
��
��
���

���
	 ��
����� 	

��� ����
�����	������
��

��
�
	 	���������

	
��

�
	

���
����� 	

���

�End-to-end Deep Learning of Optimization Heuristics

Chris Cummins, Pavlos Petoumenos

School of Informatics
University of Edinburgh

United Kingdom
{c.cummins,ppetoume}@inf.ed.ac.uk

Zheng Wang

School of Computing and Communications
Lancaster University

United Kingdom
z.wang@lancaster.ac.uk

Hugh Leather

School of Informatics
University of Edinburgh

United Kingdom
hleather@inf.ed.ac.uk

Abstract—Accurate automatic optimization heuristics are
necessary for dealing with the complexity and diversity of
modern hardware and software. Machine learning is a proven
technique for learning such heuristics, but its success is bound
by the quality of the features used. These features must be
hand crafted by developers through a combination of expert
domain knowledge and trial and error. This makes the quality
of the final model directly dependent on the skill and available
time of the system architect.

Our work introduces a better way for building heuristics. We
develop a deep neural network that learns heuristics over raw
code, entirely without using code features. The neural network
simultaneously constructs appropriate representations of the
code and learns how best to optimize, removing the need for
manual feature creation. Further, we show that our neural
nets can transfer learning from one optimization problem to
another, improving the accuracy of new models, without the
help of human experts.

We compare the effectiveness of our automatically generated
heuristics against ones with features hand-picked by experts.
We examine two challenging tasks: predicting optimal mapping
for heterogeneous parallelism and GPU thread coarsening
factors. In 89% of the cases, the quality of our fully auto-
matic heuristics matches or surpasses that of state-of-the-art
predictive models using hand-crafted features, providing on
average 14% and 12% more performance with no human effort
expended on designing features.

Keywords-Optimization Heuristics; Machine Learning; Com-
piler Optimizations; Heterogeneous Systems

I. INTRODUCTION

There are countless scenarios during the compilation and

execution of a parallel program where decisions must be

made as to how, or if, a particular optimization should be

applied. Modern compilers and runtimes are rife with hand

coded heuristics which perform this decision making. The

performance of parallel programs is thus dependent on the

quality of these heuristics.

Hand-written heuristics require expert knowledge, take

a lot of time to construct, and in many cases lead to

suboptimal decisions. Researchers have focused on machine

learning as a means to constructing high quality heuristics

that often outperform their handcrafted equivalents [1–5].

A predictive model is trained, using supervised machine

learning, on empirical performance data and important quan-

tifiable properties, or features, of representative programs.

RuntimesRuntimes

Feature
Extractor

FeaturesFeaturesFeatures

ProgramsProgramsPrograms Predictive
Model

ProgramsProgramsTraining
DataRuntimesDriver

(a) Current state-of-practice

RuntimesRuntimesProgramsProgramsPrograms Predictive
Model

ProgramsProgramsTraining
DataRuntimesDriver

(b) Our proposal

Figure 1: Building a predictive model. The model is originally
trained on performance data and features extracted from the source
code and the runtime behavior. We propose bypassing feature
extraction, instead learning directly over raw program source code.

The model learns the correlation between these features and

the optimization decision that maximizes performance. The

learned correlations are used to predict the best optimization

decisions for new programs. Previous works in this area were

able to build machine learning based heuristics with less

effort, that outperform ones created manually experts [6, 7].

Still, experts are not completely removed from the de-

sign process, which is shown in Figure 1a. Selecting the

appropriate features is a manual undertaking which requires

a deep understanding of the system. The designer essentially

decides which compile or runtime characteristics affect

optimization decisions and expresses them in ways that

make it easy to model their relationship to performance.

Failing to identify an important feature has a negative effect

on the resulting heuristic. For example, in [8] the authors

discovered that [6] did not identify one such feature, causing

performance to be 40% lower on average.

To make heuristic construction fast and cheap, we must

take humans out of the loop. While techniques for automatic

feature generation from the compiler IR have been proposed

in the past [9, 10], they do not solve the problem in a

practical way. They are deeply embedded into the compiler,

require expert knowledge to guide the generation, have to

be repeated from scratch for every new heuristic, and their

search time can be prohibitive. Our insight was that such

2017 26th International Conference on Parallel Architectures and Compilation Techniques

978-1-5090-6764-0/17 $31.00 © 2017 IEEE

DOI 10.1109/PACT.2017.24

219

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

costly approaches are not necessary any more. Deep learning

techniques have shown astounding successes in identifying

complex patterns and relationships in images [11, 12], au-

dio [13], and even computer code [14, 15]. We hypothesized

that deep neural networks should be able to automatically

extract features from source code. Our experiments showed

that even this was a conservative target: with deep neural

networks we can bypass static feature extraction and learn

optimization heuristics directly on raw code.
Figure 1b shows our proposed methodology. Instead of

manually extracting features from input programs to gen-

erate training data, program code is used directly in the

training data. Programs are fed through a series of neural

networks which learn how code correlates with perfor-

mance. Internally and without prior knowledge, the net-

works construct complex abstractions of the input program

characteristics and correlations between those abstractions

and performance. Our work replaces the need for compile-

time or static code features, merging feature and heuristic

construction into a single process of joint learning. Our

system admits auxiliary features to describe information un-

available at compile time, such as the sizes of runtime input

parameters. Beyond these optional inclusions, we are able

to learn optimization heuristics without human guidance.
By employing transfer learning [16], our approach is able

to produce high quality heuristics even when learning on a

small number of programs. The properties of the raw code

that are abstracted by the beginning layers of our neural net-

works are mostly independent of the optimization problem.

We reuse these parts of the network across heuristics, and,

in the process, we speed up learning considerably.
We evaluated our approach on two problems: heteroge-

neous device mapping and GPU thread coarsening. Good

heuristics for these two problems are important for extracting

performance from heterogeneous systems, and the fact that

machine learning has been used before for heuristic con-

struction for these problems allows direct comparison. Prior

machine learning approaches resulted in good heuristics

which extracted 73% and 79% of the available performance

respectively but required extensive human effort to select the

appropriate features. Nevertheless, our approach was able to

outperform them by 14% and 12%, which indicates a better

identification of important program characteristics, without

any expert help. We make the following contributions:

• We present a methodology for building compiler heuris-

tics without any need for feature engineering.

• A novel tool DeepTune for automatically constructing

optimization heuristics without features. DeepTune out-

performs existing state-of-the-art predictive models by

14% and 12% in two challenging optimization domains.

• We apply, for the first time, transfer learning on

compile-time and runtime optimizations, improving the

heuristics by reusing training information across differ-

ent optimization problems, even if they are unrelated.

