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Abstract—In high-performance and parallel computing, an
important application class is particle simulation. Due to mas-
sive particle migration among distributed simulation workers
across simulation iterations, achieving balanced runtime work
distribution is vital for accelerating large-scale realistic particle
simulations. This paper proposes a novel approach to enable
dynamic load balance for distributed numerical particle sim-
ulations, specifically targeting the latest coupled DSMC/PIC
method. Unlike prior work, our approach adopts a dual, nested
unstructured grid organization to facilitate coupled DSMC/PIC
computation and runtime grid distribution. Our implementation
leverages both centralized and distributed communication strate-
gies to dynamically migrate particles among arbitrary parallel
processes. It then employs a load balancer - driven by a carefully
designed analytical model and a grid remapping mechanism
- to dynamically redistribute the simulation workloads among
parallel simulation workers. By constantly monitoring and redis-
tributing the simulation work across workers, our approach can
adapt to the change of particle distribution across simulation
iterations, avoiding a few workers becoming the performance
bottleneck of the entire simulation process. We integrate our
techniques into a coupled DSMC/PIC solver and apply them
to simulate the plasma plume with hydrogen atoms and ions.
Experimental results show that our approach can scale well up
to 1500+ processes with billions of particles, exhibiting the state-
of-the-art parallel simulation scalability and efficiency for plasma
plume simulation.

Index Terms—Coupled DSMC/PIC, Particle simulation, Dy-
namic load balance

I. INTRODUCTION

Particle simulation is widely used to analyze the physical

phenomena in many scientific and engineering subjects. It is

a crucial application class on high-performance computing

(HPC) systems. The plasma plume1 is a typical particle

simulation application and is key to enable research in fields

like aerospace propulsion [1]–[3], industrial coatings [4], [5],

and nuclear fusion reactors [6], [7].

The plasma plume induced by the pulsed vacuum arc has

important applications in high-stability plasma devices. It

usually flows in the millimeter range, incurring a series of

complex thermochemical non-equilibrium reactions and wall

interactions within microseconds. Because of the high number

of particles evaporated and the high particle density (e.g.,

1The plasma plume includes steam, plasma, molecular clusters, and surface
debris. The steam and plasma are jetted back at ultra-high speeds of tens of
kilometres per second.

1018/m3 to 1022/m3), the corresponding plasma plume is

very rarefied and the Knudsen number is greater than 0.1.

Under such a setup, traditional Computational Fluid Dynamics

(CFD) methods based on the Navier-Stokes equations are ill-

suit for plasma plume simulation. As a result, the flow problem

of plasma plume typically needs to be solved based on the

Boltzmann equations [8].

The state-of-the-art approach for simulating plasma plumes

combines Direct Simulation Monte Carlo (DSMC) [9] and

Particle in Cell (PIC) [10], [11] methods. DSMC is proven to

be effective in solving problems at the micro-level for rarefied

gas flows, such as simulating the movement and collision

between particles. Using the classical Bird’s algorithm [8],

DSMC can achieve consistent results as the Boltzmann equa-

tions. PIC is useful for tracking a large volume of particles

and their interactions. By coupling DSMC and PIC, one can

model a large number of particles and their behaviors at the

micro-level. The combination allows the simulation system to

effectively model complex physical phenomena in the plasma

plume induced by a pulse vacuum arc.

Although coupled DSMC/PIC can achieve accurate particle

simulation, this strategy requires more memory and compu-

tation resources than traditional CFD simulation techniques

[12], [13]. One of the practical challenges in applying coupled

DSMC/PIC in a distributed computing environment is to

achieve dynamic load balance across simulation iterations. As

we iterate the simulation timesteps, particles can move and

may cross their grid cells. As such, the simulation algorithm

must re-decompose the grid and then redistribute simulation

particles between parallel processes after a certain number of

timestep iterations. Without a proper load balancing strategy,

the simulation workload can be unevenly distributed among

parallel processes, where some are waiting for others to

complete while others can be overloaded with too many

particles. To improve the performance of large-scale particle

simulations, we need to find ways to dynamically rebalance

the simulation loads among parallel processes across timestep

iterations.

This paper aims to provide a better approach for applying

coupled DSMC/PIC to large-scale numerical particle simu-

lations. To have a concrete application context, we choose

plasma plume simulations as a case study but our approach

can generalize to many other particle simulation workloads.
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Our approach offers several new optimizations for coupled

DSMC/PIC simulations. These include a novel grid-based

simulation scheme, a load imbalance indicator, a weighted

load model to capture the importance of both particles and grid

calculations, and the use of the Kuhn-Munkres (KM) algorithm

[14], [15] to reduce the overhead of grid remapping.

Unlike prior work that employs two structured grids to im-

plement the coupled DSMC/PIC algorithm [2], our approach

exploits two unstructured grids to facilitate the coupled cal-

culation and parallelization. Unstructured grids permit closer

to real-world simulation for many applications with complex

geometry configurations. Specifically, our unstructured grid

scheme incorporates a coarse and a fine tetrahedral grid. In

the coarse tetrahedral grid, we constraint the cell size by the

mean free path2 of particles, and perform DSMC simulations

of flow fields. In the fine tetrahedral grid, we constraint the

cell size by the Debye length3, and perform PIC simulations

of electric fields. The fine tetrahedral grid is entirely nested

in the coarse grid (see Fig. 2 for an example). As a result,

we only need to distribute the coarse grid across parallel

processes where each process can perform both DSMC and

PIC simulations within different grids. Coupled DSMC/PIC

along with the combination of two unstructured grids enable

us to simulate a wider range of simulation setups involving

complex phenomena and realistic geometries, compared to

existing approaches [9]–[11].

Our work demonstrates the benefits of alternative imple-

mentations for a coupled DSMC/PIC solver. Unlike prior work

that solely employs a distributed communication scheme, we

offer both centralized and distributed communication schemes

based on MPI. We empirically demonstrate that the centralized

communication strategy can outperform the distributed coun-

terpart in certain simulation setups (e.g., with fewer simulated

particles). A centralized scheme also incurs a low memory

footprint, making it suitable for simulating large problems.

