron-LM [37] is NVIDIA’s optimizing library for
Transformer-based models. We use Megatron-LM v2.6 as a
reference model for the training throughput and trainable
model size.

L2L [18] keeps one Transformer layer in the GPU at a time,
by sequentially offloading parameters between the GPU and
CPU memory. Since L2L still stores the optimizer states on
the GPU, it is largely limited by the GPU memory.
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Figure 6: The largest trainable model size on a 32GB V100 GPU (a) and the
A10 cluster with 8 degrees of model parallelism (b).

ZeRO-Offload [11] statically stores the model states in GPU
memory and optimizer states in the CPU RAM. It also utilizes
the CPU computation cycle to update the model parameters
through a CPU-tuned optimizer.

ZeRO-Infinity [19] utilizes GPU, CPU and NVMe memory.
By default, we compare STRONGHOLD against ZeRO-Infinity
with CPU RAM instead of using NVMe due to the expensive
I/O overhead. In Section VI-C, we compare STRONGHOLD
with ZeRO-Infinity when using a 2TB PCIe4.0 NVMe SSD.

ZeRO-2 and ZeRO-3 [9] partition the model states across dis-
tributed machines but with a data parallel strategy. We compare
STRONGHOLD to the ZeRO-2 and -3 solutions (which are the
core of the DeepSpeed [38] framework) for distributed training
in Section VI-D2.

D. Performance Report

We consider trainable model size and throughput in the
evaluation. We report the trainable model size by counting
the number of model parameters (using FP32 representation)
that can be trained without incurring GPU OOM, and report
throughput by measuring the number of training samples
processed per second. We run each test case 10 times on
unloaded servers to measure the metrics, and then report the
geometric mean across different runs. In our evaluation, we use
layer-wised activation checkpointing [39] that is widely used
in large-scale training. We note that the profiling overhead
of STRONGHOLD at the warm-up phase accounts for less
than 0.5% of the total training time on our evaluation setup.
This overhead will be much smaller (and negligible) in a
real-life training scenario with a higher number of training
iterations. We have included this overhead when computing
the throughout of STRONGHOLD. Finally, the throughput and
efficiency variance across runs is small, less than 3%.

VI. EXPERIMENTAL RESULTS

In this section, we first show that STRONGHOLD outper-
forms all the offloading baselines by enabling the training of
a 39.5B model on a V100 GPU and an 82.1B model across
8 distributed A10 GPUs using model parallelism (Section
VI-A) and giving a higher training throughput (Section VI-B).
We then perform further analysis on STRONGHOLD (Section
VI-C) - including the use of NVMe - before showcasing the
new optimizations enabled by STRONGHOLD (Section VI-D).

A. Trainable Model Size

Figure 6 compares the trainable model size when using CPU
RAM only. The min-max bar on the diagram gives the range of
measurements for different DNN configurations when varying
the hidden dimension and model depth.

1) Single V100 GPU: Figure 6a gives the largest trainable
model on a single 32GB V100 GPU. Megatron-LM allows
one to train a model with up to 1.7B parameters on a V100
GPU before incurring GPU OOM. L2L and Zero-Offload
can expand the trainable size by 3.5x over Megatron-LM,
to support a model with around 6B of parameters through
CPU-GPU offloading. Moreover, the fine-grained parameter
partitions in ZeRO-Infinity (with CPU RAM only) can support
a 20.6B model3. STRONGHOLD outperforms all baselines,
supporting model training with 39.5B parameters and giving
comparable training efficiency compared to other offloading
scheme. STRONGHOLD is limited by the CPU and GPU
memory and the offloading unit size. Therefore, it can support
a larger model with larger CPU RAM and GPU memory
(or reducing the size of the offloading unit through tensor
parallelism). The trainable model size of STRONGHOLD trans-
lates to a 6.5x improvement over L2L and Zero-Offload,
and an 1.9x improvement over Zero-Infinity. ZeRO-Infinity
requires moving the parameters, gradients, and optimizer states
to the GPU for runtime model refactoring. This operation
requires making a copy of the refactored model parameters,
incurring extra GPU memory overhead. STRONGHOLD does
not have this overhead, leading to a larger trainable model
size. Furthermore, while Zero-Infinity could assure large DNN
training, as we will show in Section VI-B, it comes at the cost
of poor training efficiency.

