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Abstract—Web browsing is an activity that billions of mobile
users perform on a daily basis. Battery life is a primary concern
to many mobile users who often find their phone has died at most
inconvenient times. The heterogeneous multi-core architecture is
a solution for energy-efficient processing. However, the current
mobile web browsers rely on the operating system to exploit
the underlying hardware, which has no knowledge of individual
web contents and often leads to poor energy efficiency. This
paper describes an automatic approach to render mobile web
workloads for performance and energy efficiency. It achieves
this by developing a machine learning based approach to predict
which processor to use to run the web rendering engine and at
what frequencies the processors should operate. Our predictor
learns offline from a set of training web workloads. The built
predictor is then integrated into the browser to predict the
optimal processor configuration at runtime, taking into account
the web workload characteristics and the optimisation goal:
whether it is load time, energy consumption or a trade-off
between them. We evaluate our approach on a representative
ARM big.LITTLE mobile architecture using the hottest 500
webpages. Our approach achieves 80% of the performance
delivered by an ideal predictor. We obtain, on average, 45%,
63.5% and 81% improvement respectively for load time, energy
consumption and the energy delay product, when compared to
the Linux heterogeneous multi-processing scheduler.

Keywords-Mobile Web Browsing, Energy Optimisation,
big.LITTLE, Mobile Workloads

I. INTRODUCTION

Web browsing is a major activity performed by mobile

users on a daily basis [1]. However, it remains an activity of

high energy consumption [2], [3]. Heterogeneous multi-core

design, such as the ARM big.LITTLE architecture [4], is a

solution to energy efficient mobile processing. Heterogeneous

mobile platforms integrate multiple processor cores on the

same system, where each processor is tuned for a certain class

of workloads and optimisation goals (either performance or

energy consumption). To unlock the potential of the heteroge-

neous design, software applications must adapt to the variety

of different processors and make good use of the underlying

hardware, knowing what type of processors to use and at what

frequency the processor should operate. This is because the

benefits of choosing the right heterogeneous core may be large,

but mistakes can seriously hurt the user experience.
The current mobile web browser implementations rely on

the operating system to exploit the heterogeneous cores. The

drawback of this is that the operating system has no knowledge

of the individual web workload to be rendered by the browser;

and as a result, this often leads to poor energy efficiency,

draining the battery faster than necessary [5]. What we would

like to have is a technique that can exploit the web workload

characteristics to leverage the heterogeneous cores to meet

various user requirements: whether it is load time (responsive

time), energy consumption or a trade-off between them. Given

the diversity of mobile architectures, we would like to have

an automatic approach to construct optimisation strategies for

any given platforms with little human involvement.

This paper presents such an approach to exploit the hetero-

geneous mobile platform for energy efficient web browsing. In

particular, it focuses on determining – for a given optimisation

goal – the optimal processor configuration i.e. the type of

processor cores to use to render the webpage and at what

frequencies the processor cores of the system should operate.

Rather than developing a hand-crafted approach that requires

expert insight into the relative costs of particular hardware and

web contents, we develop an automatic technique that can be

portable across computing environments. We achieve this by

employing machine learning to automatically build predictors

based on knowledge extracted from a set of representative,

training web contents. The trained models are then used at

runtime to predict the optimal processor configuration for a

given workload and an optimisation target.

Our technique is implemented as an extension for the

Google Chromium browser. It is applied to the hottest 500

webpages ranked by www.alexa.com and is evaluated

for three distinct metrics: load time, energy consumption

and energy delay product (a trade-off between load time

and energy consumption). We evaluated our technique on

a representative big.LITTLE mobile platform. Our approach

delivers significant improvement over a state-of-the-art web-

aware scheduling mechanism [6] and the Linux Heterogeneous

Multi-Processing (HMP) scheduler for all the three metrics.

The key contribution of this paper is a novel machine

learning based predictive model that can be used to optimise

web workloads across multiple optimisation goals. Our re-

sults show that significant energy efficiency for mobile web

browsing can be achieved by making effective use of the

heterogeneous mobile architecture.

