
Optimizing Streaming Parallelism on
Heterogeneous Many-Core Architectures

Peng Zhang, Jianbin Fang , Canqun Yang, Chun Huang, Tao Tang, and Zheng Wang

Abstract—Asmany-core accelerators keep integratingmore processing units, it becomes increasinglymore difficult for a parallel

application tomake effective use of all available resources. An effective way of improving hardware utilization is to exploit spatial and

temporal sharing of the heterogeneous processing units bymultiplexing computation and communication tasks – a strategy known as

heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and

matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task granularity is

extremely challenging, because there is a large number of possible solutions and the optimal solution varies across programs and

datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition and task granularity

for task-based parallel applications on heterogeneousmany-core architectures. Our approach employs a performancemodel to estimate

the resulting performance of the target application under a given resource partition and task granularity configuration. Themodel is used as

a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical model that requires expert insights into

low-level hardware details, we employmachine learning techniques to automatically learn it.We achieve this by first learning a predictive

model offline using training programs. The learnedmodel can then be used to predict the performance of any unseen program at runtime.

We apply our approach to 39 representative parallel applications and evaluate it on two representative heterogeneousmany-core

platforms: a CPU-XeonPhi platform and aCPU-GPU platform. Compared to the single-stream version, our approach achieves, on

average, a 1.6x and 1.1x speedup on the XeonPhi and theGPU platform, respectively. These results translate to over 93 percent of

the performance delivered by a theoretically perfect predictor.

Index Terms—Heterogeneous computing, parallelism, performance tuning, machine learning

Ç

1 INTRODUCTION

HETEROGENEOUS many-cores, as representative byGPGPUs
and Intel’s XeonPhi, are widely used for accelerating

parallel applications [1], [2], [3]. As users demand higher per-
formance, many-core accelerators have become more power-
ful by providing more and more processing units. While the
abundant computing resources offer the potential for higher
performance, it becomes harder for a parallel application to
utilize all the available computing resources [4], [5]. As a
result, many parallel applications fail to fully unlock the per-
formance potential of amany-core accelerator.

One way for improving heterogeneous many-core utiliza-
tion is to exploit spatial and temporal sharing of processing
resources. This strategy is also known as heterogeneous stream-
ing [6]. The idea is to exploit the computation and communi-
cation independency of task parallelism to improve hardware
utilization. It works by partitioning the processor cores to
allow independent communication and computation tasks
(i.e., streams) to run concurrently on different hardware
resources, which effectively overlaps the concurrent kernel

execution with data movements. Representative heteroge-
neous streaming implementations includeCUDAStreams [7],
OpenCL Command Queues [8], and Intel heterogeneous
streams library (HSTREAMS) [6], [9]. These implementations
allow a parallel program to spawn more than one stream (or
pipeline) so that the data movement stage of one pipeline
overlaps the kernel execution stage of another.

Prior work on heterogeneous streaming mainly targets
GPUs [10], [11], [12]. Compared to GPU implementations,
OS-enabled coprocessors, like the Intel XeonPhi, provides
some unique features that are currently unavailable on the
GPU. For example, besides specifying the number of streams,
developers can explicitly map streams to different groups of
cores on XeonPhi to control the number of cores of each hard-
ware partition. This parameter is not exposed to programmers
on GPUs, making previous work on GPU-based parallel
streaming optimizations infeasible to fully exploit Xeon-
Phi-like many-core accelerators (see also Section 6.3). On the
other hand, ample evidence is showing that choosing the right
stream configuration, i.e., the number of processor core parti-
tions and the number of concurrent tasks of a multi-stream
application, values, has a significant impact the application’s
performance onmany-core architectures [13], [14], [15]. How-
ever, attempting to find the optimal values through exhaus-
tive profiling would be ineffective, because the range of the
possible values for the two parameters is huge.What we need
is a technique that automatically determines the optimal
stream configuration for any streamed application in a fast
manner.

� P. Zhang, J. Fang, C. Yang, C. Huang, and T. Tang are with the National
University of Defense Technology, Changsha, Hunan 410073, China.
E-mail: {zhangpeng13a, j.fang, canqun, chunhuang, taotang84}@nudt.edu.cn.

� Z. Wang is with the University of Leeds, LS2 9JT Leeds, United Kingdom.
E-mail: z.wang5@leeds.ac.uk.

Manuscript received 24 Jan. 2019; revised 23 Feb. 2020; accepted 26 Feb. 2020.
Date of publication 3 Mar. 2020; date of current version 1 Apr. 2020.
(Corresponding author: Jianbin Fang.)
Recommended for acceptance by P. Sadayappan.
Digital Object Identifier no. 10.1109/TPDS.2020.2978045

1878 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3542-4869
https://orcid.org/0000-0003-3542-4869
https://orcid.org/0000-0003-3542-4869
https://orcid.org/0000-0003-3542-4869
https://orcid.org/0000-0003-3542-4869
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0001-6157-0662
mailto:zhangpeng13a@nudt.edu.cn
mailto:j.fang@nudt.edu.cn
mailto:canqun@nudt.edu.cn
mailto:chunhuang@nudt.edu.cn
mailto:taotang84@nudt.edu.cn
mailto:z.wang5@leeds.ac.uk

This article presents a novel approach to determine the
right number of processor core partitions and tasks for het-
erogeneous streams, targeting heterogeneous many-core
architectures. Our key insight is to use a performance model
to quickly search for the optimal stream configuration. The
performance model estimates the resulting performance of
the target streamed application when it runs under a given
stream configuration. If the prediction can be performed
quickly with low overhead, we can then quickly explore a
large configuration space. Instead of hand-crafting the per-
formance model that requires humanmodification whenever
the architecture evolves (i.e., when the number and types of
cores change), we employ machine learning techniques to
automatically construct a predictive model. Our predictor is
first trained off-line. Then, using code and dynamic runtime
features of the program, the model predicts performance for
a new, unseen program under a given stream configuration.

Our prior work [16] develops a machine learning based
classifier to predict the optimal stream configuration. How-
ever, this approach can only choose from a limited set of
configurations seen during the training phase. Unlike a clas-
sification-based approach, the approach presented in the
article allows us to explore a larger number of stream con-
figurations (including those that are not seen during the
training phase) with negligible runtime overhead. This
advantage significantly improves the generalization ability
of the proposed approach (Section 3).

Due to the newness of heterogeneous streaming execution
model, there are very fewmulti-streambenchmarks available.
To evaluate our approach on a wide range of applications, we
have developed a compiler-based tool to automatically trans-
late standard OpenMP benchmarks into their streamed var-
iants for the backends of XeonPhi and GPU architectures
(Section 4). With the help of this code generator, we can apply
our approach to 39 parallel benchmarks. We argue that this
tool can help generate more streamed code and thus is an
added value to the community.

We evaluate our approach on two representative hetero-
geneous many-core platforms: a 57-core Intel XeonPhi and
an NVIDIA 1080Ti GPU platforms. We achieve, on average,
a 1.6x and 1.1x speedup over the single-stream execution on
the XeonPhi and the GPU platforms, respectively. This trans-
lates to over 93 percent of the best available performance.

The core contribution of this paper is a novel machine-
learning-guided approach for automatically determining the
optimal stream configuration on heterogeneous many-cores.
We show that our approach delivers good performance
across benchmarks and heterogeneousmany-core platforms.
While we do not seek to advance the machine learning algo-
rithm itself, our work shows how machine learning can be
used to address the challenging problem of tuning fine-
grained streaming parallelism on heterogeneous many-core
architectures. In this work, we demonstrate the usefulness of
our approach on XeonPhi and an NVIDIA GPU, but our
approach is equally applicable on other heterogeneous plat-
forms like AMDGPUs.

2 BACKGROUND AND OVERVIEW

In this section, we first give a brief introduction of heteroge-
neous streaming; we then define the scope of this work,

before motivating the need of our scheme and providing an
overview of our approach.

2.1 Heterogeneous Streaming

The idea of heterogeneous streaming is to exploit spatial
and temporal sharing of computing resources to utilize the
hardware resources to improve application performance.

Spatial Sharing. Modern many-core accelerators offer a
large number of processing units. Since many applications
cannot fully utilize all the cores at a time, we can partition
the computing units into multiple groups to concurrently
execute multiple tasks. In this way, the computing resource
is spatially shared across concurrently-running application
tasks. The key to spatial sharing is to determine the right
number of partitions, because over-provisioning of process-
ing units would waste computing resources but under-
provisioning would lead to slowed down performance.

Temporal Sharing. Code written for heterogeneous com-
puting devices typically consists of several stages, such as
host device communication and computation. Using tempo-
ral sharing, one can overlap some of these stages to exploit
pipeline parallelism to improve performance by overlap-
ping the host-device communication and kernel execution.

2.2 Problem Scope

Ourwork aims to improve the performance of a data parallel
application by exploiting spatial and temporal sharing of
heterogeneous streams. We do so by determining at runtime
howmany partitions should be used to group the cores (#par-
titions) and how many data parallel tasks (#tasks) should be
used to run the application. Our current implementation is
applicable to XeonPhi and GPUs by using different runtime
back-ends (HSTREAM for XeonPhi, and CUDA or OpenCL
for GPUs).

Code Example. Fig. 1 gives a simplified code example writ-
ten with Intel’s HSTREAMS APIs that can run on the XeonPhi
many-core. At line 2 we initialize the stream execution by set-
ting the number of partitions and tasks/streams per partition.
This initialization process essentially creates multiple proces-
sor domains and determines how many logical streams can
run on a partition. In the for loop (lines 7-14) we enqueue the
communication and computation tasks to a number of
streams identified by the stream_id variable. In this way,
communication and computation of different streams can be

Fig. 1. Heterogeneous streaming using HSTREAMS as an example.

ZHANG ETAL.: OPTIMIZING STREAMING PARALLELISM ON HETEROGENEOUS MANY-CORE ARCHITECTURES 1879

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

overlapped during execution (temporal sharing); and streams
on different processor domains (or partitions) can run concur-
rently (spatial sharing). Our predictive model determines the
#partitions and the #tasks before invoking the HSTREAMS initiali-
zation routine, hStreams_app_init().