Armed with our grid strategy and communication schemes,

we implement a dynamic load balancer to adaptively re-

distribute workloads across MPI processes across simulation

iterations. We propose a load imbalance indicator to quantify

the degree of imbalance, and dynamically evaluate the im-

balance across iterations. If the quantified load imbalance is

greater than a pre-defined threshold, we adopt a weighted load

model to guide the re-decomposition of the coarse grid and

redistribute workloads (i.e., grid cells and particles) to MPI

ranks. We employ the KM algorithm to reduce the overhead

of work redistribution. We note that our work is the first to use

the KM algorithm for dynamic work distribution in coupled

DSMC/PIC.

We evaluate our coupled solver by applying it to simulate

unsteady plasma plume with particles of hydrogen atoms (H)

and ions (H+) induced by a pulsed vacuum arc in a 3D

2The mean free path is the average distance over which a moving particle
(e.g., an atom, molecule, or photon) substantially changes its direction or
energy, as a result of one or more successive collisions with other particles.

3In plasma, the Debye length is a measure of a charge carrier’s net
electrostatic effect in a solution and how far its electrostatic effect persists.

cylindrical nozzle. We test the performance of our approach on

three HPC platforms, including two distinct Intel CPU-based

clusters and an ARM CPU-based system. We showcase that

our coupled DSMC/PIC solver delivers state-of-the-art plasma

plume simulation performance, scaling well to 1536 processes

with billions of particles.

This paper makes the following contributions:

• It is the first work to employ two unstructured grids for

coupled DSMC/PIC simulations (Section IV);

• It presents a novel work scheduling scheme for particle

simulations by employing a weighted load-balance model

and the KM algorithm (Section V);

• It provides quantified analysis, showing the benefits and

trade-offs of distributed and centralized communications

in distributed particle simulations (Section VII-D).

II. RELATED WORK

Several studies have shown the efficiency of paralleliz-

ing coupled DSMC/PIC solvers. Aleph [16] is a coupled

DSMC/PIC solver for simulating low-temperature plasma.

It can simulate 3D models using unstructured tetrahedral

grids [17], [18]. Other works [19] use the parallel coupled

PIC/DSMC algorithm to simulate the active plasma flow and

chemical reactions in a rarefied condition. The work presented

in [20] implemented a parallel high-order DSMC/PIC solver

using MPI to simulate the 250ps diffusion process of a laser-

driven plasma plume. The solver is based on 3D unstructured

hexahedral grids, and the electromagnetic field is discretized

using the Discontinuous Galerkin Method [21]. The SUGAR

(Scalable Unstructured Gas dynamics with Adaptive mesh

Refinement) software [22] uses MPI for parallel computing.

SUGAR can simulate the ion thruster plume, including MEX

(Momentum Exchange) collision and CEX (Charge Exchange)

collision between neutral particles and charged particles. A

GPU-based DSMC/PIC solver was presented in [23] using

MPI+CUDA. This approach uses an octree to divide the

computational domain and perform load balance according to

particle numbers during simulations.

The aforementioned parallel implementations of coupled

DSMC/PIC solvers mainly focus on the plasma plume gen-

erated by the electric thruster. Most of them only target the

generation of plasma rather than the process of diffusion. Our

work extends the coupled DSMC/PIC boundary to simulate the

diffusion, collision, and reaction within a single framework.

Due to dynamically changing simulation behaviour result-

ing from the complex simulation models, the parallelization

method must be able to deal with the communications across

arbitrary parallel processes. This challenge makes prior work

infeasible to the simulation scenario we target. Our work

addresses this challenge by implementing two communication

strategies to migrate particles among arbitrary parallel pro-

cesses. We then employ a dynamic load balancer to scale up

the simulation performance to thousands of cores - which is the

largest simulation setup seen to date for coupled DSMC/PIC.

The scalability offered by our approach represents a significant

improvement over the hundreds of cores scalability offered by
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Fig. 1. The workflow of our coupled DSMC/PIC solver. The dotted rectangles
highlight the new contributions introduced in this paper.

existing coupled DSMC/PIC. On top of these, we also provide

detailed sensitivity analysis on our design choices, which we

hope will be useful for further studies in parallel DSMC/PIC

solutions.

III. COUPLED DSMC/PIC SOLVER

A. Infrastructures

Our work builds upon an in-house DSMC solver developed

based on the seminal algorithm presented in [8]. This DSMC

solver implements various models to simulate the processes of

collisions, wall interactions and chemical reactions of particles

in the flow fields. After the DSMC solver have been used

and validated for several years, a PIC solver is introduced

to simulate the movement of charged particles according to

the effects of electric fields. The two components form the

coupled DSMC/PIC solver used in this work. Our prior works

[24], [25] have provided compelling evidence, showing the

effectiveness and correctness of this coupled solver.

B. Simulation Workflow

Fig. 1 give the overall workflow of the coupled DSMC/PIC

solver with the highlighted new extensions introduced in this

work. Inputs to the solver are two unstructured grids and

simulation parameters. These are passed into the initialization

component (Init) to instantiate the internal data structures. The

solver then iterates through the DSMC and PIC simulation

steps, detailed as follows.

DSMC timesteps. During a DSMC timestep, the Inject com-

ponent initializes and injects simulation particles into the

inlet randomly. The injection should ensure the velocity is

perpendicular to the inlet and complies with the physical

law (i.e., the Maxwell distribution in our case). Next, the

DSMC Move component starts simulating the movement of

neutral particles. In each DSMC timestep, neutral particles will

move straightly at a constant speed and can cross different grid

cells or even move out of the computational domain.

PIC timesteps. A DSMC timestep typically contains multiple

PIC timesteps, and the size of DSMC or PIC timesteps

depends on the mean free path of particles [26]. In each PIC

timestep, the PIC Move component simulates the movement

of the charged particles in the electric field. At the current

timestep, the charged particles are driven by the electric field

of the previous timestep. A key task of a PIC timestep is to

determine the charged particle’s velocity and position using the

Poisson Solve component. We elaborate on the Poisson Solve
component in Section III-C.

