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Abstract—Choosing the optimal order and combination of
compiler optimization passes - known as phase ordering - can
enhance the performance of compiled binaries. However, existing
approaches struggle to capture the subtle interaction between
compiler passes and waste time on low-profitable pass sequences.
We introduce CITROEN, a better approach for compiler phase
ordering. CITROEN leverages pass-related compilation statistics
to reject low-profitable compiler pass sequences to reduce the
overhead of phase ordering search. It employs Bayesian opti-
mization to navigate the search space, using compilation statistics
instead of traditional tuning parameters to build an online cost
model that provides both the performance prediction and the pre-
diction uncertainty of compilation configurations. It dynamically
allocates search iterations across source files to optimize search
time in multi-file programs. We evaluate CITROEN by integrating
it with the LLVM compiler and applying it to benchmarks from
cBench and SPEC CPU 2017. CITROEN outperforms existing
autotuning methods, discovering high-performing configurations
quicker with fewer search iterations.

Index Terms—compiler optimization, phase ordering, Bayesian
optimation, compilation statistics

I. INTRODUCTION

Compilers play a key role in the performance and energy
optimization of computer systems. Modern compilers like
LLVM [1] and GCC [2] offer a rich set of optimization
passes [3], where a pass implements some specific code analy-
sis and transformation techniques like loop unrolling, instruc-
tion scheduling and register allocation. By default, compilers
provide settings such as -O3 for performance optimization and
-Oz for code size reduction, which apply a bundle of passes
like loop unrolling and vectorization in a fixed order. However,
studies have shown that the optimal choice and ordering
of passes can vary greatly across programs [4]. Carefully
selecting and ordering compiler passes - a problem known
as phase ordering - can significantly improve the application
performance [5]. Phase ordering is particularly useful for
frequently executed programs, as even a small improvement
in the running time can be beneficial in the long run.

A significant challenge in phase ordering is the vast op-
timization space. For example, LLVM 17 offers over 100
transformation passes, leading to an extremely large number
of possible ways for applying these passes - combinations that
would take many machine years to explore exhaustively. Al-
though certain sequences might significantly outperform com-
piler default settings, these pass sequences can be sparse [6],
making them hard to find in such a large space.

Search-based autotuning is widely used for phase order-
ing [3], [5], [7]–[15]. Unlike predictive modeling [16]–[26],
which can only be applied to a limited number of compiler

passes or parameters due to the difficulty in collecting suffi-
cient training samples, search-based methods can be applied
to arbitrary compiler pass sequences. However, while this
flexibility can be advantageous, finding the optimal compiler
pass sequence through search can be prohibitively expensive.

Our work aims to improve the efficiency of search-based
autotuning methods for phase ordering. A key drawback of
existing search-based approaches for compiler phase ordering
is their difficulty in capturing the complex interactions between
compiler passes and the order in which they are applied.
Identifying which passes positively impact performance during
the search allows the algorithm to focus on compiler pass
sequences that are more likely to be beneficial. Similarly,
recognizing passes that degrade performance - by, for instance,
blocking useful compiler optimization - helps prevent the
algorithm from wasting time on measuring sequences that offer
low-performance gain. Unfortunately, modeling the impact of
a compiler pass is challenging, as its effect depends on the
input program, its interactions with other passes, and their
execution order. For example, loop unrolling can affect the
efficiency of register allocation and instruction scheduling.

Furthermore, when optimizing programs with multiple
source files (referred to as modules in this work), we aim
to apply module-specific pass sequences rather than relying
on a ‘one-size-fits-all’ pass setting for all files. Achieving
this requires an adaptive, dynamic strategy for allocating the
search budget (i.e., the number of runtime measurements in
this work) across different modules, ensuring the search time
is used efficiently to maximize the overall performance gains
within the available budget.

We present CITROEN1, a better search-based autotuning
method for compiler phase ordering. Our key insight is that
pass-related compilation statistics, collected during the exe-
cution of compiler passes, can offer valuable information to
model pass interactions and guide the search process. For
instance, LLVM’s loop-vectorize pass reports how many loops
have been vectorized. If we observe a strong positive correla-
tion between the number of vectorized loops and improved
performance, we can infer that loop vectorization is likely
to benefit the input program. In such cases, if changing the
compiler pass sequences leads to a reduction in the number
of vectorized loops, it suggests that this pass sequence may
negatively affect performance. This avoids profiling the binary
generated by this pass sequence, thus saving search time.

1Code and data of this work are available at: https://github.com/
gloaming2dawn/LLVMTuner

https://github.com/gloaming2dawn/LLVMTuner
https://github.com/gloaming2dawn/LLVMTuner


CITROEN is designed to leverage compilation statistics
provided by modern compiler infrastructures to acceler-
ate phase ordering autotuning by avoiding the profiling of
pass sequences that offer no performance gain. This is
achieved through a customized Bayesian optimization (BO)
method [27], which builds an online probabilistic cost model
(known as the surrogate model) to evaluate compiler pass
sequences. Our cost model takes as input a feature vector con-
sisting of compilation statistics and predicts both the runtime
performance and the prediction uncertainty. The cost model is
dynamically and constantly updated during the search process
using new profiling data so that it becomes more accurate as
the search progresses.

CITROEN uses an acquisition function to avoid profiling
sequences likely to result in poor performance while prior-
itizing uncertain regions for exploration. For multi-module
programs, it trains a global cost model by concatenating
compilation statistics from individual source files, allowing
dynamic allocation of the search budget to modules with the
highest performance potential.

A key distinction between CITROEN and previous BO
approaches in compiler optimization [28]–[31] lies in the way
the cost model is constructed. In prior works, the standard BO
process is employed, using raw tuning parameters as inputs
to fit the cost model. These parameters, such as the number
of OpenMP threads [29], enabling or disabling a compiler
flag [28], loop tile sizes [30], and loop unroll factors [31],
have a direct and often predictable impact on performance.
However, in the compiler phase-ordering problem, interac-
tions between passes introduce a significantly higher level of
complexity, making it much more challenging to anticipate
performance gains based on the sequence of passes. CITROEN
mitigates the issue using compilation statistics as a proxy to
capture the compiler pass interactions.