II. BACKGROUND

A. Web Rendering Process

Our prototype system is built upon Google Chromium,

an open source version of the popular Google Chrome

web browser. To render an already downloaded webpage,
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Figure 1: The rendering process of Chromium browser.

the Chromium rendering engine follows a number of steps:

parsing, style resolution, layout and paint. This process is

illustrated in Figure 1. Firstly, the input HTML page is parsed

to construct a Document Object Model (DOM) tree where

each node of the tree represents an individual HTML tag such

as <body> or <p>. CSS style rules that describe how the

web contents should be presented will also be translated to

the style rules. Next, the styling information and the DOM

tree are combined to build a render tree which is then used

to compute the layout of each visible element. Finally, the

paint process takes in the render tree to output the pixels to

the screen. In this work, we focus solely on scheduling the

rendering process on heterogeneous mobile systems.

B. Motivation Example

Consider rendering the landing page of

en.wikipedia.org and www.bbc.co.uk on an ARM

big.LITTLE mobile platform. The system has a Cortex-A15

(big) and a Cortex-A7 (little) processors, running with the

Ubuntu Linux operating system (OS) (see also Section V-A).

Here, we schedule the Chromium rendering process to run

on the big or little core under various clock frequencies. We

then record the best processor configuration found for each

webpage. To isolate network and disk overhead, we have

pre-downloaded and stored the webpages in the RAM and

disabled the browser’s cache.

Figure 2 compares the best configuration against the Linux

HMP scheduler for three lower is better metrics: (a) load time,

(b) energy consumption and (c) the energy delay product

(EDP), calculated as energy × load time. Table I lists the best

configuration for each metric. For load time, the best config-

uration gives 14% and 10% reduction for wikipedia and

bbc respectively over the HMP. For energy consumption, using

the right processor configuration gives a reduction of 58% and

17% for wikipedia and bbc respectively. For EDP, the best

configuration gives a reduction of over 55% for both websites.

Clearly, there is significant room for improvement over the OS

scheduler and the best processor configuration could change

from one metric to the other.

Figure 2 (d) normalises the best available performance of

bbc to the performance achieved by using the best configura-

tion found for wikipedia for each metric. It shows that the

best processor configuration could also vary across webpages.

The optimal configuration for wikipedia fails to deliver

the best available performance for bbc. In fact, there is a

reduction of 11.9%, 18.9% and 23.5% on load time, energy

and EDP available respectively for bbc when compared to us-

ing the wikipedia-best configuration. Therefore, simply

Table I: Optimal processor configurations for web rendering

Load time Energy EDP
A15 A7 A15 A7 A15 A7

en.wikipedia.org - GHz 1.8 1.4 0.9 0.4 1.3 0.5
www.bbc.co.uk - GHz 1.6 1.4 1.0 0.3 1.5 0.4

rendering engine � � �

applying one optimal configuration found for one webpage to

another is likely to miss significant optimisation opportunities.
This example demonstrates that using the right processor

setting has a significant impact on web browsing experience,

and the optimal configuration depends on the optimisation

objective and the workload. What we need is a technique

that automatically determines the best configuration for any

webpage and optimisation goal. In the remainder of this paper,

we describe such an approach based on machine learning.

III. OVERVIEW OF OUR APPROACH

Figure 3 depicts our three-stage approach for predicting

the right processor configuration when rendering a webpage.

After the web contents (e.g. the HTML source, CSS files and

javascripts) are downloaded, they will be parsed to construct

a DOM tree together with style rules. This is performed

by the default parser of the browser. Our approach begins

from extracting information (termed as feature extraction),

from the DOM tree and style data to characterise the web

workload. This information (or features) includes counting

different HTML tags, DOM nodes and style rules. A complete

list of the features is given in Table IV. Next, a machine

learning based predictor (that is built off-line) takes in these

feature values and predicts which core to use to run the

rendering engine and at what frequencies the processors of the

platform should operate. Finally, we configure the processors

and schedule the rendering engine to run on the predicted core.
Our approach is implemented as a web browser extension

which will be invoked as soon as a DOM tree is constructed.

Re-prediction and rescheduling will be triggered if there are

significant changes of the DOM tree structure, so that we can

adapt to the change of web contents. Note that we let the

operating system to schedule other web browser threads such

as the input/output process.