2) Distributed GPUs: Figure 6b shows the largest trainable
model size across 8 distributed A10 GPU servers using model
parallelism. All offloading approaches benefit from additional
GPU resources. However, L2L and Zero-Offload give limited
improvement on the trainable model size as they are largely
constrained by a single GPU memory. By partitioning the
model states across heterogeneous devices, ZeRO-Infinity and
STRONGHOLD demonstrate stronger scalability by scaling the
trainable model size to 56.9B and 82.1B parameters respec-
tively, with STRONGHOLD supports the largest model. In all
test cases, STRONGHOLD gives a nearly 100% GPU utiliza-
tion, with 80% utilization of the theoretical peak bandwidth
of the CPU-GPU PICe or communication network.

B. Training Throughput

Figure 7 compares the training throughput on the
largest trainable model size supported by each baseline.
STRONGHOLD runs the same model of its counterpart.
STRONGHOLD outperforms all baselines (including Megatron-
LM thanks to STRONGHOLD’s multi-streamed optimization),
achieving 42 ∼ 57% hardware performance by delivering

3In [19], Zero-Infinity was reported to support a 1T model using either a
DGX-2 node with NVMe or 32 DGX-2 nodes (512 V100 GPUs), and FP16
for model parameters, for which the computation resources and parameter
settings differ from our evaluation setup.
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6∼9 TFlops on a V100 GPU. The TFLOPS given by
STRONGHOLD far exceeds the one delivered by L2L (1.88),
ZeRO-Offload (0.59) and ZeRO-Infinity (0.53). It improves
the training throughput by at least 1.1x (up to 3.7x) by better
overlapping the CPU-GPU communication. Figure 8a shows
the throughput obtained when a common 1.7B model (the
largest trainable model supported by Megatron-LM) on a V100
GPU. For this case, L2L delivers only 22.2% of the Megatron-
LM throughput because it simply serializes computation with
data transfer for each DNN layer. ZeRO-Offload and ZeRO-
Infinity achieve less than 57% of the Megatron-LM training
efficiency because a large portion of the CPU-GPU data trans-
fer and computation cannot overlap due to their CPU optimizer
implementation. STRONGHOLD is the only offloading solution
that gives an improvement over Megatron-LM. The results
show that STRONGHOLD can scale up the trainable model
size and accelerate DNN training.

C. Further Analysis

1) Training efficiency: Figure 8b shows that STRONGHOLD
delivers nearly linear training efficiency on a single V100
GPU, using a 1.7B model as the starting point. The training ef-
ficiency is a lower-is-better metric, measured by the averaged
time in performing one training iteration. STRONGHOLD’s
performance is on par with a perfect linear scaling projection,
albeit there are some fluctuations in the scaling trend due to the
impact of the GPU working window size on the GPU cache
performance. Using the same resources, STRONGHOLD can
train 25x, 4x, and 20x bigger models in a single-GPU-single-
node, multiple-GPU-single-node and multiple-GPU-multiple-
node environment, respectively; and it achieves these without
significantly compromising the training efficiency. Therefore,
STRONGHOLD can reduce the number of GPUs required by
at least 4x compared to the traditional training method. The
resource-saving can also be used to increase data parallelism
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storage (NVMe).

by 4x to speed up the training time. Based on this scalability
projection, we estimate that STRONGHOLD can complete the
training of 175B GPT-3 using a quarter of the GPUs with a
similar training time, or it can speed up the training process
by 4x when using the same number of GPUs compared to the
conventional distributed training method. This capability can
reduce the cost by using either smaller-scale GPU resources
or fewer GPU hours, making the training of large DNN more
accessible and affordable.