We evaluate CITROEN by applying it to optimize the
phase ordering of the LLVM compiler. We test the resulting
compilation system on the cBench [32] and SPEC CPU 2017
[33] benchmark suites on ARM and AMD x86 CPUs. Com-
pared to state-of-the-art evolutionary and BO-based autotuning
methods, CITROEN achieves similar results with only one-
third of the search budget. It proves especially effective with
a constrained search budget - with a budget of 100 runtime
measurements, it delivers up to a 17% improvement over
random search and up to 10% over the strongest baseline.

This paper makes the following two contributions:
• It introduces the first autotuning approach that leverages

pass-related compilation statistics for compiler phase
ordering (Sec. III);

• It proposes an adaptive BO scheme to dynamically allo-
cate the search budget across multiple source files within
a program (Sec. III-B).

II. BACKGROUND AND MOTIVATION

A. Program Scope

As depicted in Figure 1, CITROEN finds a compiler pass
sequence for a given optimization goal. In this work, we focus
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Figure 1: The CITROEN compiler flow for applying cus-
tomized pass sequences.

result += w[0]*d[0];
result += w[1]*d[1];
result += w[2]*d[2];
...
result += w[7]*d[7];

(a) Original code

v1 = w[0:3]*d[0:3]+w[4:7]*d[4:7];
v2 = v1[0:1] + v1[2:3];
result += v2[0] + v2[1];

(b) Pseudocode of successful vectoriza-
tion after applying the ‘mem2reg,slp-
vectorizer’ sequence to the original code.

w0=w[0];d0=d[0];
- sext i16 w0 d0 to i32; //sign extension from i16 to i32
+ sext i16 w0 d0 to i64; //sign extension from i16 to i64
tmp = w0 * d0;

- sext i32 tmp to i64; //sign extension from i32 to i64
result += tmp;

...

(c) The difference by applying instcombine after mem2reg.

Figure 2: An example from telecom_gsm in cBench show-
ing how the phase order matters. Applying the ‘mem2reg,slp-
vectorizer’ pass sequence leads to successful vectorization,
whereas ‘mem2reg,instcombine,slp-vectorizer’ fails.

on minimizing execution time; however, CITROEN can also
be applied to optimize other objectives, such as energy con-
sumption. CITROEN supports programs with multiple source
files (e.g., C programs with ‘.c’ files), treating each file as an
independent optimization unit, referred to as a module. Unlike
previous approaches [3], [5], [7]–[13], [15], CITROEN allows
different pass sequences for different modules, thereby ex-
panding the search space and improving overall performance.

The CITROEN pipeline works as follows: it first uses the
compiler front-end (e.g., LLVM clang) to compile each mod-
ule into unoptimized intermediate representations (IRs). Next,
different compiler pass sequences are applied to these IRs
to generate optimized versions. The optimized IRs are then
compiled to assembly code using the LLVM static compiler
before being linked to the executable binary. In this work,
a pass can be applied multiple times within a single pass
sequence to optimize an individual source file, and our current
implementation uses the default compiler parameters for each
pass. In this work, we consider 76 LLVM transformation
passes and a maximum compiler sequence of 120 passes; by
comparison, the transformation sequence length of ‘-O3’ is 99.

B. Motivation

As a motivating example, consider phase ordering in
LLVM (v17.0) to optimize telecom_gsm from the cBench
suite [32] on an ARM Cortex-A57 CPU (Jetson TX2). In
this benchmark, the long_term module (long_term.c)
accounts for over 50% of execution time and is the target for
optimization.



Table I: Applying different pass sequences to the long_term module in the telecom_gsm benchmark. By examining the
relationship between pass-related compilation statistics and speedup (over -O3) from the first three samples, we can predict
the fifth sample is more likely to be more profitable than the fourth sample.

No. Pass Sequence Pass-related Compilation Statistics Speedup
SLP.NumVectorInstructions mem2reg.NumPHIInsert mem2reg.NumPromoted mem2reg.NumSingleStore instcombine.NumCombined

1 mem2reg slp-vectorizer 14 21 43 29 0 1.13×
2 slp-vectorizer mem2reg 0 21 43 29 0 0.85×
3 inst-combine mem2reg slp-vectorizer 0 18 41 29 271 0.85×
4 mem2reg inst-combine slp-vectorizer 0 21 43 29 244 0.86×
5 mem2reg slp-vectorizer instcombine 14 21 43 29 164 1.14×

Figure 2a shows a hot code snippet computing a dot product,
which benefits from superword-level parallelism (SLP) vec-
torization. Applying mem2reg followed by slp-vectorizer en-
ables successful vectorization (Figure 2b). However, inserting
instcombine between them (i.e., ‘mem2reg, instcombine, slp-
vectorizer’) prevents vectorization due to profitability analysis.
This is because instcombine optimizes greedily without con-
sidering the later vectorization opportunity. Specifically, as can
be seen from Figure 2c, instcombine reduces sign extension
operations by converting an i16 to the i64 sign extension, but
the resulting i64 instructions and data types are considered to
be not profitable for applying vectorized horizontal reduction.
Consequently, the LLVM vectorizer skips vectorization on this
code, leading to a performance slowdown compared to “-O3”.
If we can capture the interactions and the impact between
compiler passes, we can then speed up phase ordering by
avoiding profiling compiler sequences that are likely to offer
no performance gain. We observe that pass-related compilation
statistics can help us to capture the relationship between pass
sequences and the performance.