Optimisation Goals. In this work we target three important

optimisation metrics: (a) load time (which aims to render the

webpage as quick as possible), (b) energy consumption (which

aims to use as less energy as possible) and (c) EDP (which

aims to balance the load time and energy consumption). For

each metric, we construct a predictor using the same learning

methodology described in the next section.

IV. PREDICTIVE MODELING

Our model for predicting the best processor configuration is

a Support Vector Machine (SVM) classifier using a radial basis

function kernel [7]. We have evaluated a number of alternative

modeling techniques, including regression, Markov chains, K-

Nearest neighbour, decision trees, and artificial neural net-

works. We chose SVM because it gives the best performance,
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Figure 2: Best load time (a), energy consumption (b) and EDP (c) for rendering wikipedia and bbc over to the HMP
scheduler; and the performance of using wikipedia best configurations w.r.t to the best available performance of bbc (d).
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Figure 3: Our three-stage approach for predicting the best processor configuration and scheduling the rendering process.
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Figure 4: Training the predictor.

Table II: Useful processor configurations per metric.

Load time Energy EDP
A15 A7 A15 A7 A15 A7

1.6 1.4 0.8 0.4 1.3 0.4
1.7 1.4 0.9 0.4 1.4 0.4
1.8 1.4 1.0 0.4 1.5 0.4
1.9 1.4 0.3 1.1 0.5 1.2
- - 0.3 1.2 0.5 1.3
- - 0.3 1.3 0.5 1.4

Table III: Raw web features

DOM Tree
#DOM nodes depth of tree
#each HTML tag #each HTML attr.
#rules #each property

Style Rules
#each selector pattern

Other webpage size (KB)

can model both linear and non-linear problems and the model

produced by the learning algorithm is deterministic. The input

to our model is a set of features extracted from the DOM

tree and style rules. The output of our model is a label that

indicates the optimal core to use to run the rendering engine

and the clock frequencies of the CPU cores of the system.

Building and using such a model follows the well-known

3-step process for supervised machine learning: (i) generate

training data (ii) train a predictive model (iii) use the predictor,

described as follows.

A. Training the Predictor

Figure 4 depicts the process of using training webpages to

build a SVM classifier for one of the three optimisation met-

rics. Training involves finding the best processor configuration

and extracting feature values for each training webpage, and

learning a model from the training data.

Generate Training Data. We use over 400 webpages to

train a SVM model. These webpages are the landing page

of the top 500 hottest websites ranked by alexa [8]. These

websites cover a wide variety of areas, including shopping,

video, social network, search engine, E-commerce, news etc.

Whenever possible, we used the mobile version of the website.

Before training, we have pre-downloaded the webpages from

the Internet and stored the content in a RAM disk. For each

webpage, we exhaustively execute the rendering engine with

different processor settings and record the best performing

configuration for each optimisation metric. We then label each

best-performing configuration with a unique number. Table II

lists the processor configurations found to be useful on our

hardware platform. For each webpage, we also extract the

values of a selected set of features (described in Section IV-B).

Building The Model. The feature values together with the

labelled processor configuration are supplied to a supervised

learning algorithm. The learning algorithm tries to find a corre-

lation from the feature values to the optimal configuration and

outputs a SVM model. Because we target three optimisation

metrics in this paper, we have constructed three SVM models

– one for each optimisation metric. Since training is only

performed once at the factory, it is a one-off cost. In our case

the overall training process takes less than a week using two

identical hardware platforms.

One of the key aspects in building a successful predictor is

finding the right features to characterise the input data. This

is described in the next section which is followed by sections

describing how to use the predictor at runtime.
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Table IV: Selected web features

#HTML tag a, b, br, button, div, h1, h2, h3, h4, i, iframe, li,
link, meta, nav, img, noscript, p, script, section,
span, style, table, tbody

#HTML attr alt, async, border, charset, class, height, con-
tent, href, media, method, onclick, placeholder,
property, rel, role, style, target, type, value,
background, cellspacing, width, xmlns, src

#Style selector class, descendant, element, id
#Style rules background.attachment/clip/color/image,

background.repeat.x/y, background.size, back-
ground.border.image.repeat/slice/source/width,
font.family/size/weight, color, display, float

Other info. DOM tree depth, #DOM nodes, #style rules,
size of the webpage (Kilobytes)

B. Web Features

Our predictor is based on a number of features extracted

from the HTML and CSS attributes. We started from 948

raw features that can be collected at runtime from Chromium.