2) Impact of working window size: Figure 9 shows how
the GPU working window size affects the throughput by
running a 1.7B and a 39.5B model on a V100 GPU. In
our cases, initially, a larger window can better overlap GPU
computation with data transfer, which leads to a higher training
throughput. However, the improvement reaches a plateau with
a window size of 8. Using a window size greater than 8 does
not justify the gain in throughput but will increase the GPU
memory pressure. Using the analytical method described in
Section III-D, STRONGHOLD automatically determines to use
a window size of 8 for this model.

3) Using NVMe: Figure 10 shows the throughput improve-
ment over ZeRO-Infinity when NVMe is used to scale up the
model size on the V100 GPU server. When using NVMe,
STRONGHOLD and Zero-Infinity can support the training of
a model with half trillions of parameters on our V100 GPU
server. Compared to Zero-Infinity, STRONGHOLD can also
better overlap the disk I/O requests with GPU computation,
improving the throughput by over 8x.

D. STRONGHOLD-enabled Optimizations

1) Multi-streamed optimization: Figure 11 shows perfor-
mance improvement given by STRONGHOLD over Megatron-
LM when varying the batch size. By only keeping part of
the DNN layers and gradients in the GPU, STRONGHOLD

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:47:32 UTC from IEEE Xplore.  Restrictions apply. 



 

16 32 64 128 
Batch size 

1 

2 

= StrongHold (#samples/sec) / Baseline 

1.3/0.8 

1.7/0.8 1.5 /0.7
 1.4/0.7 

Figure 11: Speedup over Megatron-LM under different training batch sizes
when the STRONGHOLD multi-stream optimization is enabled.

 

1 2 4 8 
Batch size 

0 

2    

   

ZeRO2 ZeRO3 StrongHold 
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able model supported by ZeRO-2). STRONGHOLD outperforms ZeRO-based
distributed training solutions.

reduces the GPU memory footprint by 60%. The reduced
memory footprint permits STRONGHOLD to use multiple
CUDA streams speedup the training process, leading to at least
1.7x (up to 2.1x) speedup over Megatron-LM.

2) Accelerating distributed training: Figure 12 compares
STRONGHOLD against ZeRO-2 and ZeRO-3 in a distributed
training setup on the A10 GPU cluster. ZeRO-2 partitions
the optimizer states and gradients across parallel processes
running on multiple servers while ZeRO-3 partitions the model
parameters on top of ZeRO-2 across GPU servers [9]. We
apply all approaches to the largest model (3B parameters) that
can be supported by ZeRO-2 with a batch size of 1. ZeRO-2
and ZeRO-3 have to partition the model/optimizer states across
GPUs due to the GPU memory restrictions, but they introduce
extra communication overhead across GPUs and serve nodes.
By reducing the GPU consumption, STRONGHOLD does not
need to partition the model across GPU servers. Instead, it can
run the entire model on a single server to exploit data paral-
lelism across GPU servers. As a result, STRONGHOLD reduces
the cross-server communications, leading to over 2.6x through-
put improvement over ZeRO. For example, STRONGHOLD
reduces the cross-server communication by around 50% on a
20B model (see also Section III-F). This experiment demon-
strates another advantage of STRONGHOLD in speeding up
distributed deep learning training.

3) Knowledge distillation: STRONGHOLD can also support
knowledge distillation [21]. This strategy is widely used to
accelerate DNN inference by using a trained large model to
guide the training of a smaller but faster DNN. Under this
setting, the large DNN only needs to perform FP on training
samples to provide layer-wised activations to guide the student
model training. Inferencing frameworks like TensorRT [40] are
not suitable for this scenario because they do not produce acti-
vations of intermediate layers. As can be seen from Figure 13,
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Figure 13: Using STRONGHOLD to support DNN inference for knowledge
distillation on a single 32GB V100 GPU.
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Figure 14: Improvement given by individual optimizations when applying
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STRONGHOLD can effectively support large DNN inference
for knowledge distillation. Note that as STRONGHOLD only
needs to support FP in this scenario, it can support a larger
model than when it is used for training that is involved with
both FP and BP. It gives similar performance for small DNN
inference compared to Pytorch but delivers linear scalability
for large DNNs where PyTorch give an OOM error.