2.3 Motivating Examples

Consider Fig. 2 which shows the resultant performance
improvement given by multi-stream parallelism over the
single-stream version of the code for two applications on a
57-core Intel XeonPhi system. We use two streamed pro-
grams from prior work [13]: binomial computes the price
evolution over a given period and prefixSum calculates the
prefix sum for a sequence of numbers.

It is observed from this example that not all multi-stream
configurations give improved performance. As can be seen
from the diagrams, the search space of multi-stream configu-
rations is huge but good configurations are sparse. The per-
formance varies significantly over stream configurations
(#partitions, #tasks). The optimal #tasks for binomial ranges
from 1 to 30, and the best #partitions is between 1 and 40. In
contrast to binomial, prefixsum benefits from fine-grained
parallelismwhen using a larger #tasks (220 to 224) and #parti-
tions (60 to 80). However, the stream configurations that are
effective for prefixsum give no speedup over the single-
stream version for binomial.

Now consider Fig. 3 that shows the speedups of dct

under 16 multi-stream configurations over the single-stream
version, where each configuration is found to give the best-
performance for one of the 16 inputs. In the color table, each

cell shows the performance of a stream configuration
(C1; . . . ; C16) on a specific input dataset (D1; . . . ; D16); and
the values along the diagonal line represent the best-
available performance (found through profiling) for an
input. As can be seen from the figure, the best stream config-
uration can vary across inputs for the same benchmark. For
example, whileC4 gives a speedup of 1.33x over the baseline
for dataset D4, it delivers a poor performance for dataset
D14 by doubling the execution time over the single-stream
version. This diagram also suggests that no single configura-
tion can give improved performance for all inputs.

Lesson Learned. These two examples show that choosing
the stream configuration has a great impact on performance
and the best configuration must be determined on a per-pro-
gram and per-dataset basis. Later, we will show that this
observation is not unique to XeonPhi but also holds for
GPUs. Attempting to find the optimal configuration through
means of an exhaustive search would be ineffective, and the
overhead involved would be far bigger than the potential
benefits. Online search algorithms, while can speed up the
search process, the overhead can still outweigh the benefit.
For example, when applying simulated annealing to bino-

mial, the best-found configuration only reaches 84 percent
of the best-available performance after 310,728 iterations.1

Classical hand-written heuristics are not ideal either, as they
are not only complex to develop, but are likely to fail due to
the variety of programs and the ever-changing hardware
architecture. An alternate approach, and the one we chose to
use, is to use machine learning to automatically construct a
performance model to estimate the benefit of any candidate
configuration, providing minimal runtime overhead for
searching for a good configuration, and having little devel-
opment cost when targeting new architectures.

2.4 Overview of Our Approach

Our library-based approach, depicted in Fig. 4, is completely
automated. To determine the best streaming configuration, our
approach follows a number of steps described as follows. We
use a set of information or features to capture the characteristics
of the program. We develop a LLVM [17] compiler pass to
extract static code features at compile time, and a low-overhead
profiling pass to collect runtime information at execution time
(i.e., during the first few loop iterations). Because profiling also
contributes to the final program output, no computation cycle

Fig. 2. Heatmaps show the resultant speedup (over single-stream) of binomial and prefixsum under different stream configurations. The #parti-
tions and #tasks have a significant impact on the resultant performance, and the sweet spots are sparse and vary across programs.

Fig. 3. Color table showing the speedups of best-performing configura-
tions across inputs for dct. Each cell shows the performance for one of
the 16 best-performing configurations, Cn, on a given input, Dn. The
best configuration varies across inputs and a good configuration on one
input can give poor performance on another dataset.

1. In Section 6.1, we show that our approach achieves 93 percent of
the best-available performance for binomial on XeonPhi.

1880 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

is wasted. At runtime, we search for a good configuration
through an offline trained performance model to estimate the
resulting performances for all candidate configurations. The
performancemodel takes in the feature values, a given configu-
ration of resource partition and task granularity and estimates
the potential speedup for the given configuration over the sin-
gle-stream version. The overhead of runtime feature collection
and search is a few milliseconds, which is included in all our
experimental results. Since our training process can be per-
formed automatically, we can easily target our performance
model for different architectures.

3 PERFORMANCE MODELING

At the core of our approach is amachine learned performance
model built upon the Multi-layer Perceptron (MLP) artificial
neural network (ANN). Our prototype is implemented using
the Python scikit-learn machine learning package [18]. It is to
note that our prior work [16] uses a Support Vector Machine
(SVM) based classifier. However, such an approach can only
make predictions on a limited set of configurations seen at the
training time. Unlike a classification-based approach, the new
approach presented in this article is a regression-based model
which can make predictions on any stream configuration.
This new approach thus has a better generalization ability for
various heterogeneous architectures. We have also evaluated
a number of alternative modeling techniques, including MLP,
SVM, and decision trees. We chose MLP because it gives the
best performance and has modest training overhead (see
Section 6.6.1).

Our performance model takes as input the feature values
and a given configuration (e.g., #partitions and #tasks for
XeonPhi and #tasks for GPUs). It predicts the speedup for
the given configuration. Building and using such a model
follows a 3-step process for supervised learning: (i) generate
training data (ii) train a performance model (iii) use the per-
formance model, described as follows.

3.1 Training the Performance Model

Our method for model training is shown in Fig. 5. To learn a
regression model, we first need to profile the execution time
(in order to calculate the speedup over the single-stream
version) of all candidate configurations for each training
program, and extract the feature values from the program.
We then use the feature values, configuration settings and
speedups to train a model.

3.1.1 Generating Training Data

To generate training data, we apply cross-validation to 39
benchmarks, i.e., by excluding the testing benchmarks from

the training dataset (see also Section 5.3.1). We execute each
training program and benchmark a number of times until the
gap of the upper and lower confidence bounds is smaller
than 5 percent under a 95 percent confidence interval setting.
We then calculate the average speedup for a given stream
configuration over the single-stream version. We exhaus-
tively execute each training program across a wide range of
stream configurations, and record the performance of each.
Next, we calculate the speedup for each configuration, pro-
gram and dataset. Finally, we extract the values of our
selected set of features from each program and dataset. We
stress that the trained model can be applied to stream config-
urations that are not seen in the training phase.

3.1.2 Profiling Configurations

During the training phase, we exhaustively execute each
training program across a set of streamed configurations. On
XeonPhi, we profile each training program using the #parti-
tions ranging from 1 to 224 (themaximumnumber of physical
threads on XeonPhi) and the #tasks ranging from 1 to 256.2 On
GPUs, we cannot configure the number of partitions cur-
rently, we set the #partitions to the same as #tasks to be consis-
tent with XenPhi. On this platform, we also set the #tasks to be
range between 20 and 210, which is big enough to include the
optimal values according to our experiments. Note that these
parameter ranges can be configured by the user.

3.1.3 Building the Model

Each evaluated configuration is appended to the feature value
vector of a training program to form a model input. The
model inputs and the corresponding speedups (i.e., ground
truths) for all training programs are passed to a learning algo-
rithm. The algorithm finds a correlation between the input
vector and the desired prediction. The output of our learning
algorithm is an MLP model where the weights of the model
are determined from the training data. Model parameter
tuning is performed on the training dataset for each target-
ing hardware architecture, using cross-validation (see also
Section 6.6.3). In our case, the overall training process for all
the 39 training programs (which is dominated by training
data generation) takes less than a week on a single machine.
Since training is performed only once “at the factory”, this is a
one-off cost.

3.2 Features

Our performance models are based exclusively on code and
dynamic features of the target programs. Code features are
extracted from the program source code, and dynamic fea-
tures are collected using hardware performance counters

Fig. 4. Our machine learning based performance model (trained offline)
predicts the speedup based on the extracted feature values of the code
and a given stream configuration. We use the predictions to quickly rank
candidate configurations at runtime to choose the one with the best pre-
dicted performance.

Fig. 5. The training process of our performance model.

2. We chose these values because configuration settings beyond
these values give a poor performance during our initial evaluation.

ZHANG ETAL.: OPTIMIZING STREAMING PARALLELISM ON HETEROGENEOUS MANY-CORE ARCHITECTURES 1881

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

during the initial profiling run of the target application. We
restrict us in using hardware performance counters that are
commonly available on modern processors such as the data
cache misses to ensure that our approach can be applied to
a wide range of many-core architectures.

We considered 38 candidate raw features in this work.
Some features were chosen from our intuition based on fac-
tors that can affect the performance such as dts (host-
device data transfer size) and #xfer_mem, while other fea-
tures were chosen based on previous work [19], [20].

3.2.1 Feature Selection

To build an accurate model through supervised learning, the
training sample size typically needs to be at least one order
of magnitude greater than the number of features. In this
work, we start from 311 training samples and 38 raw fea-
tures, so we would like to reduce the number of features in
use. Our process for feature selection is fully automatic,
described as follows.

We first combine several raw features to form a set of com-
bined normalized features, which are able to carrymore infor-
mation than the individual parts. For example, instead of
reporting raw branch hit and miss counts, we use the branch
miss rate. Next, we removed raw features that carried similar
information which is already captured by chosen features. To
find which features are closely correlated, we constructed a
correlation coefficient matrix using the Pearson correlation
coefficient [21]. The closer a coefficient between two features
is to +/-1, the stronger the correlation between the two input
features. We removed any feature which had a correlation
coefficient (taking the absolute value) greater than 0.7. Similar
features include the number of executed instructions and the
number of E-stage cycles thatwere successfully completed.

Our feature selection process reduces the number of fea-
tures to 10 for XeonPhi (see Table 1) and 10 for the NVIDIA
Titan 1080Ti GPU (see Table 2), where some features are
shared. Since our approach for feature selection is auto-
matic, the approach can be applied to other sets of candidate
features. It is to note that feature selection is also performed
using cross-validation (see also Section 5.2).

3.2.2 Feature Standardization

Supervised learning typically requires the feature values to
lie in a certain range. Therefore, we scaled the value for each

of our features between the range of 0 and 1. We record the
maximum and minimum value of each feature found at
the training phase, and use these values to scale features
extracted from a new application after deployment. We trun-
cate a value during deployment if the value is outside the
minimum/maximum value range seen during training. It is
to note that we also use the same approach to normalize the
model predictions (speedups) to the range of 0 and 1. In this
work, we choose Z-score to standardize the training data,
and the details of quantifying the impact of feature engineer-
ingmethods can be found in Section 6.6.2.