H
eu

ri
st

ic

M
o

d
el

Auxiliary InputsSource Code

Dense NN

Predicted Optimization

Embedding

Source Rewriter

Sequence Encoder

Batch Normalization

void nbody_sim(__global float4* pos... [256, 2095172]

Device mapping: {CPU,GPU}

La
ng

ua
g

e
M

o
d

el

LSTM

(optional)

(concatenate)

Figure 2: DeepTune architecture. Code properties are extracted
from source code by the language model. They are fed, together
with optional auxiliary inputs, to the heuristic model to produce
the final prediction.

II. DEEPTUNE: LEARNING ON RAW PROGRAM CODE

DeepTune is an end-to-end machine learning pipeline for

optimization heuristics. Its primary input is the source code

of a program to be optimized, and through a series of neural

networks, it directly predicts the optimization which should

be applied. By learning on source code, our approach is

not tied to a specific compiler, platform, or optimization

problem. The same design can be reused to build multiple

heuristics. The most important innovation of DeepTune is

that it forgoes the need for human experts to select and tune

appropriate features.

A. System Overview

Figure 2 provides an overview of the system. A source

rewriter removes semantically irrelevant information (such

as comments) from the source code of the target program and

passes it to a language model. The language model converts

the arbitrary length stream of code into a fixed length vector

of real values which fully capture the properties and structure

of the source, replacing the role of hand designed features.

We then optionally concatenate this vector with auxiliary

inputs, which allow passing additional data about runtime

or architectural parameters to the model for heuristics which

need more than just compile-time information. Finally, a

standard feed-forward network is used to predict the best

heuristic parameters to optimize the program.

220

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

DeepTune is open source1. We implemented the model in

Keras, with TensorFlow [17] and Theano [18] backends.

B. Language Model
Learning effective representations of source code is a

difficult task. A successful model must be able to:

• derive semantic and syntactic patterns of a program-

ming language entirely from sample codes;

• identify the patterns and representation in source codes

which are relevant to the task at hand; and

• discriminate performance characteristics arising from

potentially subtle differences in similar codes.

To achieve this task, we employ state-of-the-art language

modeling techniques, coupled with a series of generic,

language agnostic code transformations.
Source Rewriter: To begin with, we apply a series

of source normalizing transformations extended from our

previous work [8]. These transformations, implemented as

an LLVM pass, parse the AST, removing conditional compi-

lation, then rebuild the input source code using a consistent

code style and identifier naming scheme. The role of source

normalization is to simplify the task of modeling source code

by ensuring that trivial semantic differences in programs

such as the choice of variable names or the insertion of

comments do not affect the learned model. Figures 3a and 3b

show the source rewriting applied to a simple program.
Sequence Encoder: We encode source code as a se-

quence of integers for interpretation by neural networks,

where each integer is an index into a predetermined vo-

cabulary. In [8], a character based vocabulary is used. This

minimizes the size of the vocabulary, but leads to long

sequences which are harder to extract structure from. In [19],

a token based vocabulary is used. This leads to shorter

sequences, but causes an explosion in the vocabulary size,

as every identifier and literal must be represented uniquely.
We designed a hybrid, partially tokenized approach. This

allows common multi-character sequences such as float
and if to be represented as unique vocabulary items, while

literals and other infrequently used words are encoded at the

character level.
We first assembled a candidate vocabulary Vc for the

OpenCL programming language containing the 208 data

types, keywords, and language builtins of the OpenCL

programming language. We then derived the subset of the

candidate vocabulary V ∈ Vc which is required to encode a

corpus of 45k lines of GPGPU benchmark suite kernels. Be-

ginning with the first character in the corpus, our algorithm

consumes the longest matching sequence from the candidate

vocabulary. This process continues until every character in

the corpus has been consumed. The resulting derived vocab-

ulary consists of 128 symbols which we use to encode new

program sources. Figure 3c shows the vocabulary derived

for a single input source code Figure 3b.

1DeepTune is available at: https://chriscummins.cc/deeptune

1 / / # d e f i n e E l e m e n t s
2 __kerne l vo id memse t_ke rne l (_ _ g l o b a l char ∗ mem_d ,

↪→ s h o r t va l , i n t number_by tes) {
3 c o n s t i n t t h r e a d _ i d = g e t _ g l o b a l _ i d (0) ;
4 mem_d [t h r e a d _ i d] = v a l ;
5 }

(a) An example, short OpenCL kernel, taken from Nvidia’s streamcluster.

1 __kerne l vo id A(_ _ g l o b a l char∗ a , s h o r t b , i n t c) {
2 c o n s t i n t d = g e t _ g l o b a l _ i d (0) ;
3 a [d] = b ;
4 }

(b) The streamcluster kernel after source rewriting. Variable and function
names are normalized, comments removed, and code style enforced.

idx token idx token idx token

1 ‘__kernel’ 10 ‘,’ 19 ‘const’
2 ‘ ’ 11 ‘short’ 20 ‘d’
3 ‘void’ 12 ‘b’ 21 ‘=’
4 ‘A’ 13 ‘int’ 22 ‘get_global_id’
5 ‘(’ 14 ‘c’ 23 ‘0’
6 ‘__global’ 15 ‘)’ 24 ‘;’
7 ‘char’ 16 ‘{’ 25 ‘[’
8 ‘*’ 17 ‘\n’ 26 ‘]’
9 ‘a’ 18 ‘ ’ 27 ‘}’

(c) Derived vocabulary, ordered by their appearance in the input (b). The
vocabulary maps tokens to integer indices.

01 02 03 02 04 05 06 02 07 08 02
09 10 02 11 02 12 10 02 13 02 14
15 02 16 17 18 19 02 13 02 20 02
21 02 22 05 23 15 24 17 18 09 25
20 26 02 21 02 12 24 17 27 <pad...>

(d) Indices encoded kernel sequence. Sequences may be padded to a fixed
length by repeating an out-of-vocabulary integer (e.g. -1).

Figure 3: Deriving a tokenized 1-of-k vocabulary encoding from
an OpenCL source code.

Embedding: During encoding, tokens in the vocabulary

are mapped to unique integer values, e.g. float→ 0, int
→ 1. The integer values chosen are arbitrary, and offer a

sparse data representation, meaning that a language model

cannot infer the relationships between tokens based on their

mappings. This is in contrast to the dense representations

of other domains, such as pixels in images, which can be

interpolated between to derive the differences in colors.

To mitigate this, we use an embedding, which trans-

lates tokens in a sparse, integer encoded vocabulary into

a lower dimensional vector space, allowing semantically

related tokens like float and int to be mapped to nearby

points [20, 21]. An embedding layer maps each token in the

integer encoded vocabulary to a vector of real values. Given

a vocabulary size V and embedding dimensionality D, an

embedding matrix WE ∈ R
V×D is learned during training,

so that an integer encoded sequences of tokens t ∈ N
L is

mapped to the matrix T ∈ R
L×D. We use an embedding

dimensionality D = 64.