4) Optimization breakdown: Figure 14 reports the perfor-
mance improvement on the V100 GPU platform when turning
on a single optimization to a baseline offloading scheme with-
out optimization. By utilizing the multi-core CPU, concurrent
parameter update with heterogeneous collective communica-
tion (Sections III-E1 and III-E2) give 1.5x throughput im-
provment. By minimizing the GPU tensor allocation overhead,
our memory management optimization (Section III-E3) alone
gives a 2.2x throughput improvement. Similarly, by launching
multiple kernels concurrently, our multi-streamed optimization
(see Section IV-A) offers up to 2x improvement.

VII. RELATED WORK

Data and model parallelisms are two dominant paralleliza-
tion techniques for large DNN training [41], [38], [42]. The
former partitions the training data across multiple GPUs [5],
[43], and the latter splits the model layers vertically and
then distributes different layers onto GPUs to reduce the
memory pressure of the model states on a single GPU [6].
ZeRO [9] partitions the training batch across multiple GPUs,
similar to data parallelism, but it further splits the model
states across GPUs and uses collective operations to gather
the required model parameters. Parallelization can also be
achieved by horizontally partitioning a tensor operator across
multiple GPUs [23], [44]. STRONGHOLD complements the
existing data-parallel approaches by using multiple GPU SMs
to achieve fine-grained data parallelism while just keeping one
copy of the model parameters across parallel training workers.
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A recent line of work adds pipelines into model parallelism
by partitioning model layers into parallel stages [7], [8],
[45], [46], [47], [48], [49]. In this way, each training batch
is divided into micro-batches to be processed by pipeline
stages across computing devices. Although STRONGHOLD
also follows pipelining, tasks on a STRONGHOLD pipeline are
finer-grained, where the model layers stored in a GPU memory
can change dynamically during execution.

All the aforementioned strategies utilize the aggregated
GPU memory of multiple GPUs to meet the memory re-
quirement of large DNNs. STRONGHOLD is among the recent
attempts in scaling up the trainable model size on a single
GPU. This line of research includes activation check-pointing
methods, which trade computation for GPU memory saving
[39]. This strategy drops the activations after FP and recom-
puting them from checkpoints during BP. Unfortunately, this
comes as the cost of huge overhead for large DNNs because
a large number of activations to be recomputed. Compression
techniques, such as using low or mixed precision represen-
tations for model states, can reduce the memory footprint
[12]. However, compression techniques can reduce the training
accuracy and slowdown model convergence.

Our work falls under a third approach to utilize external
memory like the CPU RAM and NVMe to expand the
memory capacity during training [50], [13], [51], [15], [52],
[16]. ZeRO-Offload [11] and ZeRO-Infinity [19] are the most
closely related work. ZeRO-Offload uses the CPU memory to
store gradients and optimizer states. Unlike STRONGHOLD,
ZeRO-Offload stores the entire model parameters in the GPU
memory. As such, ZeRO-Offload is limited by the GPU
memory, rather than the external memory like STRONGHOLD.
ZeRO-Infinity extends ZeRO-Offload through fine-grained
model state partitioning and utilizing the secondary storage.
When using NVMe, ZeRO-Infinity can greatly increase the
trainable model size, but this comes at the cost of prohibitively
long training time. By carefully overlapping computation
and communication, STRONGHOLD significantly improves
the training efficiency over ZeRO-Infinity. L2L [18] is a
Transformer-specific offloading scheme. It keeps an encoder
layer in the GPU memory, by synchronously moving the model
parameters the CPU memory to mimic layer-by-layer compu-
tation. Unlike STRONGHOLD, L2L requires model refactoring
and offers poor efficiency due to extensive communication
overhead and frequent GPU stalls. The M6 model [53] keeps
a fixed number of layers on GPUs, which is specific to the
current model, and requires code refactoring.