3.2.3 Feature Importance

To understand the usefulness3 of each feature, we apply a
factor analysis technique called Varimax rotation [22] to the
feature space transformed by the principal component anal-
ysis (PCA). This technique quantifies the contribution of
each feature to the overall variance in each of the PCA

dimensions. Intuitively, the more variances a feature brings
to the space, the more useful information the feature carries.

As an example, Fig. 6 shows the top features chosen for
XeonPhi and NVIDIA GPU architectures. For the XeonPhi
platform, features that capture the parallelism degree (e.g.,
max blocks), host-device communication (e.g., redundant
transfer size), and computation (e.g. #instructions)
are found to be important. Other features such as L1 DCR and
loop nest are useful, but are less important compared to
others. On theNVIDIAGPUplatform, we note that the paral-
lelism degree is important, and the other features are equally
useful (Fig. 6b). This figure shows that prediction can accu-
rately draw upon a subset of aggregated feature values.

3.3 Runtime Deployment

Once we have built and trained our performance model as
described above, we can use it as a cost function to search for
the best stream configuration for any new, unseen program.
Feature values are extracted from the single-stream version
of the code. Static code features (such as loop count) are
extracted from the program source at compile time. Dynamic

TABLE 1
Chosen Features for XeonPhi Performance Model

Feature Description

loop nest at which level the outermost parallelizable loop
lies on

loop count # of the parallel loop iterations
#xfer_mem # of host-device transfer API calls
dts total host-device transfer size
redundant transfer
size

host-device transfer size among overlapping
tasks

max blocks the maximum number of tasks of the application
min task unit the minimum task granularity for a partition
instructions the total number of instructions of the kernel
branch miss branch miss rate
L1 DCR L1 Data cache miss rate

TABLE 2
Chosen Features for GPU Programs

Feature Description

Access type 1 # array access, whose fastest varying
index is an affine function of the block id

Access type 2 #array accesses, whose second or
higher dimensional index is an affine
function of the block id

#xfer_mem # of host-device transfer API calls
host to device transfer size total host to device transfer size
device to host transfer size total device to host transfer size
redundant transfer size host-device transfer size among

overlapping tasks
max blocks the maximum number of tasks
instructions the total number of instructions of the

kernel
divergent branches # divergent branches
L2 read miss rate L2 cache read miss rate

3. In Section 6.6.4, we give a further breakdown of the impact of
individual feature to the model performance on a per benchmark basis.

1882 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

features (such as branch miss) are extracted by profiling
the program without partitioning for a few loop iterations
(which typically translate to several microseconds). After
feature collection, we feed the feature values to the search
engine to rank all candidate configurations using the perfor-
mance model. The top-ranked stream configuration is then
used for the target program. In Section 4.4, we provide fur-
ther details on how the performancemodel can be integrated
with the host code generation process.

3.3.1 Adapt to Changing Program Phases

Our current implementation chooses a configuration for
each kernel and does not change the configuration through-
out the kernel execution. Therefore, it can adapt to different
behaviors across kernels because predictions are performed
on a per-kernel basis. We found that this strategy is suffi-
cient for many data-parallel kernels targeted in this work.

Our approach can be extended to adapt phase or program
behavior changes within a kernel. One way of doing this is to
first partition the input data into groups and then perform
configuration selection before launching the kernel that per-
forms on an input data group. To reduce the prediction and
configuration overhead, we can sample periodically to see if
the performance counter readings are significantly different
from the ones used for the current prediction to trigger re-
configuration. Dynamic re-configuration of a running kernel
will require extending the underlying runtime (e.g., HSTREAMS

or CUDA) to adjust thread mapping and having hardware
support to stop and resume the execution contexts. We leave
this as future work.

4 OPENMP TO STREAMED CODE GENERATOR

Currently, there are very few publicly available benchmarks
for utilizing the streaming capability of heterogeneous
many-core architectures, in particular, XeonPhi. To evaluate
our approach on a diverse set of benchmarks, we have devel-
oped a compiler-based code generator, AUTOSTREAMER, to
automatically translate OpenMP programs onto streamed

code depending on the target architecture. Our code genera-
tor is open sourced.4 Our implementation currently supports
converting OpenMP code to HSTREAMS, CUDA and OpenCL
programs. While we do not claim novelty on this as several
works on source-to-source translation from OpenMP to
CUDA [23], [24], [25], [26] or OpenCL [20], [27] exist, we
believe the tool could serve as a useful utility for translating
OpenMP programs to exploit multi-stream performance on
heterogeneousmany-core architectures.

4.1 Code Generator Overview

Fig. 7 depicts our source to source code generator for trans-
lating OpenMP code to streamed programs. We use
LLVM’s Clang front-end to convert OpenMP code into the
abstract syntax tree (AST). We then traverse the AST to
obtain the information to generate candidate streamed ker-
nels and host-device management code. The generated ker-
nel and host code make use of exiting programming models
for kernel launching and communication management. We
use HSTREAMS for XeonPhi and CUDA or OpenCL for GPUs.

Our current implementation supports the translation of
OpenMP parallel loops, i.e., loops annotatedwith omp for or
omp for reduction constructs. For each parallel loop, we
outline the loop body and translate it into an individual ker-
nel function. We then replace the original loop body with a
function call (running on the host CPU) to launch the gener-
ated kernel. We also generate management code for stream-
ing context initialization, data partitioning, data movements
between the host and the accelerator, etc.

Our code generator relies on the native host/device com-
piler to optimize the generated code.We have also compared
our automatically generated code against the manually
translated code used in our prior work [16] and found that
there is little difference in performance for the set of OpenMP
benchmarks used in this work.

4.2 Preprocessing

As an example, Fig. 8 illustrates how an OpenMP parallel
loop can be translated into HSTREAMS code for XeonPhi. Note
that a similar code generation process is implemented for
GPUs, using CUDA for NVIDIA GPU architectures and
OpenCL for other GPU platforms.

For each OpenMP parallel loop, we extract information
of loop iterations from the loop head. In this work, partition-
ing is achieved by splitting the loop iteration space. Further-
more, we collect all the variables needed by the HSTREAMS

kernel. Because HSTREAMS requires kernel parameters to be
passed as the uint64_t (lines 1-2 of Fig. 8b), the kernel

Fig. 6. Feature importance on (a) XeonPhi and (b) NVIDIAGPU.

Fig. 7. Work flow for translating OpenMP programs to streamed pro-
grams using our automatic code generator.

4. Available at: https://github.com/wisdom-moon/autostreamer.

ZHANG ETAL.: OPTIMIZING STREAMING PARALLELISM ON HETEROGENEOUS MANY-CORE ARCHITECTURES 1883

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

https://github.com/wisdom-moon/autostreamer

parameters will be cast into this type. The kernel parameters
need to be packed into an array (line 21 in Fig. 8c). Then the
HSTREAMS library will unpack kernel parameters from the
array and pass the parameters to kernel function.

During the preprocessing stage, we also extract the static
code feature values of each target parallel loop. The code
feature values will be encoded into the source code during
host code generation. It is to note that our approach can be
easily applied to existing HSTREAMS programs—by first gath-
ering feature values from an HSTREAMS kernel, and then stor-
ing the extracted information in an auxiliary file or source
code through a compiler front-end pass.

4.3 Kernel Code Generation

Generating a streamed kernel function is straightforward as
much of the OpenMP code can be re-used. Fig. 8b gives an
example of the automatically generated kernel for the
OpenMP loop given in Fig. 8a for HSTREAMS kernels.

For the example given in Fig. 8, an HSTREAMS kernel starts
with a pre-processor macro COINATIVELIBEXPORT (lines
1-2 in Fig. 8b). The number and the type of the kernel param-
eters are loop-specific and are automatically determined by
our code generator.Within the generated kernel, all the func-
tion parameters are cast from uint64_t into an appropriate
type before they are used. Note that the OpenMP parallel

for pragmas are kept in the generated kernel code per
HSTREAMS requirement (line 8 in Fig. 8b).

With our code generator, the original outer-most loop iter-
ation space will be partitioned among parallel streams. The
amount of work given to a specific stream is determined by
the _start and _end variables, which define which part of
the loop iteration space a stream instance will work on. A
similar kernel code generation approach is implemented for
GPUs using CUDAor OpenCL.

4.4 Host Code Generation

To generate host code, we replace the original OpenMP par-
allel loop with a function call to invoke the generated kernel
(e.g., hStreams_EnqueueCompute in Fig. 8c)) together
with additional code to initialize the host context and to
manage data transfer.

4.4.1 Feature Value Collection

Static code features, extracted by our code generator, will be
encoded as a feature vector of real values. The feature vector
will be passed to our configuration search engine to find the
optimal stream configuration at runtime. Dynamic feature
values are automatically collected by running the generated
streamed kernel for 5 iterations under the single-stream con-
figuration. As some loop bounds are dependent on the input,
we might be unable to determine certain feature values at
compile time. These features are represented as static sym-
bolic pre-computation of loop bound variables, which will
be updated using runtime values at runtime.

4.4.2 Setting Stream Configurations

To partition tasks among streams, we break the loop itera-
tions into a number of chunks of an equal size of subtask. We
then group the hardware processor cores into partitions,
where each partition contains a fixed set of streams. Proces-
sor partitioning and streams creation are achieved by calling
the hStreams_app_init (line 12 in Fig. 8c) function for
XeonPhi (and cudaStreamCreate and clCreateCom-

mandQueue for CUDA and OpenCL programs respectively)

Fig. 8. A running example of translating (a) an OpenMP parallel loop to
(b) HSTREAMS kernel and (c) host management code.

1884 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

by passing the stream configuration given by our search
engine. To overlap host device communications, we further
split the input/output data arrays to multiple data blocks
(lines 32-39 in Fig. 8c) where each task operates on one block
at a time while another data block is transferring between the
host and the accelerator. The number of data blocks is deter-
mined by the stream configuration chosen at program run-
time. The amount of work per task and the size of transferred
data can be determinedwith kernel parameters. For example,
in for-loop at line 24 of Fig. 8c,we calculate themwith the start-
ing position (_start) and the block size (sub_block).
Thereafter, we schedule tasks and transfer the corresponding
data blocks onto streams in a round-robin fashion.