Particle numbering. The particle locations are likely to

change during iterations. The location change can cause the

change of particle distributions, which requires the solver to

renumber all particles in a uniform way to ensure each of them

has a unique index number. This is performed by the Reindex
component, which will also remove particles that moved out

of the computational domain after a DSMC iteration.

Collision and reaction. Unlike prior work that mainly fo-

cuses on the generation of plasma, our DSMC solver also

implements various collision and chemical reaction models

[25] in the Colli React component. The solver adopts Bird’s

no time counter (NTC) method [27] to select collision pairs.

After selecting the collision pairs, it determines whether the

two particles will have a chemical reaction according to the

particle types and the energy of the collision. The solver then

performs chemical reactions for those particles.

Our extensions. The main contributions of this paper are

highlighted using dotted rectangles in Fig. 1. Specifically, the

PIC Exchange and DSMC Exchange components are respon-

sible for two parallel communication strategies at the PIC and

DSMC iterations, respectively. The communication strategies

are described in Section IV-B. The Rebalance component is

our dynamic load balancer, described in Section V.

C. Determining the Particle Velocity and Position with PIC

The velocity, v, and position, r, of particles can be acquired

by solving the following kinetic equation [25] for plasma

physics during a PIC timestep, t:

⎧⎪⎨
⎪⎩

dr

dt
= v

m
dv

dt
= q(E + v ×B)

(1)
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where m is the mass of the particles (given by the user), q
is the charge for particles, B is the magnetic density and E
is the electric field intensity. In this paper, we only consider

the electrostatic field by assuming that there is no magnetic

field (i.e., B = 0) or a constant magnetic field (i.e., B is a

constant number given by the user). The solution of the kinetic

equation determines the distribution function of the dynamical

states of each individual particle.

We determine the relevant parameters of the kinetic equation

as follows.

Determine v and q. We use the Boris method [28] to calculate

the numerical value of the velocity v. We then compute the

charge density q, by interpolating the particle charge to the

grid nodes, following the movement of charged particles.

Determine E. We compute E by solving Poisson’s equation

for electrostatics:

∇ · E =
ρ

ε0
(2)

where ρ is a total volume charge density, ε0 is the permittivity4

of the medium, and ∇ is the Laplace operator. Here, the

electric field intensity E, can be expressed as a negative

gradient of the electric potential φ:

E = −∇φ, (3)

With (3), we convert Poisson’s equation in (2) to the following

formula, by substituting E with −∇φ:

∇ · E = ∇ · (−∇φ) = −∇2φ =
ρ

ε0
(4)

We then solve (4) by discretizing it using the finite volume

method [29] on unstructured grids to construct the following

linear system:

Kφ = b (5)

where K is the diagonally-dominant stiffness matrix con-

structed according to the grid topology, b is derived from

boundary conditions and the electric potential. We use the

linear system to derive φ, which is then used to compute E
through (3). This process is performed by the Poisson Solve
component in Fig. 1. We note that solving (5) is a time-

consuming process, and hence can benefit from parallel

computing. In Section IV-C, we describe our parallelization

strategies for solving the linear system.

IV. PARALLEL SOLVER IMPLEMENTATION

A. Grid Generation and Decomposition

Our coupled solver is designed and optimized for unstruc-

tured grids, focusing on tetrahedral grids in this paper. Under

such a setting, each particle belongs to a grid cell, and the

cell size is constrained by different type of particles. When

applying DSMC to neutral particles, it should meet the mean

free path limit of the particles and comply with the Debye

length when applying PIC to charged particles for solving

the electric potential (see Section III-C). To meet the above

4The permittivity is a measure of the electric polarizability of a dielectric.

Fig. 2. A coarse tetrahedral DSMC grid cell with 8 fine-grained tetrahedral
grid cells for PIC.

constraints, our coupled DSMC/PIC solver first generates a

coarse tetrahedral grid for DSMC. It then divides each coarse-

grained grid cell into 8 smaller grid cells to form a fine grid for

PIC. As shown in Fig. 2, this is realized by halving each edge

of the tetrahedron. The fine grid is embedded in the coarse grid

to facilitate the coupled computation and grid decomposition

for parallel computing. Since each fine-grained cell belongs to

a coarse-grained cell, we only need to decompose the coarse

grid for parallel computing. We then determine the mapping

of fine-grained cells to parallel processes accordingly.

We make a use of the graph partition method

(METIS PartGraphKway) from the METIS graph and

mesh partitioning library [30] to decompose the grid. The

end-user can supply a weight array to represent loads of

grid cells and achieve specific load balance requirements for

their applications. For the first decomposition, we do not

provide the weight array to METIS. For the re-decomposition

operations in our dynamic load balancer, we derive a load

model from calculating a weight for each cell (see also

Section V). After grid decomposition, each parallel process

can perform simulation independently on its grid cells (and

the associated particles).

B. Parallel Communication Strategies

For both PIC and DSMC simulations, the particles may

move from one grid cell to another. Since the migration

distances of particles in our coupled algorithm can be long, the

destination cell of a moving particle may belong to a domain

that is far from the original domain. For this reason, the solver

must be able to handle the communications between arbitrary

parallel processes. Unfortunately, the ghost cell immersed

boundary method, which is often used in traditional CFD

[31], is not feasible for our problem because it can only deal

with the communication between the neighboring parallel pro-

cesses. To this end, we propose two communication strategies

to handle particle migration among arbitrary processes. The

two strategies are both implemented in DSMC Exchange and

PIC Exchange components in Fig. 1.

1) The centralized communication strategy: Fig. 3 gives a

simple illustration of the centralized communication strategy.

Here, a centralized process (e.g., rank 0 in Fig. 3) is selected

to manage the whole procedure of particle migration. The

procedure consists of three stages: gather, classify and scatter.
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Rank 0

Classify

Rank 1

Gather ScatterRank 2

Rank 3

Rank 1

Rank 2

Rank 3

Fig. 3. An simple illustration of 4 processes using the centralized com-
munication strategy. Rank 0 is selected as the centralized process. Lines of
different colors represent communications among different processes. Circles
of different colors represent particles to be moved to different destinations.