Table I lists the LLVM compilation statistics for five dif-
ferent pass sequences, along with their runtime performance,
using the -O3 compiliation level as a baseline. These statistics
can be gathered using the ‘-stats -stats-json’ flags
of LLVM ‘opt’ tool. Assume that the execution times for the
first three pass sequences have already been obtained through
profiling. The search algorithm must now assess whether the
4th and 5th pass sequences will likely be profitable and
warrant further profiling. By effectively modelling compilation
statistics, we may be able to identify performance improve-
ments. In this example, the SLP.NumVectorInstructions metric
is positively correlated with performance gains. Since the
compilation statistics for the 5th pass sequence show a similar
SLP.NumVectorInstructions value to that of the first sequence,
which achieved a 1.13× speedup; this suggests that the 5th
sequence is also likely to improve performance.

This example shows that pass-related compilation statistics
can provide valuable insights, avoiding unnecessary profiling
measurements to save search time. This motivates the design
of a new search algorithm to leverage compilation statistics
for phase ordering. By parallelizing the compilation process to
collect statistics, we can identify the most promising binaries
for isolated runtime measurements, thereby reducing profiling
overhead - a major bottleneck in compiler autotuning.

How to correlate compilation statistics with performance
to model the interactions of compiler passes? To this end, we
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Figure 3: Overview of the CITROEN framework.

find ways to map compilation statistics to performance and use
the mapping model as a utility function to guide the search.
Since this correlation depends on the input program, we
iteratively refine the model during autotuning as more profiling
data becomes available. For multi-module programs, effective
budget allocation across modules is crucial for maximizing
performance. CITROEN addresses these challenges using BO
as a search technique, detailed in the next subsection.

C. Bayesian Optimization

Our work leverages BO as it provides a principled ap-
proach to balancing exploration and exploitation [27]. In our
context, exploitation profiles pass sequences expected to im-
prove performance, while exploration prioritizes less-explored
sequences based on compilation statistics. This balance is
essential, as the online cost model is not always accurate.

BO balances exploration and exploitation by measuring the
uncertainty of the model predictions. We follow the common
practice of BO using a Gaussian process (GP) [34] to build
our cost model to predict the potential speedup of a pass
sequence. The GP model not only estimates the performance
gain but also quantifies the uncertainty of its estimation.
An acquisition function is then used to evaluate the trade-
off between exploration and exploitation. Commonly used
acquisition functions include Expected Improvement (EI) [35]
and Upper Confidence Bound (UCB) [36]. However, these
acquisition functions are designed for standard BO, which
directly models the relationship between input parameters
(e.g., pass sequences) and output. CITROEN instead converts
the compilation statistics into a numerical feature vector to be
used by the cost model (Sec. III-C), requiring a customized
acquisition function (Sec. III-D).

III. OUR APPROACH

A. Overview

Figure 3 depicts the workflow of CITROEN. At the core of
CITROEN is a BO search component based on compilation
statistics (Sec. III-B), which will interact with a user-defined



Training 
set

Surrogate 
model

Bayesian Optimization

Update

Recom
m
end

Train Acquisition 
function

Candidate 
Generator

A set of 
Candidate 

Configurations

The query 
configuration

Task	
Function

Figure 4: CITROEN’s Bayesian optimization workflow.

task function (Sec. III-F) that defines how to compile and
measure the generated binary. CITROEN focuses on tuning
“hot” modules whose accumulated execution time contributes
to at least 90% of the overall program execution time. As a
one-off profiling stage, CITROEN identifies hot modules by
using the Linux perf tool to profile the program compiled
with the standard “-O3” compilation flag. During profiling,
we measure the runtime of individual functions, excluding
external calls, and then aggregate the execution times of
functions within each source file to determine the hot modules.
These identified hot modules are iteratively compiled with
different pass sequences, while the remaining modules are
compiled using -O3.

B. Bayesian Optimization for Compiler Tuning

Figure 4 outlines the workflow of CITROEN’s BO compo-
nent. We enhance standard BO with an online-trained cost
model based on pass-related compilation statistics (Sec. III-C),
an acquisition function for navigating the non-uniform, sparse
feature space (Sec. III-D), and a GA-based pass sequence gen-
erator (Sec. III-E). Instead of running separate BO processes
for each source file, CITROEN fits a global cost model to
estimate the impact of individual module changes on overall
program performance, dynamically determining which module
to optimize while keeping others fixed.

In each iteration, CITROEN first learns a cost (or surro-
gate) model that maps the compilation statistics of all hot
modules to performance metrics (e.g., speedup over -O3). It
then constructs an acquisition function to balance exploitation
(prediction) and exploration (uncertainty). It also integrates a
candidate generator to produce pass sequences, which are then
compiled in parallel to collect their statistics.

As shown in Figure 5, for m modules, CITROEN generates
q candidate pass sequences per module (while fixing the pass
sequence for other modules), resulting in m ∗ q candidate
configurations. Our customized acquisition function selects the
highest-value configuration to profile to obtain the execution
time, which is then used to update both the cost model and the
candidate generator. For a single hot module, the acquisition
function evaluates pass sequences within that module. It de-
cides which module to optimize next for multiple hot modules,
allowing dynamic switching to maximize performance gains.
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Figure 5: CITROEN’s candidate configuration generator.

C. Surrogate Model for Performance Estimation

The cost (or surrogate) model of CITROEN is a utility func-
tion to approximate the optimization objective (i.e., speedup
over -O3 in this work). Prior work in BO-based compiler
tuning [28], [31] uses the raw tuning parameters (e.g., compiler
passes) as the cost model’s input to predict the speedup or
execution time. We take a different approach by using pass-
related compilation statistics as the cost model’s input.

Train and use the cost model following the standard 3-step
of supervised learning: (1) feature extraction, (2) training and
(3) inference, described as follows.