4.4.3 Runtime Prediction

When a streamed (e.g., HSTREAMS or CUDA) kernel is invoked,
the configuration selection engine librarywill choose a stream
configuration (line 7 in Fig. 8c) for the kernel. It uses the per-
formance model to rank the candidate stream configurations
and returns the optimal configuration (#partitions and #tasks
for the example shown in Fig. 8). The returned values are then
used to initialize the streamed context (lines 8-9 of Fig. 8c).
The overhead of prediction is negligible (a few milliseconds)
and is included in the results.

4.4.4 Supporting OpenMP Constructs

OpenMP variables may have additional type information
specified by directives, including default, share, pri-
vate, firstprivate, lastprivate,copyin and thread-

private. Our generator uses these directives to map data
onto the accelerator memory space. Each variable with the
share or default directive will be translated into a global
variable shared by all parallel threads. Variables declared as
private and threadprivate are translated such that there
is a private copy for each streamed kernel; no memory trans-
fer between the host and the accelerator is needed. For each
variable specified as copyin or first private, we create a
private copy for each streamed kernel but initialize each copy
using explicit memory transfers before its first use. Similarly,
we create a private copy of a last private variable and the
original variable is updated by a stream that executes the last
iteration.

Our implementation also supports a number of synchro-
nization and thread constructs. Structured blocks identified
with master, and single directives are executed by one
thread on the host multi-core. barrier is implemented by
splitting up the parallel loop into smaller tasks to create syn-
chronization points among multiple streams. critical is
implemented by using a mutex lock to restrict the execution
of the associated structured blocks to a single thread at a
time. The atomic and flush directives are already sup-
ported by HSTREAMS, CUDA or OpenCL.

4.4.5 Host-Accelerator Communication Optimization

For each buffer that is used by both the host and the acceler-
ator, we manage two copies: one on the host memory and
the other on the accelerator memory. Our runtime records
the status of each variable and checks whether the copy on
a device memory space is valid or not. No memory transfer

is needed as long as the copy in the target memory space is
valid. We currently use a conservative approach: if an ele-
ment of an buffer has been updated, the entire buffer needs
to be synchronized before it can be used by threads running
on a different device. We also avoid unnecessary device to
host data transfer by tracking the data dependence between
the kernel and the host program. For example, when there
are data-dependencies between two kernels but the host
does not access this data in between the two kernels, we
directly pass the memory address of the buffer to the later
kernel (without moving the data back to the host).

5 EXPERIMENTAL SETUP

5.1 Hardware, Systems Software, and Benchmarks

Platforms. We evaluate our approach on two heterogeneous
many-core platforms: one is a CPU-XeonPhi platform and
the other is a CPU-GPU platform. Table 3 gives details of
our hardware platforms.

Systems Software. On the CPU-XeonPhi platform, the host
CPU and the accelerator are connected through PCIe. The
host runs Redhat Linux v7.0 (with kernel v3.10). The copro-
cessor runs a customized uOS (v2.6.38.8). We use Intel’s
MPSS (v3.6) to communicate between the host and the copro-
cessor. We use the Intel HSTREAMS library (v3.6) and Intel ICC
(v16.0.3) for compilation (with �O3 as the compiler option).
The CPU-GPU platform runs Ubuntu 16.04 (with kernel
v4.15).We use CUDA v10.0 and gcc v5.3 as the host compiler
with option “-O3”.

Benchmarks. We use our code generator to translate 37
OpenMP applications from commonly used benchmark
suites into HSTREAMS and CUDA programs.We have excluded
benchmarks where the data transfer cannot be overlapped
with the kernel execution,whichdonot benefit from streamed
parallelization. Table 4 gives the full list of these benchmarks.
Among them, convolutionFFT2d and convolutionSe-

parable have algorithm-dependent parameters, which are
regarded as different benchmarks in the experiments. This
setting gives us a total of 39 programs. We run the majority
of the programs using over 25 different datasets, except for
some applications where we used around 10 datasets because
the algorithmic constraints prevent us from using a larger
number of inputs.

5.2 Competitive Approaches

We compare our regression-based approach against our
preliminary work that employs an SVM-based classifier to
predict the optimal stream configuration [16]. We denote
our prior approach as SVM-classifier. We also compare
our approach against two recent models for predicting the
optimal stream configuration on GPUs. As it is currently
not possible to configure the number of processor partitions
on GPUs, the relevant GPU models can only predict the
number of tasks.

TABLE 3
Our Evaluation Platforms

CPU-XeonPhi CPU-GPU

CPU 8-core Xeon CPU @ 2.6 GHz Core i7-8700K CPU @ 3.7 GHz
Accelerator Intel Xeon 31SP Phi NVIDIA GeForce GTX 1080 Ti GPU

ZHANG ETAL.: OPTIMIZING STREAMING PARALLELISM ON HETEROGENEOUS MANY-CORE ARCHITECTURES 1885

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

Liu et al. In [12], Liu et al. use linear regression models to
search for the optimal number of tasks for GPU pro-
grams [12]. The approach employs several analytic models,
described as follows.

For a task with an input data size of m, the transferring
time between the CPU and the accelerator, Tt, is determined
as Tt ¼ a �mþ b, and the computation time, Tc, is calculated
as: Tc ¼ h �mþ g where the model coefficients, a, b, h and g,
are determined through empirical experiments. For a given
kernel with N input data elements running using n streams,
this approach partitions the computation into n tasks, where
the data size for each task, m, is equal to N/n. For the pro-
grams which kernel dominated, the total execution time,
Ttotal, can be determined by

Ttotal ¼ Tt þ nTc ¼ a �mþNg

m
þNhþ b:

For the programs which data transfer dominated

Ttotal ¼ a �N þ 2
N

m
b:

By calculating the partial differential and second-order
partial differential of Ttotal with respect to m, we can obtain

the optimal task-granularity as m ¼
ffiffiffiffiffi

Ng
a

q

. Then we can cal-
culate the number of tasks (n).

Note that m ¼ N=2 is the optimal parameter for pro-
grams which data transfer dominated, i.e., the optimal num-
ber of tasks is 2. Another problem of this model is that it
does not consider scenarios where communications in dif-
ferent direction (i.e., host to device and device to host) can
overlap with each other. Note that we set the #partitions to
be the same as n for XeonPhi.

Werkhoven et al. The work presented by Werkhoven et al.
models the performance of data transfers between the CPU
and the GPU [10]. They use the LogGP model to estimate
the host-device data transfer time. Specifically, the model
estimates the data transfer time using five parameters: the
communication latency (L), overhead (o), the gap (g), the
number of processors (P), and the PCIe bandwidth (G).

Let Bhd denotes the amount of data transferred from the
host to the device and Bdh denotes vice versa, and Tkernel

donates the kernel execution time. For the dominant trans-
fer scenario, the optimal number of tasks (i.e., #tasks), Ns,
can be estimated by solving the following equations:

Bdh �Gdh þ g � ðNs � 1Þ ¼
Tkernel
Ns

þ Bdh
Ns

�Gdh; ifBdh > Bhd

Bhd
Ns

�Ghd þ Tkernel
Ns

; otherwise

(

:

This model does not consider the dominant kernel sce-
nario, as it assumes the kernel execution time will increase as
the number of streams increases and can notmodel the kernel
execution time. Here, we use the same equation to calculate
the optimal number of tasks. For this model, we also set the
#partitions to be equal to the optimalNs value on XeonPhi.

5.3 Evaluation Methodology

5.3.1 Model Evaluation

We use cross-validation to evaluate our machine learning
models. To test the portability of our approach, we apply
leave-one-out cross-validation, described as follows. We
exclude the target program for predictions from the training
program set, and learn a model using the remaining pro-
grams. We then apply the learned model to the testing pro-
gram. We repeat this process until each benchmark is tested
once. This is a standard evaluation methodology, providing
an estimate of the generalization ability of a machine learned
model in predicting unseendata. Note that we exclude both
convolutionFFT2d and convolutionSeparable from
the training set when one of the two is evaluated, and we
make sure all approaches are trained on the same bench-
marks for fair comparisons.

5.3.2 Performance Report

We run each program under a stream configuration multiple
times and report the geometric mean of the runtime. Com-
pared to the arithmetic mean, the geometric mean is often
considered as a more suitable metric for reporting program
performance, as it can better minimize the impact of out-
liers [28]. To determine how many runs are needed, we cal-
culated the confidence range using a 95 percent confidence
interval andmake sure that the difference between the upper
and lower confidence bounds is smaller than 5 percent.

6 EXPERIMENTAL RESULTS

In this section, we first present the overall performance of
our approach on both platforms. We then compare our
approach to that uses fixed stream configurations, two prior
analytical models and our previous work. We futher discuss
the benefit sources of the streaming parallelism and the
working mechanism of our approach. At last, we demon-
strate the tunning process of our model.

6.1 Overall Performance

In this experiment, we exhaustively profiled each applica-
tion with all possible stream configurations and report the
best-found performance as the Oracle performance. The
Oracle gives an indication of how close our approach is to a
theoretically perfect solution. The baseline used to calculate

TABLE 4
Streamed Benchmarks Used in Our Experiments

Suite Name Acronym Name Acronym

NVIDIA SDK

convol.Separable convsepr1(8) dotProduct dotprod
convolutionFFT2d fftx1y1(4y3) fwt fwt
MonteCarlo montecarlo matVecMul mvmult
scalarProd scalarprod transpose transpose
vectorAdd vecadd

AMD SDK
binomial binomial BlackScholes blackscholes
dct dct prefixSum prefix

Parboil

bfs bfs histo histo
lbm lbm mri-q mri-q
mri-gridding mri-gridding sad sad
sgemm sgemm spmv spmv

POLY BENCH

2mm 2mm 3mm 3mm
adi adi correlation correlation
covariance covariance deriche deriche
gemm gemm gemver gemver
gesummv gesummv heat-3d heat-3d
jacobi-1d jacobi-1d jacobi-2d jacobi-2d
mvt mvt syr2k syr2k
syrk syrk

1886 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

the speedup is running the application using a single-
stream without processor core or task partitioning.

The overall result is shown in Fig. 9. The min-max bar on
the diagram shows the range of speedups per application
across all evaluated inputs. Overall, our approach achieves
an average speedup of 1.57� and 1.1� over the single-
stream configuration on XeonPhi and the GPU respectively.
This translates to 93.7 and 97.9 percent of the Oracle perfor-
mance on XeonPhi and the GPU respectively.