The work presented in [54] combines rematerialization to
trade memory for computation time and offloading to trade
memory for data movement. It employs a dynamic program-
ming heuristic to determine the optimal offloading sequence.
AxoNN [55] exploits asynchronous and message-driven ex-
ecution for scheduling parallel training workers to improve
GPU utilization and system throughput. Varuna [56] leverages
low-priority virtual machines and pipelining to enable low-cost
model training over commodity networking. These techniques
are complementary to STRONGHOLD.

Dorylus exploits the workload characteristics of graph neu-
ral networks (GNNs) to use parallel serverless CPU threads
for model training [57]. Dorylus and other memory [58]
or computation [59] optimization techniques can be used
in combination with STRONGHOLD to utilize low-cost CPU
threads to train GNNs. Furthermore, STRONGHOLD can also
be used together with asynchronous training [60] to further
reduce the waiting time across training epochs, but care must
be taken to avoid slowing down model convergence [61].

VIII. CONCLUSION

We have presented STRONGHOLD, a new offloading frame-
work to lower the GPU memory consumption for training
billion-scale DNNs. STRONGHOLD utilizes heterogeneous re-
sources to scale the trainable model size. Compared to existing
offloading solutions, STRONGHOLD reduces the GPU memory
footprint with lower computation overhead. It achieves this
by maintaining a compact GPU working window and using
data prefetching techniques to overlap data transfer and GPU
computation. By reducing the GPU memory consumption, we
demonstrate that STRONGHOLD enables new optimization to
utilize the GPU hardware parallelism to improve performance.
We show that STRONGHOLD allows the training of a larger
DNN model with better training efficiency than the state-
of-the-art offloading techniques. Specifically, it enables the
training of a DNN with 39.5 billion parameters on a single
V100 GPU without changing user code and supports faster
model training in a distributed GPU environment.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Summary
StrongHold aims to increase the trainable model size through dy-
namic offloading. We evaluate StrongHold on the largest trainable
deep neural network (DNN) size on a single GPU (NVIDIA V100)
and a distributed environment with 8 A10 GPU servers. We also
report the training throughput and compare StrongHold against
Megatron-LM, L2L, ZeRO-offload and ZeRO-Infinity, and the ZeRO
training schemes (in the distributed training setup).

Artifact Checklist
This artifact describes the tools and code used in our evaluation.
The main component is a docker image that includes a detailed
README, scripts to generate and run all experiments, and the
required installed libraries. It requires Docker Engine to run.

Evaluating this artifact requires an Intel multicore processor and
an NVIDIA GPU. The scripts will generate the main results from
our paper evaluation and produce the diagrams.
Hardware:Our work was tested on two GPU platforms. The first is
a single node GPU server with 2x 24-core Intel Xeon Platinum 8163
CPU at 2.50GHz and 755GB of DDR4 RAM, and a 32GB NVIDIA
Tesla V100 GPU. The second is an 8-node distributed GPU cluster,
where each node has a 24GB NVIDIA Ampere A10 GPU and 2x
64-core Intel Xeon Platinum 8369B CPUs at 2.90 GHz with 1TB of
DDR4 RAM. It is possible to evaluate our approach on a different
NVIDIA GPU platform, but the results may deviate from the ones
reported in the paper.
Operating System: Ubuntu 20.04 with Linux kernel 4.19.91. Our
Docker image was tested on a host machine running Linux with
CUDA>=11.06
Software: Running the artifact requires Docker, all other software
dependencies are included in the Docker image or installed when
running the included scripts.
How much disk space required (approximately)?: 500 GB
How much time is needed to prepare workflow (approxi-
mately)?: 2 hours
Howmuch time is needed to complete experiments (approx-
imately)?: 6 hours
Publicly available?: Yes
Code licenses (if publicly available)?:MIT License
GitHub Link: https://github.com/strongh2/sc22-ae, with
DOI:10.5281/zenodo.6887214

Prepared Notebook
In addition to the docker image, we also provide a preconfigured
server with a 32G V100 GPU to make it easier to evaluate the AE.
This server allows the use of an interactive Jupyter notebook to
work through the main evaluation results. We recommend using
the preconfigured notebook for AE evaluation. The notebook can be

accessed using the following link (via a web browser) and password:
URL: http://47.111.26.83:8888/notebooks/sc22ae.ipynb
Password: wE6jszc

Installation
We provide an "out-of-box" Docker image to run the AE scripts.
We recommend the installation of Docker Community Edition
(CE). Instructions for various platforms can be found here: https:
//docs.docker.com/get-docker/. This section provides instructions
for setting up the host machine for Ubuntu, on which we tested
our artifact.