221

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

Sequence Characterization: Once source codes have

been encoded into sequences of embedding vectors, neural

networks are used to extract a fixed size vector which

characterizes the entire sequence. This is comparable to the

hand engineered feature extractors used in prior works, but is

a learned process that occurs entirely — and automatically

— within the hidden layers of the network.

We use the the Long Short-Term Memory (LSTM) archi-

tecture [22] for sequence characterization. LSTMs imple-

ments a Recurrent Neural Network in which the activations

of neurons are learned with respect not just to their current

inputs, but to previous inputs in a sequence. Unlike reg-

ular recurrent networks in which the strength of learning

decreases over time (a symptom of the vanishing gradients
problem [23]), LSTMs employ a forget gate with a linear

activation function, allowing them to retain activations for

arbitrary durations. This makes them effective at learning

complex relationships over long sequences [24], an espe-

cially important capability for modeling program code, as

dependencies in sequences frequently occur over long ranges

(for example, a variable may be declared as an argument to

a function and used throughout).

We use a two layer LSTM network. The network receives

a sequence of embedding vectors, and returns a single output

vector, characterizing the entire sequence.

C. Auxiliary Inputs

We support an arbitrary number of additional real valued

auxiliary inputs which can be optionally used to augment the

source code input. We provide these inputs as a means of

increasing the flexibility of our system, for example, to sup-

port applications in which the optimization heuristic depends

on dynamic values which cannot be statically determined

from the program code [3, 25]. When present, the values

of auxiliary inputs are concatenated with the output of the

language model, and fed into a heuristic model.

D. Heuristic Model

The heuristic model takes the learned representations of

the source code and auxiliary inputs (if present), and uses

these values to make the final optimization prediction.

We first normalize the values. Normalization is necessary

because the auxiliary inputs can have any values, whereas

the language model activations are in the range [0,1]. If we

did not normalize, then scaling the auxiliary inputs could

affect the training of the heuristic model. Normalization

occurs in batches. We use the normalization method of [26],

in which each scalar of the heuristic model’s inputs x1 . . . xn

is normalized to a mean 0 and standard deviation of 1:

x′
i = γi

xi − E(xi)√
V ar(xi)

+ βi (1)

where γ and β are scale and shift parameters, learned during

training.

The final component of DeepTune is comprised of two

fully connected neural network layers. The first layer con-

sists of 32 neurons. The second layer consists of a single

neuron for each possible heuristic decision. Each neuron

applies an activation function f(x) over its inputs. We

use rectifier activation functions f(x) = max(0, x) for

the first layer due to their improved performance during

training of deep networks [27]. For the output layer, we use

sigmoid activation functions f(x) = 1
1+e−x which provide

activations in the range [0, 1].
The activation of each neuron in the output layer repre-

sents the model’s confidence that the corresponding decision

is the correct one. We take the argmax of the output layer

to find the decision with the largest activation. For example,

for a binary optimization heuristic the final layer will consist

of two neurons, and the predicted optimization is the neuron

with the largest activation.

E. Training the network

DeepTune is trained in the same manner as prior works,

the key difference being that instead of having to manually

create and extract features from programs, we simply use

the raw program codes themselves.

The model is trained with Stochastic Gradient Descent

(SGD), using the Adam optimizer [28]. For training data

X1 . . . Xn, SGD attempts to find the model parameters Θ
that minimize the output of a loss function:

Θ = argmin
Θ

1

n

n∑

i=1

� (Xi,Θ) (2)

where loss function � (x,Θ) computes the logarithmic dif-

ference between the predicted and expected values.

To reduce training time, multiple inputs are batched
together and are fed into the neural network simultaneously,

reducing the frequency of costly weight updates during back-

propagation. This requires that the inputs to the language

model be the same length. We pad all sequences up to a fixed

length of 1024 tokens using a special padding token, allow-

ing matrices of batch_size × max_seq_len tokens

to be processed simultaneously. We note that batching and

padding sequences to a maximum length is only to improve

training time. In production use, sequences do not need to

be padded, allowing classification of arbitrary length codes.

III. EXPERIMENTAL METHODOLOGY

We apply DeepTune to two heterogeneous compiler-based

machine learning tasks and compare its performance to state-

of-the-art approaches that use expert selected features.

A. Case Study A: OpenCL Heterogeneous Mapping

OpenCL provides a platform-agnostic framework for het-

erogeneous parallelism. This allows a program written in

OpenCL to execute transparently across a range of different

devices, from CPUs to GPUs and FPGAs. Given a program

222

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

Name Description

F1: data size/(comp+mem) commun.-computation ratio

F2: coalesced/mem % coalesced memory accesses

F3: (localmem/mem)×wgsize ratio local to global mem accesses
× #. work-items

F4: comp/mem computation-mem ratio

(a) Feature values

Name Type Description

comp static #. compute operations
mem static #. accesses to global memory
localmem static #. accesses to local memory
coalesced static #. coalesced memory accesses
data size dynamic size of data transfers
workgroup size dynamic #. work-items per kernel

(b) Values used in feature computation

Table I: Features used by Grewe et al. to predict heterogeneous
device mappings for OpenCL kernels.

and a choice of execution devices, the question then is on

which device should we execute the program to maximize

performance?

State-of-the-art: In [6], Grewe et al. develop a pre-

dictive model for mapping OpenCL kernels to the opti-

mal device in CPU/GPU heterogeneous systems. They use

supervised learning to construct decision trees, using a

combination of static and dynamic kernel features. The static

program features are extracted using a custom LLVM pass;

the dynamic features are taken from the OpenCL runtime.

Expert Chosen Features: Table Ia shows the features

used by their work. Each feature is an expression built upon

the code and runtime metrics given in Table Ib.

Experimental Setup: We replicate the predictive model

of Grewe et al. [6]. We replicated the experimental setup

of [8] in which the experiments are extended to a larger set of

71 programs, summarized in Table IIa. The programs were

evaluated on two CPU-GPU platforms, detailed in Table IIIa.

DeepTune Configuration: Figure 4a shows the neural

network configuration of DeepTune for the task of predicting

optimal device mapping. We use the OpenCL kernel source

code as input, and the two dynamic values workgroup size
and data size available to the OpenCL runtime.

Model Evaluation: We use stratified 10-fold cross-
validation to evaluate the quality of the predictive mod-

els [29]. Each program is randomly allocated into one of

10 equally-sized sets; the sets are balanced to maintain a

distribution of instances from each class consistent with the

full set. A model is trained on the programs from all but one

of the sets, then tested on the programs of the unseen set.