On XeonPhi, the performance improvement of our
approach comes from two factors. First, by predicting the
right processor partition size, our approach allows effective
overlapping of the host-device communication and computa-
tion. Second, by matching task parallelism to the number of
available processor cores, our approach can reduce the over-
head of thread management, compared to the single-stream
execution. When the host-device communication time domi-
nates the streaming process, the performance improvement
mainly comes from computation-communication overlap-
ping and the speedup from streaming is consistently less
than 2�. When the kernel execution time dominates the
streamprocess, the application can benefit from the overhead
reduction of thread management. In this case, the speedup
can be as large as 5�. We provide a further discussion on this
later in Section 6.5.1.

On the GPU, we can exploit bidirectional data transfer
between the host and the device by using pined memory
which is not supported by HSTREAMS. The support of bidirec-
tional data transfer allows us to obtain further performance
gains by overlapping host-device data transfer and computa-
tion. The theoretically up-bound speedup on the GPU plat-
form is 3�, when data transfer is perfectly overlapped with
computation. The representative sample is fftx4y3 with
the larges dataset, the data transfer time in the two directions
is the same, and the kernel execution time is 1.5 times of the
data transfer time. The oracle speedup is 2.3�, and our
approach achieves a speedup of 2.2 �. On the other hand,
because the current GPU implementation does not support

processor core partition, the kernel execution time benefits
less from usingmultiple streams. Programswhich the kernel
execution time dominated have no speedup using multiple
streams, such as bfs, MonteCarlo.

6.2 Comparison to Fixed Stream Configurations

Our approach predicts from a wide range of stream configu-
rations, which configuration is likely to give the best perfor-
mance for a given program and dataset. A natural question
to ask is that: is there a fixed stream configuration that gives rea-
sonable good performance across benchmarks and datasets? To
answer this question, we compare our predictive modeling
based approach to two specific configurations on each of our
evaluation platforms. Our justification for why we selecting
the fixed configurations are described as follows. On Xeon-
Phi, our initial results in Section 2 indicate that using the
stream configuration of (4, 16), i.e., partitioning the cores to 4
groups and running 4 tasks on each partition (16 tasks in
total), gives good performance. The statistics obtained from
the training data suggest that the configuration of (17, 85)
give the best average performance across training samples.
On the GPU, several programs support a maximum of 4
tasks. Thus we select the two configurations (2, 2) and (4, 4).
The results are shown in Fig. 10.

6.2.1 XeonPhi

On XeonPhi, we observe improved performance for several
benchmarks such as mri-gridding, transpose, sad,
under both configurations, but slower performance for dot-
prod, vecadd, blackscholes, lbm, and mir-q (Fig. 10a).
For prefix, configuration (17, 85) delivers improved perfor-
mance while configuration (4, 16) leads to slowdown perfor-
mance. Overall, none of the two fixed configurations give
an improved performance on average. On average, our
approach outperforms the two fixed configurations by a fac-
tor of 1.4, and delivers consistently improved performance
across benchmarks and datasets.

Fig. 9. Overall performance of our approach over a single-stream version on XeonPhi (a) and NVIDIA GPU (b). Our approach achieves, on average,
93.7 and 97.9 percent of the oracle performance on XeonPhi and NVIDIA GPU, respectively. The min-max bars show the range of performance
achieved across different inputs.

ZHANG ETAL.: OPTIMIZING STREAMING PARALLELISM ON HETEROGENEOUS MANY-CORE ARCHITECTURES 1887

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

The violin plot in Fig. 11a shows how far is each of the
three schemes to the Oracle performance across benchmarks
and datasets. Our approach not only delivers the closest
performance to the Oracle, but also has the largest number
of samples whose performance is next to the Oracle. By con-
trast, the performance given by the fixed configurations for
many samples is farther from the Oracle performance.

6.2.2 GPU

On the GPU, in most cases, the performance of configuration
(2, 2) is moderate, not great, but not much worse than single-
version, leading to an average speedup 1.03� (Fig. 10b). By
contrast, although configuration (4, 4) performs poorly on
two programs, it delivers a slightly larger averaged speedup
of 1.04�. By choosing the stream configuration on a per-
program basis, our approach outperforms the two fixed con-
figurations, achieving an averaged speedup 1.10�. On only
four programs, our approach delivers slightly worse perfor-
mancewith a small margin.

The violin plot in Fig. 11b also confirms the strengths of
our approach by presenting the distribution of performance
improvement. The results on the diagram are normalized to

the Oracle (best-available) performance. For most of the pro-
grams, the two fixed configurations deliver 80 to 100 percent
to the Oracle performance. However, configuration (4, 4)
can lead to rather poor performance (less than 40 percent to
the best available performance) on some programs. Com-
pared to the fixed configurations, the performance distribu-
tion given by our approach is centralized on a range
between 90 to 100 percent, where most programs are within
this percentile range. Furthermore, compared to the fixed
configurations, our approach has a fewer number of perfor-
mance outliers, which have less serious performance slow-
down. Therefore, our approach delivers consistently better
performance compared with the fixed configurations.

6.2.3 Summary

This experiment confirms that a fixed configuration fails to
deliver improved performance across applications and
datasets, and selecting a right stream configuration on a per
program, per dataset basis is thus required.

6.3 Comparison to Analytical Models

In this experiment, we compare our approach to the two
recent analytical models described in Section 5.2. The results
are shown in Figs. 12 and 13. On XeonPhi, both competitive
models prefer using 2 tasks across benchmarks and datasets.
This is because that many programs are kernel dominated,
the analytical models simply assume that task partition has
no effect on kernel’s performance, and do not consider the
thread management overhead. On the GPU, the model pro-
posed by Liu et al. tends to use 2 tasks across benchmarks and
datasets. This is due to the fact that most programs are data
transfer dominated and this model ignores the overlap of the
bidirectional data transfers between the host and the device.

XeonPhi. Fig. 12a demonstrates that our approach gives
better performance for nearly all programs on XeonPhi. For
the remaining handful programs, all three approaches deliver
comparable performance. Compared to the results Fig. 10, we

Fig. 10. Comparing the performance with two fixed configurations on XeonPhi (a) and NVIDIA GPU (b): config. (4,16) of 4 partitions and 4 tasks per
partition, config. (17, 85) of 17 partitions and 5 tasks per partition, config. (2, 2) of 2 partitions and 1 tasks per partition, and config. (4, 4) of 4 parti-
tions and 1 tasks per partition.

Fig. 11. Violin plot showing the distribution of speedups per scheme
across benchmarks and datasets on XeonPhi (a) andGPU (b). The shape
of the violin corresponds to the speedup distribution to the oracle perfor-
mance. The thick black line showswhere 50 percent of the data lies.

1888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

can find the performance of the analytical models is similar to
fixed stream configurations. This is because the performance
of the seven programs, such as binomial, changes dramati-
cally with different stream configurations (see also Fig. 2).
The performance of the remaining programs is not sensitive
to the variation of stream configurations. From Fig. 13a, we
can further see that Liu et al. and Werkhoven et al. deliver a
speedup within a range on 20 to 80 percent, while the perfor-
mance of our approach is centralized on a range between
80 to 100 percent. Thus, our approach delivers consistently
better performance comparedwith the alternativemodels.

GPU. Fig. 12b shows that our approach delivers better
performance for around 75 percent of the programs on the
GPU. SinceWerkhoven et al. and Liu et al. are manually tuned
for the GPUs, they give better performance on some bench-
marks over our approach. However, our approach has the
advantages of being automatically learned from training
data, with little expert involvement. The performance of our
approach can be further improved by using more training
examples to better cover the program space. Fig. 13b shows
that Liu et al. andWerkhoven et al. delivers a speedupwithin a
range of 5 to 80 percent, and 70 to 100 percent, respectively.
By contrast, the performance of our approach is centralized
within a range between 90 to 100 percent for more programs.
Therefore, overall, our approach delivers better average per-
formance comparedwith the alternativemodels.

6.4 Comparison to Classification-Based Approach

Our prior work uses a SVM classifier to predict the configu-
rations [16]. Compared with it, the regression-based model
presented in this article has several advantages.

A classification model predicts which of a set of prede-
fined labels the input belongs to. Using this strategy, we
will need to label each unique stream configuration. This
will lead to a total of 175 labels for 311 profiling samples on
the XeonPhi, and 11 labels on the GPU. On the XeonPhi, the
ratio of samples to labels is too small to build an accurate
model. As a result, we have to merge labels in our prior
work [16] at the cost of losing accuracy. Classification is a
constraint optimization problem where the model has to
know all the possible configurations during training.
Our new regression-based approach avoids this pitfall by
directly modeling the impact of the stream configuration; it
thereby can be used on any stream configuration as the con-
figuration is the model’s input.

Fig. 14a presents results obtained on the XeonPhi. Our
regression-based approach outperforms the SVM-clas-

sifier in 21 of the 39 programs and achieves over 5 per-
cent performance improvement for 13 programs. It is to
note that the overhead for ranking stream configurations
is included in the experimental results. Overall, our
regression-based approach improves the SVM-classi-

fier by, on average, 3 percent (up to 46 percent). Unlike
XeonPhi, we were able to obtain sufficient training sam-
ples per label (because the optimization space is smaller)
on the GPU to build a more accurate classification model.
As can be seen from Fig. 14b, the average speedup of
SVM-classifier and the regression-based approach is
comparable.

Compared to a classifier, our regression-based approach
has the advantage of being able to be applied to configura-
tions that were not seen during the training phase. There-
fore, our approach has a better generalization ability.

6.5 Further Analysis of Performance Results

We now take a closer look into the performance results,
using XeonPhi as a case study.

Fig. 12. Comparing against Liu et al. andWerkhoven et al. on XeonPhi (a) and NVIDIA GPU (b).

Fig. 13. Violin plots showing the distribution of speedups across bench-
marks and datasets on XeonPhi (a) and GPU (b).