1) Feature extraction: Our cost model represents compila-
tion statistics as a numerical feature vector. These statistics
are collected by enabling the -stats -stats-json flags
in LLVM’s opt tool when customizing pass sequences for
a given module. After filtering out non-optimization-related
statistics (e.g., analysis pass statistics), up to 255 statistics
remain, though typically fewer than 30, depending on the pass
sequence and input program. We normalize the integer value of
each statistic category to a range between 0 and 1 by dividing
by its maximum observed value, forming a 255-dimensional
feature vector, where most values are zero due to inactive
passes. For programs with multiple hot modules, feature
vectors are concatenated to represent the entire program.

2) Model architecture and training: CITROEN use the
Gaussian process with the Matérn-5/2 kernel to build the
cost model because it is proven to be effective in prior BO
applications [31], [34]. The kernel function (describes the
similarity between two inputs) of this model is defined by:

k(x, x′) =
(
1 +

√
5d+ 5d2

)
e−

√
5d (1)

d =

√√√√ D∑
i=1

(xi − x′
i)

2

l2i
(2)

where d denotes the weighted Euclidean distance between
two input feature vectors x and x′. Here lengthscales li are
hyperparameters that reflect the impact of each feature dimen-
sion on performance, which will be learned by minimizing the
negative log marginal likelihood loss function [37]. Initially,



Table II: Applying 2,000 random pass sequences to different
programs in cBench to observe whether randomly selected
initial training sets can cover the feature space.

Initial training set size 20 50 100

Unexplored feature count (range) 2 ∼ 35 1 ∼ 22 1 ∼ 19

CITROEN randomly generates n pass sequences, collecting
their compilation statistics and evaluating the corresponding
speedup over -O3 to construct the initial training set. In each
subsequent iteration, CITROEN will add the new evaluated
sample to the training set to update the model.

3) Inference: Given a pass configuration c, we obtain its
feature vector x = φ(c) by applying the pass sequence to the
input program and collecting normalized compilation statistics.
Note that we do not execute the generated binary at this step;
instead, we pass the feature vector to the GP to estimate the
speedup (over −O3) with mean µ(x) and variance σ2(x):

µ(x) = K(X, x)TK(X,X)−1y (3)

σ2(x) = k(x, x)−K(X, x)TK(X,X)−1K(X, x) (4)

where X and y are training inputs and speedup labels, respec-
tively. The kernel matrix K(X,X) has entries K(X,X)i,j =
k(xi, xj), and K(X, x) contains kernel values between training
points and the test point, K(X, x)i = k(xi, x). The mean and
variance are given to an acquisition function to select the next
compilation configuration for profiling based on the predicted
gain (i.e., speedup) and uncertainty (variance).

D. Acquisition Function Design
One of the challenges that CITROEN faces is to fit the cost

model in a sparse, non-uniform feature space, where many
statistic categories contain zeros for a given pass sequence,
leading to coverage issues in the initial training set. Unlike
standard BO, which benefits from uniform input space cov-
erage, CITROEN cannot directly sample in the feature space.
As a result, generated candidates may include unseen non-
zero statistic categories. To illustrate this point, we applied
2,000 random pass sequences to cBench programs, selecting
20, 50, and 100 sequences per module for the initial training
set for training the cost model. As shown in Table II, the
training set fails to cover all statistic categories, limiting the
cost model’s ability to predict configurations with unexplored
features. To address this, the acquisition function should
prioritize configurations with such features when determining
exploration and exploitation.

Our acquisition function selects the next compilation con-
figuration, aiming to balance the trade-off between exploiting
high predicted values µ(x) and exploring regions with high
uncertainty σ(x). Standard BO often employs expected im-
provement (EI) [35] as the acquisition function:

EI(x) = E
[
max(f∗ − y, 0) | y ∼ N (µ(x), σ2(x))

]
(5)

where f∗ is the best function value observed so far.
However, standard BO acquisition functions do not ade-

quately address the coverage issue in CITROEN. While EI

encourages exploration in uncertain regions, it does not ac-
count for the presence of unexplored features, leading to unre-
liable uncertainty estimates. As shown in Sec. V-B, applying
standard EI in CITROEN results in suboptimal performance.
To mitigate this, we design a customized acquisition function
α(x) for compiler phase ordering, based on EI:

α(x) =

{
EI(x) + 108, if OOD
EI(x), otherwise

(6)

where out-of-distribution (OOD) refers to candidate points x
containing a non-zero feature (compilation statistic) unseen
from the training set. To promote the exploration of configura-
tions with unseen features, we add a large constant (108) to the
EI function for OOD candidates, prioritizing their selection.

E. Pass Sequence Generator

Due to the large number of possible pass sequences, it is
impossible to evaluate the acquisition function values of all
sequences. Like previous high-dimensional BO [38] CITROEN
employs a GA sampling strategy to generate candidate samples
in a large search space. Specifically, CITROEN maintains 20
top-performing pass sequences for each module as the GA
population and applies mutation and crossover operations to
this population to generate candidate offspring sequences.
More sophisticated pass sequence generators are orthogonal
to our work and can be easily integrated with our framework.
Mutation. Our mutation strategy randomly replaces a certain
percentage of passes in a parent pass sequence in the pop-
ulation. Specifically, it applies random replacements to 10%,
20%, 50%, and 100% of the passes in the sequence, with each
proportion having an equal probability.
Crossover. We implement a one-point crossover by selecting
a single crossover point in each parent pass sequence and
swapping the segments beyond that point to generate new
sequences.

F. Autotuning Task Definition

For phase order autotuning, users are traditionally required
to define a task function that compiles a program with a given
configuration and measures the performance of the resulting
binary. Since compilers like LLVM do not support direct phase
order specification per module, prior autotuning frameworks
[3], [14], [31] require users to manually re-implement the
compilation process for different pass sequences. This process
incurs significant engineering effort, particularly for programs
with multiple source files.