This process is repeated for each of the 10 sets, to construct

a complete prediction over the whole dataset.

B. Case Study B: OpenCL Thread Coarsening Factor

Thread coarsening is an optimization for parallel programs

in which the operations of two or more threads are fused

together. This optimization can prove beneficial on certain

Version #. benchmarks #. kernels

NPB (SNU [30]) 1.0.3 7 114
Rodinia [31] 3.1 14 31
NVIDIA SDK 4.2 6 12
AMD SDK 3.0 12 16
Parboil [32] 0.2 6 8
PolyBench [33] 1.0 14 27
SHOC [34] 1.1.5 12 48
Total - 71 256

(a) Case Study A: OpenCL Heterogeneous Mapping

Version #. benchmarks #. kernels

NVIDIA SDK 4.2 3 3
AMD SDK 3.0 10 10
Parboil [32] 0.2 4 4
Total - 17 17

(b) Case Study B: OpenCL Thread Coarsening Factor

Table II: Benchmark programs.

Frequency Memory Driver

Intel Core i7-3820 3.6 GHz 8GB AMD 1526.3
AMD Tahiti 7970 1000 MHz 3GB AMD 1526.3
NVIDIA GTX 970 1050 MHz 4GB NVIDIA 361.42

(a) Case Study A: OpenCL Heterogeneous Mapping

Frequency Memory Driver

AMD HD 5900 725 MHz 2GB AMD 1124.2
AMD Tahiti 7970 1000 MHz 3GB AMD 1084.4
NVIDIA GTX 480 700 MHz 1536 MB NVIDIA 304.54
NVIDIA K20c 706 MHz 5GB NVIDIA 331.20

(b) Case Study B: OpenCL Thread Coarsening Factor

Table III: Experimental platforms.

{CPU,GPU}

DNN_2

DNN_1

Normal.

Concat.

LSTM_2

LSTM_1

Embedding

Inputs

wgsize

(a)

dsizecode code

(b)

{1,2,4,8,16,32}

Figure 4: DeepTune neural networks, configured for (a) heteroge-
neous mapping, and (b) thread coarsening factor. The design stays
almost the same regardless of the optimization problem. The only
changes are the extra input for (a) and size of the output layers.

combinations of programs and architectures, for example

programs with a large potential for Instruction Level Par-

allelism on Very Long Instruction Word architectures.

223

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

No …

Source code (CF1)

Feature vector (CF1)

Coarsen?

No Yes

Feature vector (CF2)

Feature vector (CF4)

Coarsen?

No Yes

Coarsen?

CF: 2

CF: 1

CF: 4

Source code (CF2)
Coarsening Pass

Source code (CF4)
Coarsening Pass

(a) Magni et al. cascading binary model.

Source code (CF1)

Coarsening Factor?

CF:1 CF:2 CF:4 CF:8 CF:16 CF:32

(b) Our approach.

Figure 5: Two approaches for predicting coarsening factor (CF) of
OpenCL kernels. Magni et al. reduce the multi-label classification
problem to a series of binary decisions, by iteratively applying
the optimization and computing new feature vectors. Our approach
simply predicts the coarsening factor directly from the source code.

State-of-the-art: Magni et al. present a predictive

model for OpenCL thread coarsening in [7]. They implement

an iterative heuristic which determines whether a given

program would benefit from coarsening. If yes, then the

program is coarsened, and the process repeats, allowing

further coarsening. In this manner, the problem is reduced

from a multi-label classification problem into a series of

binary decisions, shown in Figure 5a. They select from one

of six possible coarsening factors: (1, 2, 4, 8, 16, 32), divided

into 5 binary choices.

Expert Chosen Features: Magni et al. followed a very

comprehensive feature engineering process. 17 candidate

features were assembled from previous studies of perfor-

mance counters and computed theoretical values [35, 36].

For each candidate feature they compute its coarsening

delta, reflecting the change in each feature value caused by

coarsening: fΔ = (fafter − fbefore)/fbefore, adding it to

the feature set. Then they use Principle Component Analysis

(PCA) on the 34 candidates and selected the first 7 principle

components, accounting for 95% of variance in the space.

Name Description

BasicBlocks #. basic blocks

Branches #. branches

DivInsts #. divergent instructions

DivRegionInsts #. instructions in divergent regions

DivRegionInstsRatio
#. instr. in divergent regions / total
instructions

DivRegions #. divergent regions

TotInsts #. instructions

FPInsts #. floating point instructions

ILP average ILP / basic block

Int/FP Inst Ratio #. branches

IntInsts #. integer instructions

MathFunctions #. match builtin functions

MLP average MLP / basic block

Loads #. loads

Stores #. stores

UniformLoads #. loads unaffected by coarsening direction

Barriers #. barriers

Table IV: Candidate features used by Magni et al. for predicting
thread coarsening. From these values, they compute relative deltas
for each iteration of coarsening, then use PCA for selection.

#. neurons #. parameters
HM CF HM CF

Embedding 64 64 ,256 8,256
LSTM_1 64 64 33,024 33,024
LSTM_2 64 64 33,024 33,024
Concatenate 64 + 2 - - -
Batch Norm . 66 64 264 256
DNN_1 32 32 2,144 2,080
DNN_2 2 6 66 198

Total 76,778 76,838

Table V: The size and number of parameters of the DeepTune
components of Figure 4, configured for heterogeneous mapping
(HM) and coarsening factor (CF).

Experimental Setup: We replicate the experimental

setup of Magni et al. [7]. The thread coarsening optimization

is evaluated on 17 programs, listed in Table IIb. Four

different GPU architectures are used, listed in Table IIIb.

DeepTune Configuration: Figure 4b shows the neural

network configuration. We use the OpenCL kernel as input,

and directly predict the coarsening factor.

Model Evaluation: Compared to Case Study A, the

size of the evaluation is small. We use leave-one-out cross-
validation to evaluate the models. For each program, a model

is trained on data from all other programs and used to predict

the coarsening factor of the excluded program.

Because [7] does not describe the parameters of the neural

network, we perform an additional, nested cross-validation

process to find the optimal model parameters. For every

program in the training set, we evaluate 48 combinations of

network parameters. We select the best performing configu-

ration from these 768 results to train a model for prediction

on the excluded program. This nested cross-validation is

repeated for each of the training sets. We do not perform

this tuning of hyper-parameters for DeepTune.

224

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

C. Comparison of Case Studies

For the two different optimization heuristics, the authors

arrived at very different predictive model designs, with very

different features. By contrast, we take exactly the same

approach for both problems. None of DeepTune’s parameters

were tuned for the case studies presented above. Their

settings represent conservative choices expected to work

reasonably well for most scenarios.