Rank 0

Rank 1

Rank 2

classify

classify

classify

classifyRank 3

Fig. 4. An simple illustration of 4 processes using the distributed commu-
nication strategy. Lines of different colors represent communications among
different processes. Circles of different colors represent particles to be moved
to different destinations. Numbers on lines represent the communication
(sending or receiving) orders.

Each process sends the particles that will move to another

process to the centralized process during the gathering stage.

After gathering all migrating particles, the centralized process

will classify them according to their destination processes. The

particles, which may come from different source processes but

move to the same destination process, will be packed together.

Finally, the centralized process scatters the packed particles to

the corresponding processes.

2) The distributed communication strategy: As illustrated

in Fig. 4, with a distributed communication strategy, each

process classifies and packages its particles that will move

out its domain according to their destination processes.

Then each process will perform a two-round synchronized

MPI send/MPI recv operation to exchange particles. In the

first round, each process will first receive particles from

processes with a rank less than itself. Then, each process will

send particles to processes with a rank greater than itself. In the

second round, each process will first receive particles from the

processes with a rank greater than itself. Then, each process

will send particles to processes with a rank smaller than itself.

An implementation trick to avoid the communication deadlock

should be noted that when sending particles, a process should

first send to the processes with smaller ranks; when receiving

particles, a process should first obtain from the processes with

larger ranks.

3) Efficiency analysis: We now perform a theoretical anal-

ysis on the performance of the two strategies. Suppose we

have M particles to migrate among N parallel processes, and

each process has particles moving in and moving out. Under

85%

90%

95%

100%

50 100 150 200Th
e 
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rank 0 rank 1 rank 2 rank 3

Fig. 5. The percentage of particle distribution when using 4 MPI processes
without load balance. Rank 0 is overloaded as it has to simulate 90+% of the
particles, highlighting the importance of having a load balancing mechanism.

this setting, the number of communication transactions will be

2N , and the data transfer size is proportional to 2M using the

centralized strategy. For the distributed strategy, the number

of communication transactions will be around N(N − 1), and

the data transfer size is approximately proportional to M .

A centralized strategy has fewer communication transactions

but will incur a higher data transfer size over the centralized

strategy. In contrast, a distributed approach will result in a

higher number of communication transactions, but it has the

benefit of sending fewer data over the network compared to the

distributed scheme. As a result, there is not a single winner,

and optimal strategy may change depending on the computing

and communication capability of the underlying hardware and

the simulation setups. Later in Section VII-D, we empirically

show that both strategies have their merits.

C. Parallel Solution of Poisson’s Equation in PIC

As we have discussed in Section III-C, assembling and

solving Poisson’s equation is the most time-consuming pro-

cedure in PIC. For each process, the charge density of the

inner grid nodes can be calculated based on the number of

charged particles in their local domain. For boundary nodes

belonging to multiple parallel processes, their charge density

should be the sum of the charge densities from all neighboring

processes. Thus, we need to first apply reduction summation

to the charge density of boundary nodes.

After obtaining the charge density, we need to solve

Poisson’s equation to obtain the electric potential on grid

nodes. Directly solving the nonlinear Poisson equation is a

complicated and time-consuming process. We take a two-

step iterative approach to implement a fast solution to solve

Poisson’s equation. To this end, we first transform Poisson’s

equation into a linear system like (5), where K is a global

matrix. Then, we use the parallel Krylov subspace (KSP)

iterative method [32] from the PETSc library [33] to solve

this linear equation. To reduce the memory footprint, we use

the Compressed Sparse Row (CSR) format to store the sparse

matrix K.

V. DYNAMIC LOAD BALANCE

As we have outlined earlier, particles dynamically migrating

between arbitrary processes may cause severe load imbalance,
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Algorithm 1 The rebalance algorithm
Input: cellnum, procsnum, T , Treshold, OriginalMapping
Output: FinalMapping

1: compute lii according to (6)
2: iterator ← iterator + 1
3: if iterator < T ‖ lii < Threshold then
4: return
5: end if
6: for i = 0 → cellnum do
7: compute wlmi according to (7)
8: wlm ← wlmi

9: end for
10: NewPartition ← METIS PartGraphKway(cellnum, procsnum,wlm)
11: FinalMapping ← Kuhn Munkras(OriginMapping, NewPartition)
12: return FinalMapping

leading to performance degradation in parallel DSMC/PIC

simulations. As we will show later in Section VI, this load

imbalance problem can lead to significant performance loss

and must be carefully dealt with. Since target unsteady phe-

nomena with particles injected from the inlet in each timestep,

the initial distribution of particles is highly uneven among grid

cells. As a concrete example, Fig. 5 shows the percentage

of particle distribution among 4 parallel processes after 200

PIC timesteps of simulation with no load balance mechanism.

For the first 50 timesteps, almost all particles belong to MPI

rank 0. This uneven work distribution overloads the rank 0

process while leaving other MPI processes idle, wasting the

computation cycle. We also observe that this imbalance issue

does not improve over simulation iterations – around 90% of

the particles still belong to rank 0 after 200 timesteps.

In light of the above observation, we design and implement

a dynamic load balancer in the coupled solver. Algorithm 1

outlines the working mechanism of the dynamic load balancer.

Our load balance algorithm quantifies the load imbalance using

an analytical model (Section V-A). It then uses a weighted

load model to decompose the grids across parallel workers

(Section V-B). During runtime, the load balancer periodically

checks the imbalance indicator (lii) for a user-specified number

of timestep iterations (i.e., T ). If a Threshold is reached, it

then re-decomposes the grid according to the load model and

remaps the newly partitioned grid to parallel processes. The

algorithm was implemented in the Rebalance component in

the DSMC iterations as shown in Fig. 1.

A. The Load Imbalance Indicator

Our load imbalance indicator (lii) measures the execution

times of different parallel processes and compares the maxi-

mum and minimum values. It is formulated as:

lii =
T imemax total − T imemax pm − T imemax poi

T imemin total − T imemin pm − T imemin poi
(6)

where subscripts “max” and “min” denote the corresponding

processes with the measured maximum and minimum exe-

cution times respectively. T imemax total / T imemin total is

the total execution time, T imemax pm / T imemin pm and

T imemax poi / T imemin poi are the time cost of particle mi-

gration and solving the Poisson’s equation respectively. Note

that the time spending on particle migration (DSMC Exchange

and PIC Exchange) and solving Poisson’s equation (Pois-
son Solve) are largely constant.