CITROEN automates this process, eliminating the need for
manual re-implementation. As shown in Figure 6, CITROEN
leverages the program’s existing build script (e.g., a make-
file) and provides a compiler driver (clangopt at line 10) to
orchestrate compilation. In the example given in Figure 6,
clangopt becomes the C compiler (i.e., CC=clangopt). It
reads the compilation configuration from a JSON file before
invoking the target compiler (e.g., clang) to compile the
target file. Running the build script with clangopt automates



1 import citroen
2 from citroen.function_wrap import Function_wrap
3 from citroen.utils import gen_hotfiles
4 from citroen.BO.BO import BO
5 from fabric import Connection
6
7 # Define the task function
8 fun = Function_wrap(
9 # Explicitly declare the compiler as clangopt

10 build_cmd='make CC=clangopt',
11 build_dir='Example',
12 # User-defined run and evaluation command
13 run_and_eval_cmd='./run_eval.sh',
14 binary_name='a.out',
15 remote_run_dir='home/usr/RemoteExample',
16 ssh_connection=Connection(host="xxx.xxx.xxx")
17 )
18
19 # Automatically recognize hotfiles
20 hotfiles = gen_hotfiles(fun)
21 fun.hotfiles = hotfiles
22
23 # Autotuning the phase order of the program
24 optimizer = BO(fun=fun, budget=1000)
25 best_cfg, best_cost = optimizer.minimize()

Figure 6: An example of using CITROEN for phase ordering.
Table III: LLVM optimization passes considered in evaluation

adce, aggressive-instcombine, alignment-from-assumptions, annota-
tion2metadata, argpromotion, bdce, called-value-propagation, callsite-
splitting, cg-profile, chr, constmerge, constraint-elimination, coro-cleanup,
coro-early, coro-elide, coro-split, correlated-propagation, deadargelim,
div-rem-pairs, dse, early-cse, elim-avail-extern, float2int, forceattrs,
function-attrs, globaldce, globalopt, gvn, indvars, inferattrs, inject-tli-
mappings, inline, instcombine, instsimplify, ipsccp, jump-threading,
libcalls-shrinkwrap, licm, loop-deletion, loop-distribute, loop-idiom,
loop-instsimplify, loop-load-elim, loop-rotate, loop-simplifycfg, loop-sink,
loop-unroll, loop-unroll-full, loop-vectorize, lower-constant-intrinsics, lower-
expect, mem2reg, memcpyopt, mldst-motion, move-auto-init, openmp-opt,
openmp-opt-cgscc, reassociate, rel-lookup-table-converter, rpo-function-
attrs, sccp, loop-unswitch, simplifycfg, slp-vectorizer, speculative-execution,
sroa, tailcallelim, vector-combine, break-crit-edges, loop-data-prefetch,
loop-fusion, loop-interchange, loop-unroll-and-jam, lowerinvoke, sink,
ee-instrument

multiple compilation commands, each using the specified
configurations. Additionally, CITROEN supports automatic hot
module detection (line 19) and remote execution (line 16),
further reducing the effort required for phase ordering.

IV. EXPERIMENTAL SETUP

A. Implementation

We implemented CITROEN in around 5K lines of Python
code. We use the GPyTorch [37] GP library to implement the
GP regression process as the cost model of BO.

B. Evaluation Platforms

Hardware platforms. We execute the search algorithm of
CITROEN on a multi-core server powered by two 20-core
Intel Xeon Gold 5218R CPUs. CITROEN then cross-compiles
binaries on the host machine and sends the compiled binaries
for execution and performance measurement on two platforms:
an ARM-based NVIDIA Jetson TX2 board with a 64-bit quad-
core ARM Cortex A57 running at 2.0 GHz and a multi-
core server with a 64-core AMD Ryzen Threadripper PRO
5995WX CPU clocked at 2.25 GHz. The benchmarks are run
as single-threaded programs on the CPU. The SPEC CPU 2017

Table IV: Benchmarks used in evaluation.
Suite ID Benchmark #hot modules

cBench [32]
(budget: 100/300/1000,
platform: ARM and x86)

C1 automotive bitcount 4
C2 automotive qsort1 2
C3 automotive susan c 1
C4 automotive susan e 1
C5 automotive susan s 1
C6 bzip2d 2
C7 bzip2e 3
C8 consumer jpeg c 6
C9 consumer jpeg d 4
C10 consumer lame 8
C11 consumer tiff2bw 3
C12 consumer tiff2rgba 3
C13 consumer tiffdither 3
C14 consumer tiffmedian 1
C15 network dijkstra 1
C16 network patricia 1
C17 office stringsearch1 1
C18 security blowfish d 2
C19 security blowfish e 2
C20 security rijndael d 1
C21 security rijndael e 1
C22 security sha 1
C23 telecom CRC32 1
C24 telecom adpcm c 1
C25 telecom adpcm d 1
C26 telecom gsm 5

SPEC CPU 2017 [33]
(budget: 100/300,
platform: x86)

S1 500.perlbench r 6
S2 502.gcc r 7
S3 505.mcf r 3
S4 508.namd r 2
S5 510.parest r 6
S6 511.povray r 9
S7 519.lbm r 1
S8 520.omnetpp r 9
S9 523.xalancbmk r 9
S10 525.x264 r 6
S11 526.blender r 3
S12 531.deepsjeng r 9
S13 538.imagick r 1
S14 541.leela r 4
S15 544.nab r 2
S16 557.xz r 5

benchmarks are evaluated solely on the x86 platform due to
their long execution time on the Jetson TX2 board.
Compiler. We apply CITROEN to LLVM version 17.0.6. Our
evaluation considers 76 LLVM passes listed in Table III and
a maximum compiler sequence of 120 passes.

C. Benchmarks

Table IV lists the benchmarks used in the experiments, in-
cluding 26 programs from cBench [32] and 16 programs from
SPEC CPU 2017 [33]. We only consider C/C++ programs that
can be successfully compiled by LLVM v17.