Table V shows the similarity of our models. The only

difference between our network design is the auxiliary inputs

for Case Study A and the different number of optimization

decisions. The differences between DeepTune configurations

is only two lines of code: the first, adding the two auxiliary

inputs; the second, increasing the size of the output layer for

Case Study B from two neurons to six. The description of

these differences is larger than the differences themselves.

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness of DeepTune for two distinct

optimization tasks: predicting the optimal device to run a

given program, and predicting thread coarsening factors.

We first compare DeepTune against two expert-tuned

predictive models, showing that DeepTune outperforms the

state-of-the-art in both cases. We then show that by lever-

aging knowledge learned from training DeepTune for one

heuristic, we can boost training for the other heuristic,

further improving performance. Finally, we analyze the

working mechanism of DeepTune.

A. Case Study A: OpenCL Heterogeneous Mapping

Selecting the optimal execution device for OpenCL

kernels is essential for maximizing performance. For a

CPU/GPU heterogeneous system, this presents a binary

choice. In this experiment, we compare our approach against

a static single-device approach and the Grewe et al. predic-

tive model. The static mapping selects the device which gave

the best average case performance over all the programs. On

the AMD platform, the best-performing device is the CPU;

on the NVIDIA platform, it is the GPU.

Figure 6 shows the accuracy of both predictive models

and the static mapping approach for each of the benchmark

suites. The static approach is accurate for only 58.8% of

cases on AMD and 56.9% on NVIDIA. This suggests the

need for choosing the execution device on a per program

basis. The Grewe et al. model achieves an average accuracy

of 73%, a significant improvement over the static mapping.

By automatically extracting useful feature representations

from the source code, DeepTune gives an average accuracy

of 82%, an improvement over both schemes.

Using the static mapping as a baseline, we compute

the relative performance of each program using the device

selected by the Grewe et al. and DeepTune models. Figure 7

shows these speedups. Both predictive models significantly

outperform the static mapping; the Grewe et al. model

Figure 6: Accuracy of optimization heuristics for heterogeneous
device mapping, aggregated by benchmark suite. The optimal static
mapping achieves 58% accuracy. The Grewe et al. and DeepTune
predictive models achieve accuracies of 73% and 84%, respectively.

achieves an average speedup of 2.91× on AMD and 1.26×
on NVIDIA (geomean 1.18×). In 90% of cases, DeepTune

matches or outperforms the predictions of the Grewe et al.
model, achieving an average speedup of 3.34× on AMD

and 1.41× on NVIDIA (geomean 1.31×). This 14% im-

provement in performance comes at a greatly reduced cost,

requiring no intervention by humans.

B. Case Study B: OpenCL Thread Coarsening Factor

Exploiting thread coarsening for OpenCL kernels is a

difficult task. On average, coarsening slows programs down.

The speedup attainable by a perfect heuristic is only 1.36×.

Figure 8 shows speedups achieved by the Magni et al. and

DeepTune models for all programs and platforms. We use

as baseline the performance of programs without coarsening.

On the four experimental platforms (AMD HD 5900, Tahiti

7970, NVIDIA GTX 480, and Tesla K20c), the Magni

et al. model achieves average speedups of 1.21×, 1.01×,

0.86×, and 0.94×, respectively. DeepTune outperforms this,

achieving speedups of 1.10×, 1.05×, 1.10×, and 0.99×.

Some programs — especially those with large divergent

regions or indirect memory accesses — respond very poorly

to coarsening. No performance improvement is possible

on the mvCoal and spmv programs. Both models fail to

achieve positive average speedups on the NVIDIA Tesla

225

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

Figure 7: Speedup of predicted heterogeneous mappings over the best static mapping for both platforms. In (a) DeepTune achieves an
average speedup of 3.43x over static mapping and 18% over Grewe et al. In (b) the speedup is 1.42x and 13% respectively.

K20c, because thread coarsening does not give performance

gains for the majority of the programs on this platform.

The disappointing results for both predictive models can

be attributed to the small training program set used by

Magni et al. (only 17 programs in total). As a result, the

models suffer from sparse training data. Prior research has

shown that data sparsity can be overcome using additional

programs; in the following subsection we describe and test a

novel strategy for training optimization heuristics on a small

number of programs by exploiting knowledge learned from

other optimization domains.

C. Transfer Learning Across Problem Domains

There are inherent differences between the tasks of build-

ing heuristics for heterogeneous mapping and thread coars-

ening, evidenced by the contrasting choices of features and

models in Grewe et al. and Magni et al. However, in both

cases, the first role of DeepTune is to extract meaningful

abstractions and representations of OpenCL code. Prior

research in deep learning has shown that models trained on

similar inputs for different tasks often share useful com-

monalities. The idea is that in neural network classification,

information learned at the early layers of neural networks

(i.e. closer to the input layer) will be useful for multiple

tasks. The later the network layers are (i.e. closer to the

output layer), the more specialized the layers become [37].

We hypothesized that this would be the case for Deep-

Tune, enabling the novel transfer of information across
different optimization domains. To test this, we extracted the

language model — the Embedding, and LSTM_{1,2}
layers — trained for the heterogeneous mapping task and

transferred it over to the new task of thread coarsening.

Since DeepTune keeps the same design for both optimization

problems, this is as simple as copying the learned weights

of the three layers. Then we trained the model as normal.

As shown in Figure 8, our newly trained model,

DeepTune-TL has improved performance for 3 of the 4 plat-

226

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

Figure 8: Speedups of predicted coarsening factors for each platform. DeepTune outperforms Magni et al on three of the four platforms.
Transfer learning improves DeepTune speedups further, by 16% on average.

forms: 1.17×, 1.23×, 1.14×, 0.93×, providing an average

12% performance improvement over Magni et al. In 81%

of cases, the use of transfer learning matched or improved

the optimization decisions of DeepTune, providing up to a

16% improvement in per platform performance.

On the NVIDIA Tesla K20c, the platform for which no

predictive model achieves positive average speedups, we

match or improve performance in the majority of cases, but

over-coarsening on three of the programs causes a modest

reduction in average performance. We suspect that for this

platform, further performance results are necessary due to

its unusual optimization profile.

D. DeepTune Internal Activation States

We have shown that DeepTune automatically outperforms

state-of-the-art predictive models for which experts have

invested a great amount of time in engineering features. In

this subsection we attempt to illuminate the inner workings,

using a single example from Case Study B: predicting the

thread coarsening factor for Parboil’s mriQ benchmark on

four different platforms.

Figure 9 shows the DeepTune configuration, with visual

overlays showing the internal state. From top to bottom,

we begin first with the input, which is the 267 lines of

OpenCL code for the mriQ kernel. This source code is

preprocessed, formatted, and rewritten using variable and

function renaming, shown in Figure 9b. The rewritten source

code is tokenized and encoded in a 1-of-k vocabulary.