ZHANG ETAL.: OPTIMIZING STREAMING PARALLELISM ON HETEROGENEOUS MANY-CORE ARCHITECTURES 1889

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

6.5.1 High Speedup Cases

On XeonPhi, bidirectional data transfer between the host
and the accelerator cannot be overlapped, i.e., we can only
issue data transfer from the host to the device or vice versa
at once but not simultaneously. As a result, the theoretical
up-bound speedup for overlapping computation and com-
munication is 2�, when the computation is perfectly over-
lapped with the data transfer time. It is interesting to
observe that several benchmarks achieve a speedup of over
2� on XeonPhi (see Fig. 9a). After having a closer investiga-
tion, we notice that such performance is attributed to the
reduction in the kernel execution time in additional to the
overlapping of communication and computation.

To quantify the benefit of kernel time reduction, we mea-
sure the kernel execution time with and without multiple
streams and calculate the speedup between them. Note that
we exclude the host-device communication time in this case to iso-
late the contributing factors. The kernel time improvement for
transpose, binomial, and fftx1y1 is shown in Fig. 15.
As can be seen from the diagram, choosing a good stream con-
figuration can lead to more than 4x reduction on the kernel
execution time. This is because these benchmarks are imple-
mented by parallelizing the inner loop within a nested loop.
During runtime, the parallel threads working on the inner
loop will be created, synchronized, or destroyed for each
outer loop iteration. Such threading overhead could be signifi-
cant when the outer loop iterates a large number of times.
With multiple streams, we divide the whole outer loop itera-
tion space into multiple smaller iterations. This allows multi-
ple groups of threads to be managed simultaneously, leading

to a significant decrease in threading overhead and faster ker-
nel execution time. On the other hand, using too many
streams and partitions will lead to a performance decrease.
This is because stream management also comes at a cost,
which increases as the number of partitions grows. Nonethe-
less, for applications where the kernel computation domi-
nates the program execution time, by reducing the kernel
time can lead to additional improvement, yielding more than
2x speedups.

6.5.2 Speedup Distribution

Fig. 16 gives the speedup per benchmark across datasets on
XeonPhi and the GPU. The shape of the violin plot corre-
sponds to the speedup distribution.

On XeonPhi, we see that the speedups of montecarlo
and prefix distribute fairly uniformly while the data distri-
bution of fftx1y1 and fftx4y3 is multimodal (i.e., it has
two peaks). Further, the input datasets have little impact on
the behavior of fwt and lbm, so the speedups remain con-
stant across datasets.

On the GPU, the speedups of dotprod, vecadd, black-
scholes and mri-q distribute fairly uniformly while the
data distribution of convsepr1, convsepr8, fftx1y1,
fftx4y3 and dct is unimodal (i.e., it has one peak). Further-
more, the input datasets have a very slight impact on the
performance behaviors of montecarlo, scalarprod,
transpose and binomial. Thus, their speedups remain
constant across datasets.

To conclude, the streaming speedups of some applica-
tions are sensitive to their input datasets whereas the others
are not. And the distribution of speedups on the GPU is
more concentrated than XeonPhi. This is because the cur-
rent GPU implementation does not support processor core
partition, the kernel execution time benefits less from multi-
ple streams than XeonPhi.

6.5.3 Correlation Analysis

Fig. 17 shows the relation between the computation-
communication ratio and the achieved speedup when using
heterogeneous streams across all benchmarks and datasets

Fig. 14. Comparing against a classification based approach on XeonPhi (a) and NVIDIA GPU (b).

Fig. 15. Reduction of kernel computation time over a single-stream exe-
cution on XeonPhi. The performance improvement comes from the
reduction of the threading overhead. A stream configuration is annotated
as (#partitions, #tasks).

1890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

on XeonPhi. We see that the computation-communication
ratio varies over the benchmarks and the speedup changes
accordingly, but in general, a higher computation-to-com-
munication ratio leads to a greater speedup. As explained
in Section 6.5.1, in addition to overlapping computation and
communication, our approach can also reduce the kernel
computation time by choosing the right stream configura-
tion. Therefore, benchmarks with a high computation-com-
munication ratio also benefit from a reduction in the kernel
computation time.

To quantify the relation between the computation-com-
munication ratio and the speedup, we calculate the Pearson
correlation coefficient of the two variables. The calculation
gives a correlation coefficient of 0.7, indicating that the two
variables (the computation-communication ratio and the
speedup) have a strong linear correlation. By carefully select-
ing the stream configuration, our approach tries to maximize
the overlap between communication and computation,
which thus leads to favourable performance.

6.5.4 Impact of Streaming Parallelism

Our earlier experiments show that by carefully exploiting
streaming parallelism, we can significantly improve appli-
cation performance. We now take a closer look at three

representative benchmarks, fftx1y1, fwtand gesummv, to
get a better understanding of streaming performance on
XeonPhi. These benchmarks represent different degrees of
benefits obtained from streamed parallelism (with a speedup
of 2�, 1.5� and 1�, respectively).

We use the following analytical model to breakdown the
execution time of a multi-stream program

T ¼ Tm þ Tk þ Tc � To; (1)

where Tm is host-device data transfer time, Tk is kernel exe-
cution time, Tc is the overhead for initializing the context,
and To is overlapping time between data transfer and kernel
execution. We measure T , Tm, Tk, and Tc, and use the meas-
urements to calculate To.

Fig. 18 gives the breakdown for the five components in
Equation (1). For each testing program, we compare the sin-
gle-stream configuration against the best-performing multi-
stream configuration. The host-device data transfer time, Tm,
is nearly constant among a single and a multiple stream con-
figuration, but multi-streaming can reduce the kernel execu-
tion time, Tk, by exploiting the spatial sharing of processing
resources among computation tasks. The overhead of initial-
izing the HSTREAMS context, Tc, depends on the kernel execu-
tion time. For fftx1y1 and fwt, whose kernels run for
a sufficiently long time, this one-off runtime overhead is
negligible. However, for gesummv, this overhead cannot be

Fig. 16. Violin plot showing the distribution of speedups per benchmark across datasets on XeonPhi (a) and NVIDIA GPU. (b) The shape of the violin
corresponds to the speedup distribution. The thick black line shows where 50 percent of the data lies.

Fig. 17. The relation between computation-communication ratio and the
speedup. The computation-communication ratio is normalized using the
natural logarithm function. Thus, the kernel computation time equals the
host-device communication time when ratio ¼ 0. In general, a higher
computation-communication ratio leads to a better speedup.

Fig. 18. Breakdown of program execution time (T), host-device data
transfer time (Tm), kernel execution time (Tk), HSTREAMS context initializa-
tion overhead (Tc) and communication-computation overlapping time (To)
for single and best-performingmulti-stream configurations.

ZHANG ETAL.: OPTIMIZING STREAMING PARALLELISM ON HETEROGENEOUS MANY-CORE ARCHITECTURES 1891

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

ignored due to the relatively short kernel running time. The
contribution for overlapping host-device communications
with kernel execution, To, varies across programs. For
fftx1y1 and fwt, it accounts for around 50 percent of Tm,
suggesting that by exploiting temporal sharing to overlap
communication with kernel execution can amortize the host-
device communication overhead. For gesummv, To is small
due to little alignment between data transfer and kernel exe-
cution. As such, there is little benefit for exploiting temporal
sharing for this program.

This experiment gives a more detailed analysis for the
benefits of exploiting multiple streams. The results reinforce
our claim that the benefit for streaming parallelism depends
on the computation kernel and hence an adaptive scheme
for choosing the optimal stream configuration is needed.
Our work aims to offer such a capability.

6.6 Analysis of Predictive Modeling Techniques

In this section, we analyse the working mechanism of our
predictive model, using XeonPhi as an evaluation platform.

6.6.1 Comparison to Alternative Modeling Techniques

We compare our MLP-based model against four widely used
regression methods: the DCT (Decision Tree), the RF (Ran-
dom Forest), the XGB (eXtreme Gradient Boosting) and SVM

(Support Vector Machine) as well as four classification mod-
els: SVM, DCT, MLP and KNN (K-Nearest Neighbors). We use
the Radial basis function kernel for the SVMmodels.

For each technique, we follow the same training method-
ology and use the same features and training examples to
build a model. For classification models, we apply the label
merging process described in our prior work [16] to improve
the prediction accuracy. Table 5 compares the training
overhead, average prediction time and achieved average
speedup for each model. We note that training a regression-
based SVM model has the largest overhead. Although train-
ing a DCT has less overhead over our MLP-based regression
model, MLP gives better prediction performance. The RF and
XGB models are based on DCT, but they do not yield a better
performance. Compared to regression models, a classifica-
tion model takes less time to train and make predictions.
However, classification models give worse performance
over regression models as they require more training data to
cover the optimization space. Overall, we choose to use a
regression-based approach and employ MLP because it gives
the best overall prediction performance and has modest
training overhead.

6.6.2 Feature Engineering

Feature engineering has a significant impact on the perfor-
mance of a machine learning model (Section 3.2). Here
we quantify the impact of feature engineering methods. In
this work, we consider three standard feature engineering
approaches including standardization, normalization and
dimension reduction.

Standardization converts all features value to be in a com-
mon range, e.g., between 0 and 1. The idea is to prevent the
feature value range to dominate the importance of that fea-
ture. In this work we apply a commonly used standardiza-
tionmethod calledZ-score [29] to standardize the raw feature
values and the speedups (i.e., prediction targets) in the train-
ing data. We found that feature standardization improves
the achieved speedup by 3 percent on average, and speedup
standardization improves the achieved speedup by 5 percent
on average.

Normalization scales the feature values to make them fol-
low the normal distribution. We have tested a range of nor-
malization methods including the square root, the reciprocal
of square root and the natural logarithm transformation.
However, we found that normalization does not improve
ourmodel prediction accuracy.

Dimension reduction reduces the number of features, which
is often useful when the number of training examples is not
proportional to the number of feature dimensions. In this
work, we apply factor analysis (FA) [30] and principal com-
ponent analysis (PCA) [31] to the raw features. Applying PCA

and using 9 PCA components gives the best overall result, by
improving the average speedup by 17 percent. PCA outper-
forms FAwhich gives an average 3 percent improvement on
the achieved speedup.