D. Competing Baselines

We compare CITROEN against five autotuning methods and
alternative feature extraction methods:
Random. While simple, random search is reported to be
effective in previous work [9], [39], [40].
OpenTuner. This compiler auto-tuning framework [14] im-
plements an ensemble of multiple evolutionary algorithms and
can dynamically adjust its use of different algorithms.
Nevergrad. This search library [41] supports multiple evolu-
tionary algorithms. It could adaptively select the most suit-
able algorithm according to the search problem setting. This
method has been reported to achieve the best performance in
the CompilerGym [3] phase-ordering environment.
BOCA. This closely related work uses BO for compiler flag
selection [28]. It uses the random forest as its cost (surrogate)



model. When applying it to phase ordering, we adapt it to use
one-hot encoding as the input to the random forest model.
BaCO. This is a BO framework for compilation optimization
[31]. It can handle different parameter types and thus can be
directly used for the compiler phase-ordering problem.
Feature extraction methods. CITROEN uses compilation
statistics as features to be given to the BO cost model to
predict potential speedup and uncertainty. In Sec. V-C, we
compare CITROEN against three feature extraction methods:
IR2vec [42], Autophase [43], and Programl [44].

E. Evaluation Methodology
Hyper-parameters of CITROEN. In our experiments, we set
the initial training samples for the cost model (n init) to
20 and the candidate pass sequences per iteration (q) to 500.
All candidate sequences are initially generated using the GA
sampling strategy described in Sec. III-E. After 1/4 of the
total search iterations, CITROEN generates 50 new sequences
per module, with the remaining q−50 selected randomly from
previously generated but unevaluated sequences, keeping com-
pilation overhead negligible compared to execution overhead.
Compiling multiple modules. To apply the competing base-
lines (Sec. IV-D) to optimize module-specific phase ordering
of programs with multiple source files, we use a one-by-one
strategy to sequentially auto-tune each module in descending
order of their execution times. We tune each module until
there is no noticeable performance improvement (more than
1% speedup) for τ consecutive search iterations before moving
to the next one. Here, τ is set to N budget/N modules/3.
We will repeat the process until the search budget is used up.
When re-tuning a module, we initialize the search algorithm
using the best-found sample from the search history. In this
way, these baselines will not waste too much time on source
files and will have little room for performance improvement.
Performance report. Following [45], [46], we set search
budgets of 100, 300, and 1000 iterations for cBench and 100
and 300 iterations for SPEC CPU 2017, with the latter capped
at 300 due to long execution times. In each iteration, we
execute the compiled binary multiple times until the relative
standard error of the mean execution time falls below 1%
(typically requiring 3–20 runs for cBench and 3 for SPEC).
The mean execution time is then used as feedback for the
search algorithm. When reporting the final performance, we re-
execute the best-found binary until the relative standard error
falls below 0.3% for greater accuracy. For each method, we
report the average performance by repeating the tuning process
five times per benchmark.

V. EXPERIMENTAL RESULTS

Our evaluation tries to answer the following questions:
RQ1: How does CITROEN compare with prior autotuning
approaches (Sec. V-A)?
RQ2: How do individual components of CITROEN contribute
to its overall performance (Sec. V-B)?
RQ3: How do CITROEN’s pass-related compilation statistics
compare with existing feature extraction methods (Sec. V-C)?
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Figure 7: Geometric mean performance on cBench and SPEC
CPU 2017 with different search iteration budgets.

A. Comparison with Baselines

Figure 7 shows the average performance of CITROEN and
the baselines with three different budgets on cBench and SPEC
CPU 2017. CITROEN clearly outperforms the baselines by
both achieving the same performance faster and achieving
better performance on a small budget (e.g., 100 iterations).
For cBench, with a small budget of 100 iterations, CITROEN
achieves 1.096× speedup over -O3 compared to other meth-
ods’ 1.067 × −1.083× speedup. With a moderate budget of
300 iterations, CITROEN attains a 1.11× speedup, which other
methods require 1000 iterations to match.

To evaluate how CITROEN generalizes across different
benchmarks, Figure 8 compares its performance against base-
lines on individual benchmarks. CITROEN achieves significant
improvements on several benchmarks, such as C1, C22, and
C26. These benchmarks benefit from specific transformations,
but the required compilation sequences are sparse in the search
space. For instance, in C1 (automotive_bitcount),
achieving more than 1.1× speedup requires optimizing the
hot module bitcnts using three loop transformations: loop-
unswitch, loop-unroll, and licm. However, all baselines strug-
gle to identify a pass sequence activating all three within
a budget of 100 profiling measurements. Furthermore, for
C22, we discovered the combination of early-cse, instcombine,
loop-rotate, and loop-fusion passes to successfully unlock
loop-level optimization. For S10, the key is to apply loop-
unroll before and after the instcombine pass to enhance the
instruction level parallelism. For S11, we improve vectoriza-
tion by identifying a sub-sequence that applies slp-vectorizer
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Figure 8: Evaluation on cBench and SPEC with different search iteration budgets.

after sroa and simplifycfg.
Another key observation is that for many benchmarks,

all methods achieve similar performance. These benchmarks
exhibit performance convergence under a small search budget
(100) and a larger budget (1000) due to dominance by easily
activated optimizations, such as mem2reg. This observation is
consistent with previous studies [9], [39], [40], which report
that random search is often sufficient in such cases.

B. Ablation Study

To assess how each component of CITROEN impacts per-
formance, we evaluate its variants on the ARM platform on

several cBench benchmarks. The “CITROEN (ours)” variant
uses all proposed techniques. “W/o compilation statistics” uses
original pass sequences instead of compilation statistics for the
cost model. “W/o AF customization” employs standard EI as
the acquisition function, ignoring coverage. “W/o task sched-
uler” sequentially auto-tunes each module instead of using
a global task scheduler. “W/o module-specific optimization”
applies a single pass sequence for all modules.