Figure 9c shows the first 80 elements of this encoded

sequence as a heatmap in which each cell’s color reflects

its encoded value. The input, rewriting, and encoding is the

same for each of the four platforms.

The encoded sequences are then passed into the Em-

bedding layer. This maps each token of the vocabulary

to a point in a 64 dimension vector space. Embeddings

are learned during training so as to cluster semantically

227

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

Embedding

���������	
����������������������
������
�����������
������
�����������
������
�����������
������
�����������
������
�����������
������
�����
����
����
��������
����
������������

!����"���#$���
% �#
!�������&'���
!�������'()*+�,+&+)-
���������	
��
'
$."��/�,01������"$2�������,�
���3���4������
������
����4������
������
����5������
������
����6�
�����������������
������
����/�������
������
����/�������
����%��"����7��"�%��������
������
���%8�&'�����

CF: 2 CF: 4 CF: 1CF: 2

Source Code

Dense NN

Predicted Optimization

Source Rewriter

Batch Normalization

LSTM

La
ng

ua
g

e
M

o
d

el
H

eu
ri

st
ic

M

o
d

el

…

AMD HD 5900
AMD Tahiti 7970
NVIDIA GTX 480

NVIDIA Tesla K20c

AMD HD 5900
AMD Tahiti 7970
NVIDIA GTX 480

NVIDIA Tesla K20c

AMD HD 5900 AMD Tahiti 7970 NVIDIA GTX 480 NVIDIA Tesla K20c

Encoded sequence (first 80 tokens)

Outputs of Language Models

Heuristic Models

Learned embeddings (PCA projections)

Sequence Encoder

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 9: Visualizing the internal state of DeepTune when predicting coarsening factor for Parboil’s mriQ benchmark on four different
architectures. The activations in each layer of the four models increasingly diverge the lower down the network.

related tokens together. As such, they may differ between

the four platforms. Figure 9d shows a PCA projection of the

embedding space for one of the platforms, showing multiple

clusters of tokens. By honing in on one of the clusters

and annotating each point with its corresponding token,

we see that the cluster contains the semantically related

OpenCL address space modifiers __private, __global,

and __read_only.
Two layers of 64 LSTM neurons model the sequence of

embeddings, with the neuron activations of the second layer

being used to characterize the entire sequence. Figure 9e

shows the neurons in this layer for each of the four plat-

forms, using a red-blue heatmap to visualize the intensity of

each activation. Comparing the activations between the four

platforms, we note a number of neurons in the layer with

different responses across platforms. This indicates that the

language model is partly specialized to the target platform.
As information flows through the network, the layers be-

come progressively more specialized to the specific platform.

We see this in Figure 9f, which shows the two layers of the

heuristic model. The activations within these increasingly

diverge. The mean variance of activations across platforms

increases threefold compared to the language model, from

0.039 to 0.107. Even the activations of the AMD HD 5900

and AMD Tahiti 7970 platforms are dissimilar, despite the

final predicted coarsening factor for both platforms being

the same. In Figure 9g we take the largest activation of the

output layer as the final predicted coarsening factor. For this

particular program, a state-of- the-art model achieves 54%

of the maximum performance. DeepTune achieves 99%.

V. RELATED WORK

Machine learning has emerged as a viable means in auto-

matically constructing heuristics for code optimization [38–

43]. Its great advantage is that it can adapt to changing

hardware platforms as it has no a priori assumptions about

their behavior. The success of machine learning based code

optimization has required having a set of high-quality fea-

tures that can capture the important characteristics of the

target program. Given that there is an infinite number of

these potential features, finding the right set of features is a

non-trivial, time-consuming task.

Various forms of program features have been used in

compiler-based machine learning. These include static code

228

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

structures [44] and runtime information such as system

load [45] and performance counters [46]. In compiler re-

search, the feature sets used for predictive models are often

provided without explanation and rarely is the quality of

those features evaluated. More commonly, an initial large,

high dimensional candidate feature space is pruned via fea-

ture selection [3, 47], or projected into a lower dimensional

space [48, 49]. FEAST employs a range of existing feature

selection methods to select useful candidate features [50].

Unlike these approaches, DeepTune extracts features and

reduces the dimensionality of the feature space completely

internally and without expert guidance.

Park et al. present a unique graph-based approach for

feature representations [51]. They use a Support Vector

Machine where the kernel is based on a graph similarity

metric. Their technique still requires hand coded features

at the basic block level, but thereafter, graph similarity

against each of the training programs takes the place of

global features. Being a kernel method, it requires that

training data graphs be shipped with the compiler, which

may not scale as the size of the training data grows with the

number of instances, and some training programs may be

very large. Finally, their graph matching metric is expensive,

requiring O(n3) to compare against each training example.

By contrast, our method does not need any hand built

static code features, and the deployment memory footprint

is constant and prediction time is linear in the length of the

program, regardless of the size of the training set.

A few methods have been proposed to automatically gen-

erate features from the compiler’s intermediate representa-

tion [9, 10]. These approaches closely tie the implementation

of the predictive model to the compiler IR, which means

changes to the IR will require modifications to the model.

The work of [10] uses genetic programming to search for

features, and required a huge grammar to be written, some

160kB in length. Although much of this can be created

from templates, selecting the right range of capabilities

and search space bias is non trivial and up to the expert.

The work of [9] expresses the space of features via logic

programming over relations that represent information from

the IRs. It greedily searches for expressions that represent

good features. However, their approach relies on expert

selected relations, combinators and constraints to work. For

both approaches, the search time may be significant.

Cavazos et al. present a reaction-based predictive model

for software- hardware co-design [52]. Their approach pro-

files the target program using several carefully selected

compiler options to see how program runtime changes under

these options for a given micro-architecture setting. They

then use the program “reactions” to predict the best available

application speedup. While their approach does not use static

code features, developers must carefully select a few settings

from a large number of candidate options for profiling,

because poorly chosen options can significantly affect the

quality of the model. Moreover, the program must be run

several times before optimization, while our technique does

not require the program to be profiled.

In recent years, machine learning techniques have been

employed to model and learn from program source code on

various tasks. These include mining coding conventions [15]

and idioms [14], API example code [53] and pseudo-code

generation [54], and benchmark generation [8]. Our work is

the first attempt to extend the already challenging task of

modeling distributions over source code to learning distri-

butions over source code with respect to code optimizations.

Recently, deep neural networks have been shown to be a

powerful tool for feature engineering in various tasks includ-

ing image recognition [11, 12] and audio processing [13]. No

work so far has applied deep neural networks for program

feature generation. Our work is the first to do so.