Table III lists the raw features considered in this work. These

are chosen based on our intuitions of what factors can affect

scheduling. For examples, the DOM tree structures (e.g. the

number of nodes, depth of the tree, and HTML tags) determine

the complexity and layout of the webpage; the style rules

determine how elements (e.g. tables and fonts) of the webpage

should be rendered; and the larger size of the webpage the

longer the rendering time is likely to be.

Feature Selection. To build an accurate predictor using

supervised learning, the training sample size typically needs to

be at least one order of magnitude greater than the number of

features. Given the size of our training examples (less than 500

webpages), we would like to reduce the number of features

to use. We achieve this by removing features that carry little

or redundant information. For instances, we have removed

features of HTML tags or attributes that are found to have

little impact on the rendering time or processor selections.

Examples of those tags are <def>, <em> and <body>.

We have also constructed a correlation coefficient matrix to

quantify the correlation among features to remove similar

features. The correlation coefficient takes a value between −1
and 1, the closer the coefficient is to +/ − 1, the stronger

the correlation between the features. We removed features

that have a correlation coefficient greater than 0.75 (ignore

the sign) to any of the already chosen features. Exemplary

similar features include the CSS styles <marginTop> and

<marginRight> which often appear as pairs. Our feature

selection process results in 73 features listed in Table IV.

Feature Extraction. To extract features from the DOM

tree, our extension first obtains a reference for each DOM

element by traversing the DOM tree and then uses the

Chromium API, document.getElementsByID, to col-

lect node information. To gather CSS style features, it uses

the document.styleSheets API to extract CSS rules,

including selector and declaration objects.

Predicted
processor conf.

Run-time
scheduler

big cores

Our extension
web

contents

Feature
extraction

1

Feature
normalisation SVM

LITTLE cores

2 3

Figure 5: Runtime prediction and processor configuration.

Feature Normalisation. Before feeding the feature values

to the learning algorithm, we scale the value of each feature

to the range of 0 and 1. We also record the min and max
values used for scaling, which then can be used to normalise

feature values extracted from the new webpage during runtime

deployment (described in the next sub-section).

C. Runtime Deployment

Once we have built the models as described above, we can

use them to predict the best processor configuration for any

new, unseen web contents. The prediction is communicated to

a scheduler running as an OS service to move the rendering

process to the predicted core and set the processors to the

predicted frequencies.

Figure 5 illustrates the process of runtime prediction and

task scheduling. During the parsing stage, which takes less

than 1% of the total rendering time [9], our extension firstly

extracts and normalises the feature values, and uses a SVM

classifier to predict the optimal processor configuration for a

given optimisation goal. The prediction is then passed to the

runtime scheduler to perform task scheduling and hardware

configuration. The overhead of extracting features, prediction

and configuring processor frequency is small. It is less than

20 ms which is included in our experimental results.

As the DOM tree is constructed incrementally by the

parser, it can change throughout the duration of rendering. To

make sure our approach can adapt to the change of available

information, re-prediction and rescheduling will be triggered

if the DOM tree is significantly different from the one used for

the last prediction. The difference is calculated by counting the

number of DOM nodes between the currently used tree and

the newly available one. If the difference is greater than 30%,

we will make a new prediction using feature values extracted

from the new DOM tree and style rules. We have observed that

our initial prediction often remains unchanged, so rescheduling

and reconfiguration rarely happen in our experiments.

D. Example

As an example, consider rendering the landing page of

wikipedia for energy consumption. This scenario is most

useful when the mobile phone battery is low but the user

still wants to retrieve information from wikipedia. For this

example, we have constructed a SVM model for energy using

“cross-validation” (see Section V-B) by excluding the webpage

from the training example.