Run the following command in a Linux terminal:

$ sudo apt-get update && sudo apt-get install -y docker.io

Running the Docker command requires root privileges. It can be
run by a user without root privileges by adding the username to
the Docker group:

$ sudo usermod -a -G docker $USER

Setup GPU Environment on the Host Machine
Run the following commands to enable GPU in Docker envi-
ronment with NVIDIA container toolkit on the host machine.
Details are from https://docs.nvidia.com/datacenter/cloud-native/
container-toolkit/install-guide.html#docker.

$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID)

$ curl -fsSL \

https://nvidia.github.io/libnvidia-container/gpgkey | \

sudo gpg –dearmor -o \

/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg

$ curl -s -L https://nvidia.github.io/libnvidia-container/\

$distribution/libnvidia-container.list | \

sed ‘sdeb https://deb [signed-by=/usr/share/keyrings/\

nvidia-container-toolkit-keyring.gpg] https://g’ | \

tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

Then, install the nvidia-docker2 package after updating the pack-
age listing:

$ sudo apt-get update && sudo apt-get install -y

nvidia-docker2 && sudo systemctl restart docker

Next, test if the GPU running environment is successfully config-
ured. A working setup can show the GPU information by running
a base CUDA container:
$ sudo docker run –rm –gpus all

nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi

Setup Docker Image on a Single Node
In this section, we describe how to set up the docker image on a
single GPU server.

Our docker image can be downloaded using the following com-
mand:
$ docker pull strongh/sc22-ae:latest
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After obtaining the docker image, run:

$ docker run -it -P -w /home/sys/STRONGHOLD –name=stronghold

–network=host –gpus=all –ipc=host strongh/sc22-ae /bin/bash

Download data: We do not ship the training data to reduce the
docker image size. However, this can be downloaded as:

$ wget -c https://dumps.wikimedia.org/enwiki/ latest/

enwiki-latest-pages-articles.xml.bz2

Unpack the data using:

$ python3 -m wikiextractor.WikiExtractor -o text –json

./enwiki-latest-pages-articles.xml.bz2

Experiment Workflow
The evaluation script is located at the examples folder, which should
be executed from the parent directory. The script contains a number
of configurable arguments to change the DNN setup. The script
itself should self explain these parameters, which are summarized
as follow:

(1) number of layers, (default=16)
(2) hidden size, (default=2048)
(3) number of heads, (default=16)
(4) sequence length, (default=1024)
(5) batch size, (default=4)
(6) window size, (default=4) (only for StrongHold)

The script can be executed by:

$ ./examples/run.sh -m [METHOD] -l [NUM_LAYERS] -h

[HIDDEN_SIZE] -b [BATCH_SIZE] -w [WINDOW_SIZE]

where the [METHOD] argument takes the following values:
megatron-lm, l2l, zero-offload, zero-infinity, stronghold
and all. Using all to automatically evaluate all approaches;
the [NUM_LAYERS], [HIDDEN_SIZE], [BATCH_SIZE] and [WIN-
DOW_SIZE] take integers, indicating the number of transformer
layers, the hidden size of each layer, the training batch size and
offloading window size, separately.
Results: Evaluation results will be saved into the
results folder, formatted as log_[METHOD]_l-
[NUM_LAYERS]_h-[HIDDEN_SIZE]_bs-[BATCH_SIZE]_ws-
[WINDOW_SIZE]_TIMESTAMP.txt.