We use lii to evaluate the load imbalance for a configurable

number of DSMC iterations T (defined by the user). We set a

load imbalance Threshold, and check if lii is larger than the

Threshold for T DSMC iterations. If lii > Threshold holds,

we will perform the dynamic load balance optimization. T and

Threshold can be selected according to specific simulation

setups runs using an auto-tuning technique [34].

B. The Weighted Load Model

To initialize the simulation, we use METIS to decompose

the grid for parallel computing solely according to the number

of grid cells. Our dynamic load balancer may decide to re-

decompose the grid during runtime to balance the number

of particles simulated by MPI processes. Our optimization

strategy also needs to consider the requirement of the coupled

computation: DSMC only simulates the neutral particles, and

PIC only deals with the charged particle, and a DSMC

timestep may contain multiple PIC timesteps. Because of

these constraints, we should give different weights to neutral

and charged particles when estimating the work for grid

decomposition. For example, if each DSMC timestep contains

2 PIC timesteps, then the weight ratio R of charged particles

and neutral particles should be 2 because there are twice more

charged particles to be simulated than the natural particles

within a DSMC step. Besides particles, some computations

(e.g., Colli React and Poisson Solve in Fig. 1) are performed

on grid cells, and each grid cell should also have its weight.

Our design takes these constraints into consideration.

Specifically, our weighted load model (wlm) for the ith grid

cell wlmi is defined as follows:

wlmi = Ni +RCi +Wcell (7)

where Ni and Ci represents the number of neutral particles

and charged particles in the ith grid cell respectively and Wcell

represents the weight of the grid cell, taking the weight of a

neutral particle as the baseline.

With (7) in place, we can calculate the combined

weight for each grid cell and then provide the weight to

METIS PartGraphKway in METIS to re-decompose the grid

for parallel computing in the subsequent timesteps.

C. Efficient Grid Remapping

After grid re-decomposition, we need to redistribute the grid

cells to parallel processes for subsequent simulations. This is

also involved migrating particles within a process, or from

grid cells to other processes. A naı̈ve approach by randomly

remapping grid cells can incur significant overhead and reduce

the efficacy of our dynamic load balancer. For the example

shown in Fig. 6, the mapping given in Fig. 6(c) is better than

the one in Fig. 6(b). Fig. 6(c) requires moving just particles

in cell 3 - from rank 0 in Fig. 6(a) to rank 1 in Fig. 6(c). In

contrast, Fig. 6(b) requires moving all particles in every cell

across MPI ranks - e.g., cells 2 and 4 are moved from rank 0

in Fig. 6(a) to rank 1 in Fig. 6(b) and similarly for other cells.
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Fig. 6. An example of different grid mapping strategies. Fig. 6(a) is the
original grid decomposition and mapping where the circle represents a grid
cell. Fig. 6(b) is a possible random grid remapping after re-decomposition.
Fig. 6(c) is an optimized remapping given by our approach.

Due to the extensive work redistribution across computing

nodes, Fig. 6(b) will lead to a higher communication overhead

than Fig. 6(c).

This observation suggests that a good remapping strategy

should try to remap the re-decomposed cells according to the

original mapping. It should also minimize the total number

of particles to be migrated during re-decomposition. There-

fore, our remapping scheme aims to achieve these goals. To

solve the remapping problem, we convert the grid remapping

problem into the maximum weight matching problem in a

bipartite graph. We then use the classical KM algorithm [14],

[15] to solve the maximum weight matching problem. For the

example shown in Fig. 6, our KM-based approach gives the

optimal solution shown in Fig. 6(c).

VI. EXPERIMENTAL SETUP

A. Hardware Platforms

We evaluate our approach on three HPC systems. These

include two x86 HPC from the Tianhe-2 supercomputer [35]

and the Beijing Beilong Super Cloud Computing (BSCC)

infrastructure, and an ARMv8 based system from the Tianhe-3

exascale prototype supercomputer [36]. We run our solver on

the CPU host solely as our implementation currently does not

support accelerators.

The Tianhe-2 supercomputer. This is our main evaluation

platform. Each Tianhe-2 compute node has two 12-core In-

tel Xeon E5-2692 v2 processors at 2.2GHz and 64GB of

RAM. Compute nodes are connected through an in-house

developed high-speed interconnection network, with a point-

to-point bandwidth of 160 Gbps. Tianhe-2 implements a fat-

tree communication topology and runs the Kylin OS with

Linux kernel v2.6.32.

The BSCC supercomputer. Each BSCC compute node con-

tains two 48-core Intel Xeon Platinum 9242 CPUs at 2.3 GHz

and 384 GB of RAM. Compute nodes are connected via the

InfiniBand, with a point-to-point bandwidth of 100 Gbps. This

system runs CentOS with Linux kernel v3.10.0.

The ARM-based Tianhe-3 prototype. Each compute node of

the Tianhe-3 prototype has a 64-core ARMv8-based Phytium

2000+ CPU at 2.2 GHz and 64GB of RAM. Compute nodes

are connected through an in-house developed high-speed in-

terconnection network, with a point-to-point bandwidth of 200

Gbps. This system runs the Kylin OS with Linux kernel v4.4.0.

X

Y

Z

(a) Grids of the nozzle

0.5mInlet

Wall1

Wall2

Wall3

Outlet

0.5m

1m

1m

(b) Simulation setup

Fig. 7. The grids of the 3D cylindrical nozzle and the simulation setup.

B. Software Implementations

Our coupled DSMC/PIC solver was implemented in C and

compiled with GCC v11.2 with the ”-O3” compiler option.

We use MPICH v3.4.2 for parallel MPI communication, the

KSP solver from PETSc v3.15.0 to solve Poisson’s equation

and METIS v5.1.0 for domain decomposition.