To determine the optimal processor configuration for energy

consumption, we first extract values of the 73 features listed

in Table IV from the DOM tree and CSS style objects.
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Table V: None-zero feature values for en.wikipedia.org.

Feature Raw value Normalised value

#DOM nodes 754 0.084
depth of tree 13 0.285

number of rules 645 0.063
web page sieze 2448 0.091

#div 131 0.026
#h4 28 0.067
#li 52 0.031

#link 10 0.040
#script 3 0.015

#href 148 0.074
#src 36 0.053

#background.attachment 147 0.040
#background.color 218 0.058

#background.image 148 0.039
#class 995 0.045

#descendant 4454 0.0168
#element 609 0.134

#id 4 0.007
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Figure 6: The #DOM nodes (a) and webpage size (b) for the

webpages used in the experiments.

The feature values will then be normalised as described in

Section IV-B. Table V lists some of the non-zero values for

this website, before and after normalisation. These feature

values will be fed into the offline-trained SVM model which

output a labeled processor configuration (<A15, 0.9, 0.4>
in this case) indicating the optimal configuration is running

the rendering process on the big core at 900 MHz and the

little core should operate at the lowest possible frequency

400 MHz. This prediction is indeed the optimal configuration

(see also Section II-B). Finally, the processor configuration

is communicated to a runtime scheduler to configure the

hardware platform. For this example, our approach is able to

reduce 58% of the energy consumption when comparing to

the Linux HMP scheduler.

V. EXPERIMENTAL SETUP

A. Hardware and Software

Evaluation System. Our hardware evaluation platform is

an Odroid XU3 mobile development board with an A15 (big)

processor and an A7 (little) processor. The board has 2 GB

LPDDR3 RAM and 64 GB eMMC storage. Table VI gives

detailed information of the hardware platform. We chose this

platform as it is a representative big.LITTLE architecture

implementation. For example, the Samsung Galaxy S4 phone

uses the same architecture. The board runs the Ubuntu 14.04

LTS Linux OS. We implemented our model as an extension

to Chromium (version 48.0) which was compiled using the

Table VI: Hardware platform

big CPU LITTLE CPU GPU

Model Cortex-A15 Cortex-A7 Mali-T628
Core Clock 2.0 GHz 1.4 GHz 533 MHz
Fore Count 4 4 8

gcc compiler (version 4.6). As the current implementation of

Google Chromium for Android does not support extensions,

we did not evaluate our approach on the Android OS.

Webpages. We used the landing page of the top 500 hottest

websites ranked by www.alexa.com. Whenever possible,

we used the mobile version of the website for evaluation. To

isolate network and disk overhead, we have downloaded and

stored the webpages in a RAM disk. We also disabled the

browser’s cache in the experiments. Figure 6 shows the number

of DOM nodes and the size for the 500 webpages used in our

evaluation. As can be seen from this diagram, the webpages

range from small (4 DOM nodes and 40 Kilobytes) to large

(over 8,000 DOM nodes and over 5 MB).

B. Evaluation Methodology

Predictive Modelling Evaluation. We use leave-one-out
cross-validation to evaluate our machine learning model. This

means we remove the target webpage to be predicted from the

training example set and then build a model based on the re-

maining webpages. We repeat this procedure for each webpage

in turn. It is a standard evaluation methodology, providing an

estimate of the generalisation ability of a machine-learning

model in predicting unseen data.

Comparisons. We compare our approach to two alter-

native approaches, a state-of-the-art web-aware scheduling

mechanism [6] (referred as WS hereafter), and the Linux

Heterogeneous Multi-Processing (HMP) scheduler which is

designed for the big.LITTLE architecture to enable the use of

all different CPU cores at the same time. WS uses a regression

model built from the training examples to estimate webpage

load time and energy consumption under different processor

configurations. The model is used to find the best configuration

by enumerating all possible configurations.