6.6.3 MLP Parameters Tuning

We now discuss the impact of the MLP parameter choices.
There are four configurable parameters for an MLP model:
the activation function, the number of hidden layers, the
number of neurons, and the learning algorithm (i.e., the
solver). For activation functions, we consider identity,
logistic, tanh and relu. For hidden layers and neurons,
we vary the number of hidden layers from 1 to 5 and the
number of neurons per layer from 3 to 100. For the solver, we
consider three commonly used weight optimizers: lbfgs,
sgd and and adam. We use scikit-learn implementations for
the activation function and the solver. Our experimental
results suggest that the best-performing activation function
and solver are tanh and adam respectively, and using three
hidden layerswith 9 neurons per layers gives the best overall
results on our training data. Overall, tuning MLP model
parameter improves the average speedup by 5 percent over
the default parameter setting.

6.6.4 Impact of Individual Feature

In this experiment, we consider the impact of a specific fea-
ture to the resultant performance. Fig. 19 presents a Hinton
diagram illustrating how important a feature contribution
to the performance model prediction accuracy (which in
turns affects the resulting application performance). The
larger the box, the more significant a feature for a given pro-
gram’s performance. Here, the x-axis denotes the programs,

TABLE 5
Comparison to Alternative Modeling Techniques

Technique Training time Avg. pred. time Avg. speedup

SVM (regression) 100 hours 2280 ms 1.56
DCT (regression) 65.57 seconds 0.74 ms 1.51
RF (regression) 317.89 seconds 11.94 ms 1.51
XGB (regression) 28.46 seconds 0.74 ms 1.49
MLP (regression, ours) 245.8 seconds 0.76 ms 1.57
SVM (classifier) 1.28 seconds 0.10 ms 1.53
DCT (classifier) 0.79 seconds 0.05 ms 1.38
MLP(classifier) 46.45 seconds 0.05 ms 1.41
KNN (classifier) 0.22 seconds 0.23 ms 1.43

1892 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

and the y-axis denotes the features used by our performance
model. The impact of a feature is quantified by measuring
how much speedup improvement can be obtained if that
feature is used by the performance model. Note that this is
a post-hoc analysis and, in general, we cannot know in
advance the importance of a feature on unseen programs.
Fig. 19 shows that all the features are important for the set of
benchmarks targeted in the work, but the importance of fea-
tures varies across programs. This diagram illustrates how
hard it is to develop an analytical model to capture the
diverse behaviors and characteristics of streaming programs.

7 RELATED WORK

Our work builds upon the following past foundation, while
qualitatively differing from each.

Task Scheduling. There is considerable work on distributing
work across heterogeneous processors to improve application
performance [32], [33], [34]. Prior work in the area typically
assumes that the processor configuration is fixed and relies on
the operating system to schedule parallel tasks across process-
ing units. Recent studies show that by partitioning the proc-
essing units into groups it is possible to significantly improve
the application performance by overlapping the host-device
communication and computation on coprocessors like Intel
XeonPhi [6], [14]. However, existing approaches rely on static
tuning to find the processor partition and the best number
of streams to run within a partition. As a result, previous
approaches cannot adapt to the change of program inputs. As
a departure from prior work, we develop an automatic
approach to dynamically adjust the processor partition and
task-granularity during runtime, considering the characteris-
tics of applications and input datasets; our approach thereby
can adapt to the change of program inputs.

Domain-Specific Optimizations. There is considerable work
on domain-specific optimization on Intel XeonPhi. Cheng
et al. [35] and Jha et al. [36] show that in-memory database
applications suffer from under-utilization of processor
resources and hence a fine-grained tuning approach is
required. Mrphi is a framework for optimizing MapReduce
workload on the XeonPhi [37]. It employs a set of techniques
to improve the resource utilization to obtain higher applica-
tion performance. Other works look at performance optimi-
zation for numerical solvers [38], sparse matrix vector
multiplication [39], [40], and dynamic stochastic economic
models [39]. Ferr~ao et al. [41] and Memeti et al. [42] develop

a stream processing framework for XeonPhi to increase the
programming productivity. The runtime can automatically
distribute workloads across CPUs and accelerating devices.
These approaches improve the processor utilization by
adjusting the algorithmic design, which are complementary
to our work on tuning multi-streaming parallelism for data
parallel applications.

Multiple Streams Modeling. Gomez-Luna et al. [11] develop
a set of models to estimate the asynchronous data transfer
overhead on different GPU architectures. The models can be
used to estimate the optimal number of streams to use on a
givenGPUplatform.Werkhoven et al. [10] present an analyti-
calmodel to determinewhen to apply an overlappingmethod
on GPUs. Liu et al. [12] also develop an analytical based
approach to determine the optimal number of streams to use
on GPUs. However, none of these approaches considers the
processor partition. Aswe have shown in Section 6.3, ignoring
the processor partitioning parameter can lead to poor perfor-
mance on Intel XeonPhi. Furthermore, these hand-crafted
models have the drawback of being not portable across archi-
tectures as the model is tightly coupled to a specific GPU
architecture. Our work advances prior work by employing
machine learning to automatically learn the optimal processor
partition and the number of streams/tasks to use. Since our
models are automatically learned from empirical observa-
tions, one can easily re-learn amodel for a new architecture.

Predictive Modeling. Recent studies have shown that
machine learning based predictive modeling is effective in
code optimization [43], [44], performance predicting [45],
[46], parallelism mapping [20], [47], [48], [49], [50], and task
scheduling [51], [52], [53], [54], [55]. Its great advantage is its
ability to adapt to the ever-changing platforms as it has no
prior assumption about their behavior. The work presented
by Wen et al. [56] employs SVMs to develop a binary classi-
fier to predict that if a given OpenCL kernel can achieve a
large speedup or not. Ourwork differs from [56] in that it tar-
gets a different architecture and programming model, and it
predicts from a larger number of configurations instead of
making a binary prediction. Our prior work developed an
SVM based classifier to predict the optimal stream configura-
tion for Intel XeonPhi [16]. However, it requires having suffi-
cient training data samples to cover all possible stream
configurations. Our approach improves the prior work by
directly modeling the impact of the stream configuration. As
a result, our approach can make predictions for any stream
configuration (even those are not seen in the training data).

Fig. 19. A Hinton diagram showing the impact of each feature used by the performance model to the resultant application performance. The larger
the box, the more likely a feature has a greater impact on the performance of the respective benchmark.

ZHANG ETAL.: OPTIMIZING STREAMING PARALLELISM ON HETEROGENEOUS MANY-CORE ARCHITECTURES 1893

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

Autotuning Parallel Programs. Our approach is closely
related to autotuning that searches for the best-performing
optimization configuration [57], [58]. This technique is dem-
onstrated to be effective for choosing algorithmic choices [59],
tuningGPU code [60], [61], [62], optimizing structured paral-
lel programs [63], [64] and non-uniform memory access
(NUMA) architectures [65], and more recently for deep neu-
ral networks [66]. Many of the prior works in this area
employ an evolutionary-based approach by applying and
profiling candidate optimization options to choose a good
option to use. One of the key changes of autotuning is how to
avoid the profiling overhead which could be prohibitively
expensive. We do so by using a performance model to
quickly evaluate the profitability of a candidate optimization
option. We show that our approach has low runtime over-
head, which thus permits us to apply it at runtime to best
match the optimization strategy to the program input. Fur-
thermore, our work is the first for tuning heterogeneous
streaming parallelism on heterogeneous many-cores (Xeon-
Phis andGPUs).

Automatic Generation of Parallel Programs. The OpenMPC
compiler [67] translates OpenMP to CUDA programs. Wang
et al. [20], [24], [68] translates OpenMP to OpenCL programs
and use machine learning to select the most suitable device
from the host CPU and the GPU to run the code. Rawat et al.
presents an automatic approach to generate GPU code from
a domain-specific language (DSL) for stencil programs [69].
All of the above approaches target GPUs, and do not utilize
themulti-streaming strategy.

8 CONCLUSION

This article has presented an automatic approach to exploit
streaming parallelism on heterogeneous many-cores. Cen-
tral to our approach is a machine learning-based model
that predicts the resulting performance when running the
target application under a given streamed configuration.
The performance predictor is then used as a cost function
to quickly rank candidate configurations at runtime, to
determine which stream configuration should be used on a
per-program per-dataset basis. We have evaluated our
approach on an Intel XeonPhi and an NVIDIA GTX 1080 Ti
GPU, with 39 representative benchmarks. Experimental
results show that our approach delivers an average
speedup of 1.6x and 1.1x on XeonPhi and the GPU, respec-
tively. These results translate to over 93 percent of the best-
available performance.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
Research and Development Program of China under Grant
2018YFB0204301, the National Natural Science Foundation
of China under Grants 61972408, 61602501, and 61872294.

REFERENCES

[1] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU computing,” Proc. IEEE, vol. 96, no. 5,
pp. 879–899, May 2008.

[2] A. Li et al., “Exploring and analyzing the real impact of modern
on-package memory on HPC scientific kernels,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2017, Art. no. 26.

[3] C. Chen et al., “LU factorization on heterogeneous systems: An
energy-efficient approach towards high performance,” Computing,
vol. 99, pp. 791–811, 2017.

[4] M. R. Meswani et al., “Modeling and predicting performance of
high performance computing applications on hardware acceler-
ators,” Int. J. High Perform. Comput. Appl., vol. 27, pp. 89–108, 2013.

[5] J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive perfor-
mance comparison of CUDA and OpenCL,” in Proc. Int. Conf. Paral-
lel Process., 2011, pp. 216–225.

[6] C. J. Newburn et al., “Heterogeneous streaming,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp. Workshops, 2016, pp. 611–620.

[7] CUDA C Best Practices Guide Version 7.0, NVIDIA Inc., 2015.
[8] The Khronos OpenCLWorking Group, “OpenCL - The open stan-

dard for parallel programming of heterogeneous systems,” 2016.
[Online]. Available: http://www.khronos.org/opencl/

[9] hStreams Architecture for MPSS 3.5, Intel Inc., 2015.
[10] B. Van Werkhoven, J. Maassen, F. J. Seinstra, and H. E. Bal,

“Performance models for CPU-GPU data transfers,” in Proc. 14th
IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2014, pp. 11–20.

[11] J. G�oMez-Luna et al., “Performance models for asynchronous data
transfers on consumer graphics processing units,” J. Parallel Distrib.
Comput., vol. 72, pp. 1117–1126, 2012.

[12] B. Liu et al., “Software pipelining for graphic processing unit
acceleration: Partition, scheduling and granularity,” Int. J. High
Perform. Comput. Appl., vol. 30, pp. 169–185, 2016.