C. Simulation Setup

In this paper, we simulate the diffusion, collision and

reaction of the plasma plume induced by the pulsed vacuum

arc in a 3D cylindrical nozzle. Fig. 7 depicts the grids

and simulation setup of the nozzle. We use the SALOME

numerical simulation platform [37] to generate the tetrahedral

grids for the cylindrical nozzle.

As listed in Table I, we used six datasets in our evaluation.

We use Dataset 1 to validate our implementation and the

other five different datasets for performance tests. The solver

converts the number density5 of realistic particles to the

corresponding density of simulation particles using a scaling

factor given in Table I. The scaling factor indicates the number

of real particles to be represented by a simulation particle. By

changing the scaling factors, we can easily vary the number of

simulation particles and the corresponding computing load for

the same number density of realistic particles. Once the grid is

determined, we can then work out the timesteps of DSMC and

PIC as well as the number density of particles accordingly.

In this work, we are mainly concerned about the dissociation

of H and the recombination of H+. We set the particle

velocity to 10000m/s and the wall temperature to 300K. As

the setting of particle density and the timestep size depend on

the cell size, we will provide this information when discussing

the relevant experiments. We run each simulation for 100

DSMC timesteps, where each DSMC timestep contains 2 PIC

timesteps. We run each simulation setup 5 times and report the

mean execution time across runs. We note that our evaluation

setups represent real-life simulation setups.

VII. EXPERIMENTAL RESULTS

A. Validation of the Parallel Implementation

Setup. We use Dataset 1 in Table I to validate our parallel

implementation of the coupled DSMC/PIC solver. We set the

number density of H to 7 × 1018 and the density of H+ to

5The number density quantifies the degree of concentration of countable
objects (particles, molecules, phonons, etc.) in physical space.
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TABLE I
THE PIC GRID CELL NUMBERS AND SCALING FACTORS OF DIFFERENT

DATASETS USED IN VALIDATION AND PERFORMANCE TESTS.

#PIC Cells Scaling Factor (H) Scaling Factor (H+)

Dataset 1 55,576 1.000 × 1012 6, 000
Dataset 2 583,386 9.940 × 1010 0.477
Dataset 3 583,386 9.940 × 1011 4.77
Dataset 4 583,386 1.988 × 1011 0.954
Dataset 5 2,242,948 1.400 × 1011 12, 500
Dataset 6 2,242,948 2.800 × 1011 25, 000

(a) Serial simulation results. (b) Parallel simulation results.

Fig. 8. The number density contours of H after 200 PIC simulation steps
produced by a serial (a) and our parallel (b) implementation of the solver.

3× 108. The timestep sizes of DSMC and PIC are 2× 10−7s
and 1×10−7s respectively. The total simulation time is 20μs.

Results. Fig. 8 shows the number density contours of H after

200 PIC timesteps of simulations from our parallel version and

a serial version of the solver which was validated in prior work

[25]. We observe some minor differences in the contours, and

this is mainly due to random seeds used for simulations. To

have a closer examination, we further measured the number

density of H at several selected points on the central axis of

the cylinder. Fig. 9(a) shows the number density of H on the

central axis given by the serial and the parallel simulations

when time t is 3μs, 6μs, 9μs and 12μs. As can be seen from

this diagram, curves at the same time point coincide, indicating

the consistency of parallel and serial runs. To evaluate the

differences, we calculate the relative errors of the number

density of H on the central axis. As shown in Fig. 9(b),

the mean relative errors of four time points t on the central

axis are all less than 2.97%. The relative errors become larger

when the number density is close to 0. This is because the

number density doesn’t converge in the marginal area, and

it is easier to be affected by the random seeds. The relative

standard deviation of 5 runs is less than 5%.

B. Performance Results

Setup. We use Dataset 2 in Table I to evaluate the strong

scalability of the proposed approach on the Tianhe-2 super-

computer. According to the physical constraints of DSMC

and PIC models, we set the number density of H and H+

to 9.94 × 1019 and 4.77 × 107 respectively. In this dataset,

the scaling factor of the DSMC and PIC is 9.94 × 1010 and

0.477 respectively, which means we need to deal with 109

(a) The number density of H (b) Relative errors

Fig. 9. The number density of H (a) and its relative errors (b) on the central
axis at selected time points for the serial and parallel runs.

Fig. 10. The total execution times of different implementations scaling up
to 1536 processes. The percentages on the bar indicate the performance
enhancement when dynamic load balance is enabled

simulation particles of H for DSMC, and 108 simulation

particles of H+ for PIC. The timestep of DSMC and PIC

is set to 1.2586 × 10−6s and 6.293 × 10−7s respectively.

For the parameters of the dynamic load balancer, we set

Threshold to 2.0, R to 2, T to 20 and Wcell to 1. These

parameters were automatically chosen during our pilot study

on a different dataset using a sampling script. The effects

of different parameters on the overall performance will be

analyzed in Section VII-D. We take the results obtained using

24 processor cores as the baseline to measure the strong

scalability. We then increase the number of process cores,

using up to 1536 cores on Tianhe-2.

Results. Fig. 10 and Table II summarize the results for dis-

tributed (DC) and centralized (CC) communication strategies

when they are used together with and without dynamic load

balancing (LB). As can be seen from Fig. 10, all four imple-

mentation variants give improved performance when scaling

from 24 cores to 1536 cores. A maximum speedup of about

14x (DC-only) is achieved, indicating a scaling efficiency

of about 22%. On Tianhe-2, the distributed communication

strategy always outperforms the centralized communication

strategy under different numbers of parallel processes, re-

gardless of whether the dynamic load balancer is enabled or

not. When the number of processes increases, the advantage

of the distributed communication strategy is even larger. For

example, the performance is improved by more than 60%

when using the distributed strategy for 1536 cores.
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TABLE II
TOTAL EXECUTION TIME IN SECONDS FOR STRONG SCALABILITY TESTS.