Performance Report. We profiled each webpage under a

processor configuration multiple times and report the geomet-
ric mean of each evaluation metric. To determine how many

runs are needed, we calculated the confidence range using a

95% confidence interval and make sure that the difference

between the upper and lower confidence bounds is smaller

than 5%. We instrumented the Chromium rendering engine to

measure the load time. We excluded the time spent on browser

bootstrap and shut down. To measure the energy consumption,

we have developed a lightweight runtime to take readings from

the on-board energy sensors at a frequency of 10 samples per

second. We then matched the readings against the rendering

process’ timestamps to calculate the energy consumption.
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Figure 7: Achieved performance for load time (a), energy consumption (b) and EDP (c) over the Linux HMP scheduler.
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Figure 8: Our performance w.r.t. performance of an oracle

predictor. We achieve over 80% of the oracle performance.

VI. EXPERIMENTAL RESULTS

In this section, we first compare our approach against

WS and the HMP scheduler. We then evaluate our approach

against an ideal predictor, showing that our approach delivers

over 80% of the oracle performance. Finally, we analyse the

working mechanism of our approach.

A. Overall Results

Figure 7 shows the performance results of our approach and

WS for the three evaluation metrics across all websites. For

each metric, the performance improvement varies for different

webpages. Hence, the min-max bars in this graph show the

range of improvement achieved across the webpages we used.

The baseline in the diagram is the HMP scheduler.

Load Time. Figure 7 (a) shows the achieved performance

when fast response time is the first priority. For this metric, WS
achieves an averaged speedup of 1.34x but it causes significant

slowdown (up to 1.26x) for some websites. By contrast, our

approach never leads to deteriorative performance with up to

1.92x speedup. Overall, our approach outperforms WS with an

average speedup of 1.45x vs 1.34x over the HMP scheduler,

and has constantly better performance across websites.

Energy Consumption. Figure 7 (b) compares the achieved

performance when having a long battery life is the first priority.

In this scenario, adaptive schemes (WS and our approach) can

significantly reduce the energy consumption through dynam-

ically adjusting the processor frequency. Here, WS is able to

reduce the energy consumption for most websites. It achieves

on average an energy reduction of 57.6% (up to 85%). Once

again, our approach outperforms WS with a better averaged

reduction of 63.5% (up to 93%). More importantly, our

approach uses less energy for all testing websites compared to

HMP, while WS sometime uses more energy than HMP. This is

largely due to the fact that our approach can better utilise the

webpage characteristics to determine the optimal frequencies

for CPU cores. In addition, for several webpages, WS estimates

the big core gives better energy consumption, which are actual

a poor choice.

EDP. Figure 7 (c) shows the achieved performance for min-

imizing the EDP value, i.e. to reduce the energy consump-

tion without significantly increasing load time. Both adaptive

schemes achieve improvement on EDP when compared to

HMP. WS delivers on average a reduction of 69% (up to 84%),

but it fails to deliver improved EDP for some websites. Unlike

WS, our approach gives constantly better EDP performance

with a reduction of at least 20%. Overall, we achieve on

average 81% reduction (up to 95%) of EDP, which translates

to 38% improvement over WS on average.

B. Compare to Oracle

In Figure 8, we compare our scheme to an ideal predictor

(oracle) that always gives the optimal processor configuration.

This comparison indicates how close our approach is to

the theoretically perfect solution. As can be seen from the

diagram, our approach achieves 85%, 90% and 88% of the

oracle performance for load time, energy consumption and

EDP respectively. The performance of our approach can be

further improved by using more training webpages together

with more useful features to better characterise some of the

web workloads to improve the prediction accuracy.

C. Analysis

1) Optimal Configurations. Figure 9 shows how the distri-

bution of optimal processor configurations changes from one

metric to the other. To optimise for load time, we should al-

ways run the rendering process on the fast, big core (A15) with

a frequency of at least 1.6 GHz. For this optimisation goal,

nearly half of the websites benefit from using the A15 core at

1.9 GHz while others benefit from a lower frequency (1.6 to
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Figure 9: The distribution of the optimal processor configurations for load time (a), energy consumption (b) and EDP (c).