Cases: Here lists the core testing cases. After each execution is
completed, run ./examples/case*_extract.sh for log analysis,
and ./examples/case*_draw.py for auto-generated diagrams. *
means the order of the case.

(1). The largest trainable model size (Fig 6a in Sec VI.A)
• to increase the layers or hidden size before ‘OOM‘ error
occurs.

• ./examples/fig6a.sh

(2). Throughput on the largest trainable model size supported
by each baseline (Fig 7a in Sec VI.B)

• to execute this script based on the fig6a’s values explored.
• ./examples/fig7a.sh

(3). Throughput on the largest trainable model size of Megatron-
LM (Fig 8a in Sec VI.B)

• to measure the degree of performance loss, compared with
the existing offloading works.

• ./examples/fig8a.sh

(4). Nearly linear scaling as model size increases (Fig 8b in Sec
VI.B)

• to measure the degree of the offloading overhead.
• ./examples/fig8b.sh

(5). Impact of working window size (Fig 9 in Sec VI.C)

• ./examples/fig9.sh

Evaluation and Expected Results
We measure the throughput by running each DNN for 10 iterations
after the warmup phase to reduce the experimental overhead. We
run each evaluation setup 10 times and report the geometric mean
across 10 runs.

Generating results for all experiments takes approximately 24
hours, depending on the evaluation hardware. The results directory
includes the author’s results used in the paper submission. How-
ever, the results can vary depending on GPUs, CPU RAM, network
bandwidth, and delay.

Notes
For more detailed information about the artifact and its evaluation
process, read the README.md located in the docker image, which
will also be published on the project website before the AE process.

Methodology
The artifact of this paper was reviewed according to the following
guidelines: http://cTuning.org/ae/reviewing20190109.html, https:
//www.acm.org/publications/policies/artifact-review-badging.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: DOI:10.5281/zenodo.6887214;https://

github.com/strongh2/sc22-ae
Artifact name: stronghold-sc22-ae

Reproduction of the artifact with container:
1.1 download this docker image from the official hub website.
$ docker pull strongh/sc22-ae:latest

1.2 create a new docker container based on this image.
$ docker run -it -P -w /home/sys/STRONGHOLD –

name=aetesting –network=host –gpus=all –ipc=host strongh/sc22-
ae:latest /bin/bash

1.3 check the runtime environment.
At this point, we believe the docker container is launched

successfully, and the current terminal focus should be at the
{ /home/sys/STRONGHOLD} folder with { (py3.9.10)} virtual python
environment, shown as

$ (py3.9.10) root@??:/home/sys/STRONGHOLD#
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If not at the STRONGHOLD folder, please use the cd
{ /home/sys/STRONGHOLD} command to change the current loca-
tion.

If not at { (py3.9.10)} virtual python environment, please use
{pyenv activate py3.9.10} to enter into py3.9.10 virtual env.

Note: if the host server’s CUDA driver is lower than 11.4 or errors
about torch version occur, please see the {README} in GitHub to
reinstall torch, torchvision, apex libraries.

2.1 Follow the {Experiment Workflow} section to run the testing
cases scripts.

(1). The largest trainable model size (Fig 6a in Sec VI.A)
$ ./examples/fig6a.sh && ./examples/case1_extract.sh && python

./examples/case1_draw.py

(2). Throughput on the largest trainable model size supported
by each baseline (Fig 7a in Sec VI.B)

$ ./examples/fig7a.sh && ./examples/case2_extract.sh && python
./examples/case2_draw.py

(3). Throughput on the largest trainable model size of Megatron-
LM (Fig 8a in Sec VI.B)

$ ./examples/fig8a.sh && ./examples/case3_extract.sh && python
./examples/case3_draw.py

(4). Nearly linear scaling as model size increases (Fig 8b in Sec
VI.B)

$ ./examples/fig8b.sh && ./examples/case4_extract.sh && python
./examples/case4_draw.py

(5). Impact of working window size (Fig 9 in Sec VI.C)
$ ./examples/fig9.sh && ./examples/case5_extract.sh && python

./examples/case5_draw.py
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