Number of Processes
24 48 96 192 384 768 1536

DC+LB 2258.5 1230.3 706.4 445.2 317.4 240.1 245.8
DC-Only 3602.9 2058.5 1156.8 689.1 378.4 311.5 257.1
CC+LB 2396.5 1400.6 919.6 678.8 605.1 571.8 591.4
CC-Only 3702.4 2192.7 1274.3 855.4 698.2 610.7 665.4

TABLE III
THE TOTAL EXECUTION TIMES IN SECONDS FOR PARTICLE MIGRATION

Number of Processes
24 48 96 192 384 768 1536

DC+LB 358.62 208.37 101.81 53.08 29.90 17.95 12.05
DC-Only 1106.51 769.24 408.29 201.56 130.88 69.69 35.17
CC+LB 359.17 192.73 113.42 59.59 41.64 26.96 22.16
CC-Only 1119.21 777.87 408.56 200.13 128.81 69.92 35.37

(a) Total execution time (b) Total communication cost

Fig. 11. Performance comparison of the two communication strategies on
the BSCC supercomputer. DC/CC denote the total execution times of the two
strategies. DC exchange/CC exchange denote the total communication costs
using the distributed and the centralized strategy respectively.

C. Further Analysis of Scalability Evaluation

1) Impact of load balancer: For the distributed and cen-

tralized communication strategies, we observe significantly

improved performance and a better scaling efficiency when

our dynamic load balancer is enabled. Our load balancer is

particularly useful when a small number of processes is used.

For example, our load balancer improves the performance by

about 40% and 36% for the distributed and the centralized

strategies, respectively, when using 48 cores. As discussed in

Section V, load imbalance in our test case is more severe

when a smaller number of processes are used in the parallel

simulation. In such settings, our dynamic load balancing

strategy helps rebalance the simulation load, leading to better

overall performance and scalability.

Since load imbalance mainly affects the performance of

DSMC Move and PIC Move, we further analyze the effects of

dynamic load balance on the two procedures in Table III. It can

be seen that the execution time of DSMC Move and PIC Move
is reduced to less than one-third of the original implementation

without dynamic load balance, which further demonstrates the

effectiveness of our rebalancing implementation.

2) Distributed vs centralized communications: While the

distributed communication strategy gives better performance

over the centralized counterpart on Tianhe-2, the centralized

strategy could still be beneficial when the number of simula-

tion particles is small, and the process number is large, as we

have discussed in Section IV. A centralized scheme also incurs

a low memory footprint, making it suitable for simulating large

problems. To validate our hypothesis, we perform a further

evaluation on the BSCC supercomputer using Dataset 3 in

Table I. In this dataset, we increase the scaling factors of

DSMC and PIC to 9.94 × 1011 and 4.77, respectively. As a

result, the numbers of simulation particles are reduced to 108

and 107 correspondingly. Fig. 11 shows the communication

costs as well as the total execution times for the two strategies

on the BSCC supercomputer with load balance enabled.

As shown in Fig. 11, for a smaller number of processes

(e.g., less than 384), the total execution times of the two

strategies are quite close, although the communication costs of

the centralized strategy are larger than the distributed strategy.

For 768 processes, the communication cost of the distributed

strategy dramatically increased to as large as more than twice

of the centralized strategy, which makes the whole solver

using the distributed strategy slower than using the central-

ized strategy by about 25%. The comparison provides some

interesting insights when choosing parallel communication

modes of DSMC/PIC on different HPC platforms for differ-

ent simulation configurations (e.g., simulation particles, the

number of processes). Another disadvantage of the distributed

communication strategy is that it demands more memory.

3) Scalability bottleneck: To find out the scalability bottle-

neck, we further examine the breakdown of the total execution

times on Tianhe-2. Some most time-consuming procedures

are listed in Table IV for the DC+LB implementation. Most

procedures except Poisson Solve show good strong scalability.

For example, the parallel efficiency of DSMC Move, Inject
and Reindex remain above 67% when scaling to 1536 cores.

The time cost of particle migration is also not dominant.

Poisson Solve shows an extraordinary poor scalability to only

24 or 48 processes in our tests, making it a main bottleneck for

the parallel performance of the coupled solver. One possible

explanation for the poor scalability of Poisson Solve is that the

total number of grid cells of the nozzle (i.e., 583386) is not

large enough for the large-scale parallel solution of the Pois-

son’s equation. In addition, the matrix K in Poisson’s equation

is a sparse matrix, and thus the ratio of communication to

calculation is very high. Enlarging the grid cell number may

improve the parallel scalability of Poisson Solve. Meanwhile,

the numbers of simulation particles also have a great impact

on parallel scalability. More simulation particles indicate a

decreasing communication-to-calculation ratio. In Fig. 10, we

scale to 1536 cores with more simulation particles, and in

Fig. 11 we only achieve scalability with no more than 192

cores for fewer simulation particles.

D. Sensitivity Tests

This section evaluates the robustness of our approach under

different tuning parameters and MPI rank placements. We also

test our approach on an additional ARM-based cluster, show-
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TABLE IV
BREAKDOWN OF THE TOTAL EXECUTION TIMES IN SECONDS FOR MAIN

PROCEDURES ON TIANHE-2 USING DC WITH LOAD BALANCE ENABLED.

Number of Processes
24 48 96 192 384 768 1536

DSMC Move 283.2 163.1 82.4 42.4 21.6 11.8 6.6

DSMC Exc1 29.8 17.3 11.1 8.3 4.5 2.5 3.3
Inject 1622.6 812.2 420.5 210.8 104.2 52.4 31.2
PIC Move 74.8 45.3 19.3 10.6 8.2 6.2 5.5
PIC Exc 68.5 44.5 31.7 25.1 20.5 20.1 28.8
Poisson Solve 95.2 94.1 99.8 108.4 114.9 116.7 126.2
Reindex 13.9 6.6 2.5 1.3 0.8 0.4 0.2

1 Exc denotes Exchange.

TABLE V
OVERHEAD (IN SECONDS) OF DYNAMIC LOAD BALANCING

Number of Processes
24 48 96 192 384 768 1536

DC with KM 9.6 5.4 3.4 1.8 1.1 0.6 0.5
DC without KM 11.5 5.2 3.5 2.0 1.2 0.9 0.6
CC with KM 64.3 63.6 65.1 20.5 8.8 13.0 0.1
CC without KM 121.0 122.0 75.4 49.6 35.2 13.4 0.1

ing that our approach delivers portable performance across

computing architectures.