1.8 GHz). We believe this is because for some webpages using

a lower frequency can reduce CPU throttling activities [10]

(i.e. the OS will greatly clock down the processor frequency

to prevent the CPU from over-heating). We also found that

running the rendering process at 2.0 GHz (a default setting

used by many performance-oriented schedulers) does not give

better load time. When optimising for energy consumption,

around 30% of the simple websites benefit from the low-power

A7 core. Furthermore, for the websites where the A15 core is

a good choice, they are in favour of a lower clock frequency

over the optimal one for load time. For EDP, using the A7

core benefits some websites but the optimal clock frequency

leans towards a median value of the available frequency range.

This is expected as EDP is a metric for quantifying the trade-

off between load time and energy consumption. This diagram

shows the need to adapt the processor settings to different web

workloads and optimisation goals.
2) Performance for each configuration. Figure 10 shows

the performance for using each of the processor configurations

listed in Table II across optimisation metrics. It shows that

a “one-size-fits-all” scheme fails to deliver the optimal per-

formance. For example, while the A15(0.8GHz)-A7(0.4GHz)

configuration is able to reduce the energy consumption by 40%

on average, it is outperformed by our approach that gives a

reduction of 63.5%. This is confirmed by Figure 9 (b), showing

that running the A15 core at 0.8GHz only benefits 20% of

the websites. Similar results can be found for the other two

optimisation metrics. This experiment shows that an adaptive

scheme significantly outperforms a hardwired strategy.
3) Prediction Accuracy. Our approach gives correct pre-

dictions for 82.9%, 88% and 85% of the webpages for load

time, energy consumption and EDP respectively. For those

webpages that our approach makes a misprediction, the re-

sulting performance is not far from the optimal, where we

still achieve a reduction of 24%, 21% and 56% for load time,

energy consumption and EDP when compared to HMP.
4) Breakdown of Overhead. Figure 11 shows the break-

down of runtime overhead. The runtime overhead of our

approach is low – less than 4% with respect to the rendering

time. Since the benefit of our approach is significant, we

believe such a small overhead is acceptable. Most of the time

(15 ms) is spent on moving the rendering process from one
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Figure 11: Breakdown of runtime overhead to rendering time.

Figure 12: A Hinton diagram showing the importance of

selected web features to the prediction accuracy. The larger

the box, the more important a feature is.

processor to the other. This is expected as task migration

involves initialising the hardware context (e.g. cache warm up),

which can take a few micro-seconds. The overheads of other

operations, i.e. feature extraction, predicting and frequency

setting, is very low, which are less than 5 ms in total.

5) Feature Importance. Figure 12 shows a Hinton diagram

illustrates some of the most important features that have an

impact on the load time, energy and EDP specific models. Here

the larger the box, the more significantly a particular feature

contributes to the prediction accuracy. The x-axis denotes the

features and the y-axis denotes the model for each metric. The

importance is calculated through the information gain ratio. It

can be observed that HTML tags and attributes (e.g. <li>,

<img>, <bgcolor>) and style rules are important when

determining the processor configurations for all optimisation
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Figure 10: The achieved performance for all configurations listed in Table II.

99 97 96

40

83

18

63

15

Po
or
2G

Go
od
2G

Po
or
3G

Go
od
3G

Po
or
4G

Go
od
4G

Po
or
W
iFi

Go
od
W
iFi

0%

20%

40%

60%

80%

100% Rendering time
Download time

Figure 13: Webpage rendering time to the time spent on

downloading the contents in different network environments.

metrics. Other features are extremely important for some

optimisation metrics (such as #DOM nodes is important for

energy, and #HTML.tag.table is important for load time and

energy) but less important for others. This diagram shows the

need for distinct models for different optimisation goals.

6) Adapt to Different Network Environments. In all the

previous experiments, we have isolated the network impact by

storing the webpage into a RAM disk. In practice, the device

can be used in different network environments. A natural

question to ask is: which of the three models developed in this

work best suits for a particular environment? Figure 13 shows

the webpage rendering time with respect to the download

time under different network settings: 2G, 3G, 4G and WiFi

(802.11). We further breakdown each environment into two

groups: poor and good. A network environment is considered

to be poor if the packet loss is greater than 30%, otherwise it is

considered to be good. As can be seen from the diagram, the

download time dominates the total processing time in poor

and good 2G network environments. In such environments,

our energy-tuned model can be used to trade rendering per-

formance for energy consumption without compromising the

user experience, by moving the rendering process to run on an

low power processor at a low clock frequency. Our EDP-tuned

model is mostly suitable for a good 3G network environment

with a limited download bandwidth. Finally, our load-time-

tuned model can be used in good 4G and Wifi environments

to satisfy the performance requirement if load time is the first

priority. This diagram demonstrates the need of an adaptive

scheme in different network environments.