As shown in Figure 9, without utilizing compilation statis-
tics, “W/o compilation statistics”, performs much worse than
CITROEN in terms of both the final achieved performance
and search efficiency, indicating that pass-related compilation
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Figure 9: Ablation study on different benchmarks. The y-axis is the speedup relative to -O3. security_sha only owns one
hot module, thus “task scheduler” and “module specific optimization” are not applicable to such single-module cases.
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Figure 10: Impact of replacing compilation statistics with alternative feature extraction methods in CITROEN (using LLVM 10
as the compiler). The y-axis shows the speedup relative to -O3.
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Figure 11: Comparison of CITROEN and Autophase using LLVM 10 as the compiler. The y-axis is the speedup relative to -O3.

statistics are a key component of CITROEN. “W/o AF cus-
tomization” uses 1,000 search iterations to achieve only 1.04×
speedup in security_sha (C22) while CITROEN uses 100
iterations to achieve 1.16× speedup, showing that the coverage
issue could significantly harm performance performance in
some cases. For programs with multiple hot modules, “W/o
module specific optimization” performs the worst in terms of
the final achieved performance, revealing the effectiveness of
module-specific optimization. As depicted in “W/o task sched-
uler”, one-by-one autotuning could achieve module-specific
optimization to improve the final performance, but it requires
more search iterations. This demonstrates how a global model
could effectively act as a task scheduler to adaptively allocate
search budgets when autotuning programs with multiple hot
modules.

C. Alternative Feature Extraction Methods

Prior works in machine learning-based compiler optimiza-
tion developed a range of methods to extract features from
intermediate representations (IRs) to train offline supervised
or reinforcement learning models for predicting optimal com-
pilation configurations.

IR2vec [42], Autophase [43], and Programl [44] provides
three representative feature extraction techniques. IR2vec com-
bines representation learning with control flow information
to embed IRs in a continuous space. Autophase extracts
static features via analysis passes on IRs. Programl represents
programs as graphs to capture their semantics and employs

inst2vec [47] for continuous embeddings. Although these
methods are not tailored for search-based autotuning, their
feature extraction techniques could be integrated into our
approach to construct an online cost model and thus warrant
comparison.

Figure 10 evaluates our compilation statistic-based feature
extraction approach against alternative IR2vec, Autophase, and
Programl, on the Jetson TX2 ARM platform. Since Autophase
and Programl support only LLVM 10, we use LLVM 10 in
this experiment for a fair comparison. CITROEN, leveraging
pass-related compilation statistics, clearly outperforms these
methods. This is because alternative feature extractors struggle
to distinguish transformations introduced by different passes.
For example, the function-attrs pass can significantly impact
performance for programs like automotive_bitcount,
but IR2vec, Autophase, and Programl fail to capture its effects,
as function-attrs only change function attributes, which these
methods do not consider.

Furthermore, while IR2vec and Programl do not generate or
suggest compiler pass sequences and must be integrated with
a separate phase ordering method, Autophase provides both a
feature extraction mechanism and an end-to-end reinforcement
learning (RL)-based phase ordering solution. Thus, we also
compare CITROEN directly with Autophase as a complete
solution. We explored both offline and online approaches in
Autophase. First, we trained a proximal policy optimization
(PPO) model on 100 randomly generated programs from
Csmith [48], following the approach in Autophase. Then, we
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Figure 12: Hyperparameter Sensitivity Analysis of CITROEN. The y-axis is the speedup relative to -O3.

Table V: Top 5 impactful compilation statistics recognized by the CITROEN cost model on selected CBench benchmarks.
Performance degradation is measured after removing the relevant passes from the final pass sequence and comparing the
resulting performance against -O3 on the ARM platform.

bitcnts in automotive_bitcount sha in security_sha long_term in telecom_gsm

compilation statistics performance degradation
without related passes compilation statistics performance degradation

without related passes compilation statistics performance degradation
without related passes

loop-unroll.NumUnrolled -49% instcombine.NumCombined -27% mem2reg.NumPHIInsert -31%
inline.NumInlined -43% mem2reg.NumPHIInsert -21% SLP.NumVectorInstructions -19%
licm.NumHoisted -54% loop-rotate.NumRotated -26% instcombine.NumCombined -5%
mem2reg.NumPHIInsert -52% early-cse.NumCSE -16% loop-vectorize.LoopsVectorized -7%
loop-unswitch.NumBranches -22% loop-unroll.NumUnrolled -5% simplifycfg.NumSimpl -5%

used this model as the initial policy for further RL-based
search. Figure 11 reports the results, where CITROEN still
consistently outperforms Autophase.

D. Hyperparameter Sensitivity Analysis

CITROEN has two key hyperparameters: the initial training
samples for the cost model (n init) and the candidate pass se-
quences per iteration (q). Figure refhyper reports how different
hyperparameter values affect CITROEN’s average performance
across cBench benchmarks on the ARM platform. CITROEN
demonstrates overall robustness to different hyperparameter
values, except too small q may lead to marginally degraded
performance. Furthermore, increasing q beyond 500 does
not result in any substantial improvement in performance.
Additionally, when the proportion of n init relative to the
total number of search iterations is large, it can cause a slight
degradation in performance. This is because a higher propor-
tion of the search budget is allocated to random sampling,
which may be less efficient.

E. Compilation Statistics Analysis

Table V attempts to quantify the relationship between com-
pilation statistics and performance speedup. For each program,
we analyze the module (source file) with the longest runtime,
running CITROEN for 1000 iterations to determine both the
optimal pass sequence and the final cost model. Using the cost
model’s lengthscales li (as defined in equation 1), we identify
influential compilation statistics, where a smaller lengthscale
signifies a greater impact on performance. To assess each
feature’s importance, we measure the performance change
after removing passes associated with that feature from the
final pass sequence. For instance, if loop-unroll.NumUnrolled
is identified as impactful, we remove loop-unroll from the
sequence and observe the performance effect. The results
show that impactful statistics vary across programs, indicating
different optimization sensitivities. However, certain statistics
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Figure 13: Average proportion of algorithmic runtime.