1) Dynamic load balancing: We perform sensitivity tests

on the Tianhe-2 supercomputer to further evaluate the impacts

of different parameters in our dynamic load balance. This

experiment was conducted on Dataset 2 in Table I, but we

observe similar results on other datasets.

Table V quantifies the importance of the KM algorithm.

For our test scenarios, this algorithm plays an important role

in Rebalance by reducing the overhead by 2x over the original

implementation without KM. When using more than 768

processes, the benefit of the KM algorithm is less significant.

Using more processes reduces the need for rebalancing oper-

ations (and the KM algorithm will be used less frequently).

For example, when using 1536 processes, we only perform

one dynamic load balancing operation for 200 PIC timesteps.

As the load balancer gets executed less frequently as we use

more processes, the load balancing overhead also declines.

Fig. 12 shows the effects of T . Typically when T is small,

the solver will perform more rebalancing operations, and the

overhead may possibly exceed the rebalancing benefit; when

T is large, the load imbalance will become severe and degrade

the overall performance. As we can see from Fig. 12, T = 20
is slightly better than T = 10 and T = 30 when using no

more than 96 processes. With the process number increases,

T = 10 is slightly better than T = 20 and T = 30.

Table VI shows the effects of various Wcell in (7). Since

we find that a small change of Wcell has little effect in the

tests, Wcell is increased from 1 to 10000 here. From Table VI

we can see that the effects of Wcell is more obvious for

smaller process numbers (e.g., 24 or 48 processes). For larger

process numbers, Wcell has a slight effects (no more than

10%) on the overall performance. Generally when Wcell is

Fig. 12. Impact of T for the DC strategy on Tianhe-2.

TABLE VI
THE TOTAL EXECUTION TIMES IN SECONDS UNDER DIFFERENT Wcell FOR

THE DC STRATEGY ON TIANHE-2

Number of Processes
24 48 96 192 384 768 1536

Wcell = 1 2258 1230 706 445 317 240 245
Wcell = 10 2288 1255 705 437 301 234 239
Wcell = 100 2258 1240 689 420 292 228 232
Wcell = 1000 2231 1184 668 408 285 225 228
Wcell = 10000 2623 1420 771 466 316 243 234

too small, the grid re-decomposition will mainly be based on

the particle numbers in cells; when Wcell is too large, the

impact of particles will be ignored, which can also lead to

load imbalance. To achieve better performance, users need

to specify an appropriate Wcell according to their specific

simulation configurations.

Fig. 13 shows the effects of Threshold. Similar to the effect

of T , when Threshold is small, the iterations required to meet

lii > Threshold will be less; when Threshold is large, the

iterations required to meet lii > Threshold will be more. As

we can see from Fig. 13, smaller Threshold is slightly better

than big Threshold when using no more than 96 processes.

The reason is that the load imbalance is more severe when

the number of processes is smaller. With the process number

increases, Threshold has little effect on the results.

2) MPI rank placement: Most of our experiments were

conducted on the Tianhe-2 supercomputer. As described in

Section VI, this system implements a fat-tree communication

topology [35]. This is done by packing 32 computing nodes

in a frame where a computing rack has 4 frames. This orga-

nization permits three different MPI rank placements: inner-

frame, inner-rack and inter-rack. To understand the impact of

MPI rank placement, we evaluated our approach under these

three MPI placement strategies, using up to 96 processes (16

compute nodes) on Dataset 2.

As shown in Fig. 14, different MPI rank placements can

have an impact on the performance of the solver. The inner-

frame placement outperforms the others because the commu-

nication distance between the compute nodes in this placement

is smaller than the others. However, the difference is small,

around 1% to 2%, indicating the robustness of our approach.
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Fig. 13. Impact of Threshold for the DC strategy on Tianhe-2.

Fig. 14. Impact of different MPI rank placements for the CC and the DC
strategies with dynamic load balancing on Tianhe-2.

(a) (b)

(c) (d)

Fig. 15. Performance of the two communication strategies with dynamic load
balance on Tianhe-2 ((a) & (b)) and the ARMv8-based Tianhe-3 prototype
((c) & (d)).

3) Hardware portability: We now evaluate the performance

of our solver on systems with different hardware architectures

and different datasets. In this evaluation, we use four datasets:

Dataset 2, 4, 5 and 6 in Table I. We test our approach on

the x86-based Tianhe-2 supercomputer and the ARMv8-based

Tianhe-3 prototype. Among our test datasets, Dataset 5 and 6

have a larger size of grids, and Dataset 2 and 5 have a larger

amount of simulation particles.

Fig. 15 shows the performance results on the two comput-

ing systems. Our approach exhibits similar strong scalabil-

ity results on both architectures, indicating the performance

portability of our approach. In addition, when using Dataset
5 and 6 (larger grids), the performance difference between

the centralized and the distributed communication strategies

(Fig. 15(b) and Fig. 15(d)) is smaller than that on Dataset
2 and 4 (Fig. 15(a) and Fig. 15(c)). Once again, the results

suggest that the centralized communication can outperform the

distributed communication in certain simulation setups.

VIII. CONCLUSION

We have presented a new approach to optimize large-scale

coupled DSMC/PIC particle simulation, using the plasma

plume simulation as a case study. We empirically show

that both centralized and distributed communications can be

helpful in particle simulations; each has its advantages in

specific simulation setups. Our work addresses a particular

challenge in coupled PIC/DSMC simulations – particles can

move across grids, leading to load imbalance during dynamic

simulation runs. To this end, we design a runtime load balancer

to dynamically adjust the work distribution across parallel

simulation processes and rebalance the load.

We evaluate our parallel-coupled DSMC/PIC solver by

applying it to simulate 3D unsteady plasma plume induced by

a pulsed vacuum arc. We test the performance of our solver

on three distinct HPC platforms. Experimental results show

that our coupled DSMC/PIC solver delivers performance and

scaling efficiency, scaling well to thousands of processes with

billions of particles.
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