VI. CONCLUSIONS

Applying machine learning to compiler and runtime op-

timizations requires generating features first. This is a time

consuming process, it needs supervision by an expert, and

even then we cannot be sure that the selected features are

optimal. In this paper we present a novel tool for building

optimization heuristics, DeepTune, which forgoes feature

extraction entirely, relying on powerful language modeling

techniques to automatically build effective representations of

programs directly from raw source code. The result trans-

lates into a huge reduction in development effort, improved

heuristic performance, and more simple model designs.

Our approach is fully automated. Using DeepTune, de-

velopers no longer need to spend months using statistical

methods and profile counters to select program features via

trial and error. It is worth mentioning that we do not tailor

our model design or parameters for the optimization task at

hand, yet we achieve performance on par with and in most

cases exceeding state-of-the-art predictive models.

We used DeepTune to automatically construct heuristics

for two challenging compiler and runtime optimization

problems, find that, in both cases, we outperform state-of-

the-art predictive models by 14% and 12%. We have also

shown that the DeepTune architecture allows us to exploit

information learned from another optimization problem to

give the learning a boost. Doing so provides up to a 16%

performance improvement when training using a handful of

programs. We suspect this approach will be useful in other

domains for which training data are a scarce resource.

In future work, we will extend our heuristic construction

approach by automatically learning dynamic features over

raw data; apply unsupervised learning techniques [56] over

unlabeled source code to further improve learned represen-

tations of programs; and deploy trained DeepTune heuristic

models to low power embedded systems using quantization

and compression of neural networks [57].

229

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This work was supported by the UK Engineer-

ing and Physical Sciences Research Council under

grants EP/L01503X/1 (CDT in Pervasive Parallelism),

EP/M01567X/1 (SANDeRs), EP/M015793/1 (DIVIDEND),

and EP/P003915/1 (SUMMER). The code and data for this

paper are available at: https://chriscummins.cc/pact17.

REFERENCES

[1] P. Micolet, A. Smith, and C. Dubach. “A Machine Learning
Approach to Mapping Streaming Workloads to Dynamic
Multicore Processors.” In: LCTES. ACM, 2016.

[2] T. L. Falch and A. C. Elster. “Machine Learning Based
Auto-tuning for Enhanced OpenCL Performance Portabil-
ity.” In: IPDPSW. IEEE, 2015.

[3] M. Stephenson and S. Amarasinghe. “Predicting Unroll
Factors Using Supervised Classification.” In: CGO. IEEE,
2005.

[4] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams.
“Using Machine Learning to Focus Iterative Optimization.”
In: CGO. IEEE, 2006.

[5] C. Cummins, P. Petoumenos, M. Steuwer, and H. Leather.
“Autotuning OpenCL Workgroup Size for Stencil Patterns.”
In: ADAPT. 2016.

[6] D. Grewe, Z. Wang, and M. O’Boyle. “Portable Mapping
of Data Parallel Programs to OpenCL for Heterogeneous
Systems.” In: CGO. IEEE, 2013.

[7] A. Magni, C. Dubach, and M. O’Boyle. “Automatic Op-
timization of Thread-Coarsening for Graphics Processors.”
In: PACT. ACM, 2014.

[8] C. Cummins, P. Petoumenos, W. Zang, and H. Leather.
“Synthesizing Benchmarks for Predictive Modeling.” In:
CGO. IEEE, 2017.

[9] M. Namolaru, A. Cohen, G. Fursin, A. Zaks, and A. Freund.
“Practical Aggregation of Semantical Program Properties for
Machine Learning Based Optimization.” In: CASES. 2010.

[10] H. Leather, E. Bonilla, and M. O’Boyle. “Automatic Feature
Generation for Machine Learning Based Optimizing Com-
pilation.” In: TACO 11.1 (2014).

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks.”
In: NIPS. 2012.

[12] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual
Learning for Image Recognition.” In: CVPR. IEEE, 2016.

[13] H. Lee, Y. Largman, P. Pham, and A. Y. Ng. “Unsupervised
Feature Learning for Audio Classification using Convolu-
tional Deep Belief Networks.” In: NIPS. 2009.

[14] M. Allamanis and C. Sutton. “Mining Idioms from Source
Code.” In: FSE. ACM, 2014.

[15] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. “Learning
Natural Coding Conventions.” In: FSE. ACM, 2014.

[16] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. “How
Transferable are Features in Deep Neural Networks?” In:
NIPS. 2014.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. “TensorFlow: A system for large-scale machine
learning.” In: arXiv:1605.08695 (2016).

[18] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu,
O. Delalleau, G. Desjardins, D. Warde-Farley, I. Goodfel-
low, A. Bergeron, and Y. Bengio. “Theano: Deep Learning
on GPUs with Python.” In: BigLearning Workshop. 2011.

[19] M. Allamanis and C. Sutton. “Mining Source Code Reposi-
tories at Massive Scale using Language Modeling.” In: MSR.
2013.

[20] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Distributed
Representations of Words and Phrases and their Composi-
tionality.” In: NIPS. 2013.

[21] M. Baroni, G. Dinu, and G. Kruszewski. “Don’t Count,
Predict! A Systematic Comparison of Context-Counting vs
. Context-Predicting Semantic Vectors.” In: ACL. 2014.

[22] S. Hochreiter and J. Schmidhuber. “Long Short-Term Mem-
ory.” In: Neural Computation 9.8 (1997).

[23] R. Pacanu, T. Mikolov, and Y. Bengio. “On the Difficulties
of Training Recurrent Neural Networks.” In: ICML. 2013.

[24] Z. C. Lipton, J. Berkowitz, and C. Elkan. “A Critical Review
of Recurrent Neural Networks for Sequence Learning.” In:
arXiv:1506.00019 (2015).

[25] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U. O’Reilly,
and S. Amarasinghe. “Autotuning Algorithmic Choice for
Input Sensitivity.” In: PLDI. ACM, 2015.

[26] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate
Shift.” In: arXiv:1502.03167 (2015).

[27] V. Nair and G. E. Hinton. “Rectified Linear Units Improve
Restricted Boltzmann Machines.” In: ICML. 2010.

[28] D. P. Kingma and J. L. Ba. “Adam: a Method for Stochastic
Optimization.” In: ICLR (2015).

[29] J. Han, M. Kamber, and J. Pei. Data mining: concepts and
techniques. Elsevier, 2011.

[30] S. Seo, G. Jo, and J. Lee. “Performance Characterization
of the NAS Parallel Benchmarks in OpenCL.” In: IISWC.
IEEE, 2011.

[31] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S. H. Lee, and K. Skadron. “Rodinia: A Benchmark Suite for
Heterogeneous Computing.” In: IISWC. IEEE, Oct. 2009.

[32] J. A. Stratton, C. Rodrigues, I. Sung, N. Obeid, L. Chang,
N. Anssari, G. D. Liu, and W. W. Hwu. “Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput
Computing.” In: Center for Reliable and High-Performance
Computing (2012).