VII. RELATED WORK

Our work lies at the intersection of numerous areas: web

browsing optimisation, task scheduling, energy optimisation

and predictive modeling.

Web Browsing Optimisation. A number of techniques

have been proposed to optimise web browsing, through e.g.

prefetching [11] and caching [12] web contents, scheduling

network requests [13], or re-constructing the web browser

workflow [14]. Most of the prior work are built for a ho-

mogeneous mobile systems where the processors are iden-

tical. Furthermore, prior work often targets one single opti-

misation goal (either performance or energy consumption).

Unlike previous research, our work targets a heterogeneous

mobile system with different processing units and multiple

optimisation goals. The work presented by Zhu et al. [6]

is the nearest work, which uses linear regression models

to estimate the load time and energy consumption for each

web event to determine where to run the rendering process.

While promising, there are two significant shortcomings with

this approach. Firstly, it schedules the webpage to the big

core with the highest frequency if no configuration meets

the cut-off latency. This leads to poor performance as can

be seen in Section VI-C6 in some networking environments.

Secondly, their linear regression models only capture the linear

correlation between the web workload characteristics and the

processor configuration, leading to a low prediction accuracy

for some webpages. Our work addresses both of these issues

by dynamically configuring all CPU cores of the system and

modelling both linear and non-linear behaviour.

Task Scheduling. There is an extensive body of work on

scheduling application tasks on homogeneous and heteroge-

neous multi-core systems e.g. [15], [16], [17]. Most of the

prior work in the area use heuristics or analytical models to

determine which processor to use to run an application task,

by exploiting the code or runtime information of the program.

Our approach targets a different domain by using the web

workload characteristics to optimise mobile web browsing for

a number of optimisation metrics.

Energy Optimisation. Many techniques have been pro-

posed to optimise web browsing at the application level.
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These include aggregating data traffic [18], bundling HTTP re-

quests [19], and exploiting the radio state mechanism [20]. Our

approach targets a lower level, by exploiting the heterogeneous

hardware architecture to perform energy optimisation. Work

on application-level optimisation is thus complementary to our

approach. Studies on energy behaviour of web workloads [2],

[3], [21] are also orthogonal to our work.

Predictive Modelling. Machine learning based predictive

modelling is rapidly emerging as a viable way for sys-

tems optimisation. Recent studies have shown that this tech-

nique is effective in predicting power consumption [22],

program optimisation [23], [24], [25], [26], [27], [28], auto-

parallelisaton [29], [30], [31], task scheduling [32], [33], [34],

[35], benchmark generation [36], estimating the quality of

service [37], configuring processors using DVFS [38], and

grouping communication traffics to reduce power consump-

tion [39]. No work so far has used machine learning to predict

the optimal processor configuration for mobile web browsing

across optimisation goals. This work is the first to do so.

VIII. CONCLUSIONS

This paper has presented an automatic approach to optimise

mobile web browsing on heterogeneous mobile platforms,

providing a significant performance improvement over state-

of-the-art. At the heart of our approach is a machine learning

based model that provides an accurate prediction of the

optimal processor configuration to use to run the web browser

rendering process, taking into account the web workload char-

acteristics and the optimisation goal. Our approach is imple-

mented as an extension to the Google Chromium web browser

and evaluated on an ARM big.LITTLE mobile platform for

three distinct metrics. Experiments performed on the 500

hottest websites show that our approach achieves over 80%

of the oracle performance. It achieves over 40% improvement

over the Linux HMP scheduler across three evaluation metrics:

load time, energy consumption and the energy delay product.

It consistently outperforms a state-of-the-art webpage-aware

scheduling mechanism. Our future work will explore further

refinement to prediction accuracy and to dynamically adapt to

different networking environments.
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