Table VI: Average search time (per benchmark) after 1000
search iterations in cBench and 300 iterations in SPEC.

cBench (min) SPEC (hours)

Ours 95 31.2
Nevergrad 88 30.6
Opentuner 82 30.0
BaCO 92 30.8
BOCA 90 30.8
Random 85 33.2

consistently emerge as influential, highlighting their impor-
tance and relevance in compiler optimization.

Furthermore, to understand the correlation between statistics
and pass sequences, we try to reduce the pass sequence
to find the most important pass combination that will af-
fect statistics. We found some passes are naturally corre-
lated and often appear together in sequences to make the
occurrence of certain statistics possible. For example, loop-
vectorize.LoopsVectorized usually at least requires the sequen-
tial application of both the loop-rotate and loop-vectorize
passes. Similarly, applying sroa before slp-vectorizer often
leads to larger SLP.NumVectorInstructions. Additionally, we
found that in most cases, replacing mem2reg with sroa typ-
ically yields comparable mem2reg.NumPHIInsert values and
similar runtime performance.

F. Algorithmic Runtime

Figure 13 presents the average proportion of algorithmic
runtime (excluding objective function evaluation) across dif-



Table VII: Impact of program size on compilation and profiling overhead.

Benchmark Hot File Line Count Total Line Count Hot File Compilation Time (s) Profiling Time (s)

C2 (automotive qsort1) 189 416 0.2 1
C1 (automotive bitcount) 282 2288 0.2 1
C26 (telecom gsm) 1575 23185 0.6 1
S7 (519.lbm r) 723 930 1.0 120
S5 (510.parest r) 5436 427000 2.0 190
S6 (511.povray) 13938 170000 5.0 240

ferent methods over 1000 search iterations in cBench and 300
iterations in SPEC CPU 2017. Since CITROEN requires addi-
tional parallel compilation (only for hot modules) and model
training/inference, its algorithmic runtime is higher than that
of other methods. However, this overhead remains negligible
compared to the total performance measurement time, which
includes program compilation and execution, particularly for
larger programs like those in SPEC CPU 2017. Specially, the
overhead of collecting statistics is small, accounting for less
than 0.05% of the compilation overhead.

Table VI reports the raw wall-clock times of each search
algorithm, where the overhead of CITROEN under the same
number of search iterations is on par with the baselines.
Notably, the additional search time of CITROEN is easily
amortized, as it finds a binary with performance comparable
to the best-performing baseline while requiring significantly
fewer profiling runs - often just one-third of the total profiling
times needed by other methods.

We also provide results showing how the change in program
size affects the compilation and profiling overhead when using
-O3 as the optimization level, as shown in Table VII. As the
program size increases, the compilation time tends to increase
due to the larger number of instructions and more complex
dependencies that need to be resolved. However, the program
size does not show a clear correlation with profiling time, as
the profiling time is influenced by various other factors, such
as algorithm complexity and input data size.

VI. RELATED WORK

A. Compiler Phase Ordering

An extensive body of work shows compiler phase ordering
can improve application performance [4], [49]. Prior works
of compiler phase ordering often take an evolutionary search
approach like genetic algorithms or simulated annealing [5],
[7]–[13]. OpenTuner [14] and Nevergrad [41] are two rep-
resentative search-based frameworks that have been used for
compiler phase ordering [3]. Furthermore, random search
is reported to be effective, as well as more sophisticated
algorithms for exploring the optimisation space in many works
[9], [39], [40]. While promising, prior works usually apply
a single pass sequence to multiple source files. Our work
takes a different approach by allowing different compiler pass
sequences for individual files, leading to larger search spaces.
By utilizing pass-related compilation statistics, our approach
allows more efficient autotuning in the larger search spaces.

There are attempts to build a predictive model to predict
the compiler phase order using supervised or reinforcement

learning [18], [19], [22], [24], [43]. As collecting sufficient
training samples to cover the high-dimensional phase ordering
optimization space is difficult, prior approaches reduce the
search space by grouping compiler phases into sub-sequences.
Our approach can be used to explore the search space to
generate training samples for building a predictive model.
B. Bayesian Optimization for Program Autotuning

Some works have employed BO for program tuning. These
include BOCA [28], Bliss [29], Ytopt [30], and BaCO [31].
BOCA uses the random forest as its surrogate model for
turning on or off compiler flags - a problem that usually has a
smaller search space than the phase ordering problem targeted
in this work. Bliss utilizes an ensemble of diverse Gaussian
process models and acquisition functions to tune parallel
applications. Ytopt uses Skopt [50], a standard Python BO
library, to optimize LLVM Clang/Polly pragma configurations.
BaCO customizes its BO implementation to support different
parameter types and constraints for kernel optimization. While
these frameworks show effectiveness in their tasks, they are
not optimized for compiler phase ordering. This is because
they use the original tuning parameters as the input to fit
their surrogate models. Unlike these prior works, CITROEN
leverages the pass-related compilation statistics to design the
surrogate model and the acquisition function. This improves
performance when optimizing a complex search space of
compiler phase ordering.

VII. CONCLUSION

We have presented CITROEN, a BO-based search frame-
work for compiler phase ordering. By leveraging pass-related
compilation statistics to build an online probabilistic cost
model, CITROEN avoids profiling pass sequences that offer
no performance gain and implements a dynamical budget
allocation across source files to support module-specific phase
ordering. Our evaluation shows that CITROEN outperforms
existing approaches by achieving comparable tuning results
using one-third of their search budget. Future work could
incorporate prior knowledge of pass correlations into our
framework to further accelerate the search process, making
it even more efficient.
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