[33] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and
J. Cavazos. “Auto-tuning a High-Level Language Targeted
to GPU Codes.” In: InPar. 2012.

[34] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter. “The
Scalable HeterOgeneous Computing (SHOC) Benchmark
Suite.” In: GPGPU. ACM, 2010.

[35] A. Magni, C. Dubach, and M. O’Boyle. “A Large-Scale
Cross-Architecture Evaluation of Thread-Coarsening.” In:
SC. 2013.

[36] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. “A Performance
Analysis Framework for Identifying Potential Benefits in
GPGPU Applications.” In: PPoPP. ACM, 2012.

[37] M. D. Zeiler and R. Fergus. “Visualizing and Understanding
Convolutional Networks.” In: ECCV. 2014.

[38] Z. Wang and M. O’Boyle. “Partitioning Streaming Paral-
lelism for Multi-cores: A Machine Learning Based Ap-
proach.” In: PACT. ACM, 2010.

[39] S. Kulkarni and J. Cavazos. “Mitigating the Compiler Opti-
mization Phase-Ordering Problem using Machine Learning.”
In: OOPSLA. ACM, 2012.

230

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

[40] S. Muralidharan, A. Roy, M. Hall, M. Garland, and P. Rai.
“Architecture-Adaptive Code Variant Tuning.” In: ASPLOS.
ACM, 2016.

[41] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather.
“Minimizing the cost of iterative compilation with active
learning.” In: CGO (2017).

[42] J. Ren, L. Gao, and Z. Wang. “Optimise Web Browsing
on Heterogeneous Mobile Platforms: A Machine Learning
Based Approach.” In: INFOCOM. 2017.

[43] C. Cummins, P. Petoumenos, M. Steuwer, and H. Leather.
“Towards Collaborative Performance Tuning of Algorithmic
Skeletons.” In: HLPGPU. 2016.

[44] Y. Jiang, Z. Z. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen,
and Y. Gao. “Exploiting Statistical Correlations for Proactive
Prediction of Program Behaviors.” In: CGO (2010).

[45] Y. Wen, Z. Wang, and M. O’Boyle. “Smart Multi-Task
Scheduling for OpenCL Programs on CPU/GPU Heteroge-
neous Platforms.” In: HiPC. IEEE, 2014.

[46] C. Dubach, T. M. Jones, E. V. Bonilla, G. Fursin, and
M. O’Boyle. “Portable Compiler Optimisation Across Em-
bedded Programs and Microarchitectures using Machine
Learning.” In: MICRO. ACM, 2009.

[47] B. Taylor, V. S. Marco, and Z. Wang. “Adaptive Optimiza-
tion for OpenCL Programs on Embedded Heterogeneous
Systems.” In: LCTES. 2017.

[48] A. Collins, C. Fensch, H. Leather, and M. Cole. “MaSiF:
Machine Learning Guided Auto-tuning of Parallel Skele-
tons.” In: HiPC. IEEE, 2013.

[49] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle,
and O. Temam. “Fast Compiler Optimisation Evaluation

Using Code-Feature Based Performance Prediction.” In: CF.
ACM, 2007.

[50] P. Ting, C. Tu, P. Chen, Y. Lo, and S. Cheng. “FEAST: An
Automated Feature Selection Framework for Compilation
Tasks.” In: arXiv:1610.09543 (2016).

[51] E. Park, J. Cavazos, and M. A. Alvarez. “Using Graph-
Based Program Characterization for Predictive Modeling.”
In: CGO. IEEE, 2012.

[52] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. O’Boyle,
G. Fursin, and O. Temam. “Automatic Performance Model
Construction for the Fast Software Exploration of New
Hardware Designs.” In: CASES. 2006.

[53] X. Gu, H. Zhang, D. Zhang, and S. Kim. “Deep API
Learning.” In: FSE. ACM, 2016.

[54] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda,
and S. Nakamura. “Learning to Generate Pseudo-Code from
Source Code Using Statistical Machine Translation (T).” In:
ASE. IEEE, 2015.

[55] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning.” In:
Nature 521.7553 (2015).

[56] Q. V. Le, R. Monga, M. Devin, G. Corrado, K. Chen,
M. A. Ranzato, J. Dean, and A. Y. Ng. “Building High-
level Features Using Large Scale Unsupervised Learning.”
In: ICML. 2012.

[57] S. Han, H. Mao, and W. J. Dally. “Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding.” In: arXiv:1510.00149
(2015).

231

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

ARTIFACT DESCRIPTION

A. Abstract

Our research artifact consists of interactive Jupyter note-

books. The notebooks enable users to replicate all experi-

ments in the paper, evaluate results, and plot figures.

B. Description

1) Check-list (Artifact Meta Information):
• Run-time environment: Ubuntu Linux and a web browser.
• Hardware: Users with an NVIDIA GPU may enable CUDA

support to speed up computation of experiments.
• Output: Trained neural networks, predictive model evalua-

tions, figures and tables from the paper.
• Experiment workflow: Install and run Jupyter notebook

server; interact with and observe results in web browser.
• Experiment customization: Edit code and parameters in

Jupyter notebooks.
• Publicly available?: Yes, code and data. See:

https://chriscummins.cc/pact17/

2) How Delivered: A publicly available git repository

containing Jupyter notebooks and experimental data.

C. Installation

See https://chriscummins.cc/pact17/ for instructions. The

code directory contains the Jupyter notebooks. Following

the build instructions described in code/README.md, the

full installation process is:

$./bootstrap.sh | bash
$./configure
$ make

D. Experiment Workflow

1) Launch the Jupyter server using the command:

make run.

2) In a web browser, navigate to:

http://localhost:8000.

3) Select a Jupyter notebook to open it.

4) Repeatedly press the play button (tooltip is “run cell,

select below”) to step through each cell of the note-

book.

OR select “Kernel” > “Restart & Run All” from the

menu to run all of the cells in order.

E. Evaluation and Expected Result

Code cells within Jupyter notebooks display their output

inline, and may be compared against the values in the paper.

Expected results are described in text cells.

F. Experiment Customization

The experiments are fully customizable. The Jupyter note-

book can be edited “on the fly”. Simply type your changes

into the cells and re-run them.

Note that some of the code cells depend on the values of

prior cells, so must be executed in sequence. Select “Kernel”

> “Restart & Run All” from the menu to run all of the cells

in order.

G. Notes

For more information about DeepTune, visit:

https://chriscummins.cc/deeptune

For more information about Artifact Evaluation, visit:

http://cTuning.org/ae/submission-20170414.html

232

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:28:21 UTC from IEEE Xplore. Restrictions apply.