[13] Z. Li et al., “Streaming applications on heterogeneous platforms,”
in Proc. IFIP Int. Conf. Netw. Parallel Comput., 2016, pp. 116–129.

[14] J. Fang et al., “Evaluating multiple streams on heterogeneous
platforms,” Parallel Process. Lett., vol. 26, 2016, Art. no. 1640002.

[15] Z. Li, J. Fang, T. Tang, X. Chen, C. Chen, and C. Yang, “Evaluating
the performance impact of multiple streams on the MIC-based
heterogeneous platform,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp. Workshops, 2016, pp. 1341–1350.

[16] P. Zhang, J. Fang, T. Tang, C. Yang, and Z. Wang, “Auto-tuning
streamed applications on Intel Xeon Phi,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., 2018, pp. 515–525.

[17] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. Int. Symp.
Code Gener. Optim., 2004, pp. 75–86.

[18] F. Pedregosa et al., “Scikit-learn: Machine learning in python,”
J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[19] G. Fursin et al., “MILEPOST GCC: Machine learning based
research compiler,” in GCC Summit, 2008.

[20] Z. Wang et al., “Automatic and portable mapping of data parallel
programs to OpenCL for GPU-based heterogeneous systems,”
ACM Trans. Archit. Code Optim., vol. 11, 2015, Art. no. 42.

[21] S. Boslaugh, Statistics in a Nutshell, 2nd ed. Sebastopol, CA, USA:
O’Reilly Media, 2012.

[22] B. F. Manly, Multivariate Statistical Methods: A Primer. Boca Raton,
FL, USA: CRC Press, 2004.

[23] S. Lee et al., “OpenMP to GPGPU: A compiler framework for auto-
matic translation and optimization,” ACMSIGPLANNotices, vol. 44,
pp. 101–110, 2009.

[24] D. Grewe, Z. Wang, and M. F. P. O’Boyle, “Portable mapping of
data parallel programs to OpenCL for heterogeneous systems,” in
Proc. IEEE/ACM Int. Symp. Code Gener. Optim., 2013, pp. 1–10.

[25] D. Mikushin, N. Likhogrud, E. Z. Zhang, and C. Bergstr€om,
“KernelGen–the design and implementation of a next generation
compiler platform for accelerating numerical models on GPUs,”
in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2014,
pp. 1011–1020.

[26] T. Grosser and T. Hoefler, “Polly-ACC transparent compilation to
heterogeneous hardware,” in Proc. Int. Conf. Supercomput., 2016,
pp. 1–13.

[27] R. Sotomayor et al., “Automatic CPU/GPU generation of multi-
versioned OpenCL kernels for C++ scientific applications,” Int. J.
Parallel Program., vol. 45, pp. 262–282, 2017.

[28] W. Ertel, “On the definition of speedup,” in Proc. Int. Conf. Parallel
Archit. Lang. Europe, 1994, pp. 289–300.

[29] E. Kreyszig, Advanced Engineering Mathematics, 10th ed. Hoboken,
NJ, USA: Wiley, 2009.

[30] R. L.Gorsuch, Factor Analysis, 2nd ed. Evanston, IL, USA:Routledge,
2014.

[31] H. Hotelling, “Analysis of a complex of statistical variables into
principal components,” J. Educ. Psychol., vol. 24, pp. 417–441, 1933.

[32] S. Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous
computing techniques,” ACM Comput. Surv., vol. 47, no. 4, 2015,
Art. no. 69.

1894 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

http://www.khronos.org/opencl/

[33] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” in Proc.
42nd Annu. IEEE/ACM Int. Symp. Microarchit., 2009, pp. 45–55.

[34] J. Shen, A. L. Varbanescu, Y. Lu, P. Zou, and H. Sips, “Workload
partitioning for accelerating applications on heterogeneous
platforms,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 9,
pp. 2766–2780, Sep. 2016.

[35] X. Cheng et al., “Many-core needs fine-grained scheduling: A case
study of query processing on Intel Xeon Phi processors,” J. Parallel
Distrib. Comput., vol. 120, pp. 395–404, 2018.

[36] S. Jha et al., “Improving main memory hash joins on Intel Xeon Phi
processors: An experimental approach,” Proc. VLDB Endowment,
vol. 8, pp. 642–653, 2015.

[37] M. Lu, Y. Liang, H. P. Huynh, Z. Ong, B. He, and R. S. M. Goh,
“MrPhi: An optimized MapReduce framework on Intel Xeon Phi
coprocessors,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 11,
pp. 3066–3078, Nov. 2015.

[38] A. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based
optimization of EULAG kernel on Intel Xeon Phi through load
imbalancing,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 3,
pp. 787–797, Mar. 2017.

[39] W. T. Tang et al., “Optimizing and auto-tuning scale-free sparse
matrix-vector multiplication on Intel Xeon Phi,” in Proc. IEEE/
ACM Int. Symp. Code Gener. Optim., 2015, pp. 136–145.

[40] M. E. Guney et al., “Optimizing matrix multiplication on Intel
Xeon PhiTH x200 architecture,” in Proc. IEEE 24th Symp. Comput.
Arithmetic, 2017, pp. 144–145.

[41] P. Ferr~ao et al., “Stream processing on hybrid CPU/Intel Xeon Phi
systems,” in Proc. Eur. Conf. Parallel Process., 2018, pp. 796–810.

[42] S. Memeti and S. Pllana, “HSTREAM: A directive-based language
extension for heterogeneous stream computing,” in Proc. IEEE Int.
Conf. Comput. Sci. Eng., 2018, pp. 138–145.

[43] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-
end deep learning of optimization heuristics,” in Proc. 26th Int.
Conf. Parallel Archit. Compilation Techn., 2017, pp. 219–232.

[44] Z. Wang and M. O’Boyle, “Machine learning in compiler opti-
misation,” Proc. IEEE, vol. 106, no. 11, pp. 1879–1901, Nov. 2018.

[45] J. Zhao, H. Cui, J. Xue, and X. Feng, “Predicting cross-core perfor-
mance interference on multicore processors with regression analy-
sis,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1443–1456,
May 2016.

[46] Z. Wang and M. F. O’boyle, “Using machine learning to partition
streaming programs,” ACM Trans. Archit. Code Optim., vol. 10,
2013, Art. no. 20.

[47] G. Tournavitis et al., “Towards a holistic approach to auto-paralle-
lization: Integrating profile-driven parallelism detection and
machine-learning based mapping,” ACM SIGPLAN Notices,
vol. 44, pp. 177–187, 2009.

[48] Z. Wang and M. F. O’Boyle, “Partitioning streaming parallelism
for multi-cores: A machine learning based approach,” in Proc.
19th Int. Conf. Parallel Archit. Compilation Techn., 2010, pp. 307–318.

[49] Z. Wang et al., “Integrating profile-driven parallelism detection
and machine-learning-based mapping,” ACM Trans. Archit. Code
Optim., vol. 11, 2014, Art. no. 2.

[50] B. Taylor et al., “Adaptive optimization for OpenCL programs on
embedded heterogeneous systems,” in Proc. 18th ACM SIGPLAN/
SIGBEDConf. Lang. Compilers Tools Embedded Syst., 2017, pp. 11–20.

[51] M. K. Emani, Z. Wang, and M. F. P. O’Boyle, “Smart, adaptive
mapping of parallelism in the presence of external workload,” in
Proc. IEEE/ACM Int. Symp. Code Gener. Optim., 2013, pp. 1–10.

[52] V. S. Marco et al., “Improving spark application throughput via
memory aware task co-location: A mixture of experts approach,” in
Proc. 18th ACM/IFIP/USENIXMiddleware Conf., 2017, pp. 95–108.

[53] J. Ren, L. Gao, H. Wang, and Z. Wang, “Optimise web browsing
on heterogeneous mobile platforms: A machine learning based
approach,” in Proc. IEEE INFOCOM, 2017, pp. 1–9.

[54] J. Ren, L. Gao, H. Wang, and Z. Wang, “Proteus: Network-aware
web browsing on heterogeneous mobile systems,” in Proc. 14th
Int. Conf. Emerg. Netw. Experiments Technol., 2018, pp. 379–392.

[55] L. Yuan, J. Ren, L. Gao, Z. Tang, and Z. Wang, “Using machine
learning to optimize web interactions on heterogeneous mobile
systems,” IEEE Access, vol. 7, pp. 139394–139408, 2019.

[56] Y. Wen, Z. Wang, and M. F. P. O’Boyle, “Smart multi-task schedul-
ing for OpenCL programs on CPU/GPU heterogeneous platforms,”
inProc. 21st Int. Conf. High Perform. Comput., 2014, pp. 1–10.

[57] K. Datta et al., “Stencil computation optimization and auto-tuning
on state-of-the-art multicore architectures,” in Proc. ACM/IEEE
Conf. Supercomput., 2008, pp. 1–12.

[58] J. Ansel et al., “OpenTuner: An extensible framework for program
autotuning,” inProc. 23rd Int. Conf. Parallel Archit. Compilation Techn.,
2014, pp. 303–315.

[59] J. Ragan-Kelley et al., “Halide: A language and compiler for opti-
mizing parallelism, locality, and recomputation in image process-
ing pipelines,” in Proc. 34th ACM SIGPLAN Conf. Program. Lang.
Des. Implementation, 2013, pp. 519–530.

[60] A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT library for
CUDA GPUs,” in Proc. Conf. High Perform. Comput. Netw. Storage
Anal., 2009, pp. 1–10.

[61] P. Tillet and D. Cox, “Input-aware auto-tuning of compute-bound
HPC kernels,” in Proc. Conf. High Perform. Comput. Netw. Storage
Anal., 2017, pp. 1–12.

[62] T. T. Dao and J. Lee, “An auto-tuner forOpenCLwork-group size on
GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 2, pp. 283–296,
Feb. 2018.

[63] U. Dastgeer et al., “Auto-tuning SkePU: A multi-backend skeleton
programming framework for multi-GPU systems,” in Proc. 4th
Int. Workshop Multicore Softw. Eng., 2011, pp. 25–32.

[64] J. J. Thiagarajan et al., “Bootstrapping parameter space exploration
for fast tuning,” in Proc. Int. Conf. Supercomput., 2018, pp. 385–395.

[65] T. Katagiri, S.Ohshima, andM.Matsumoto, “Auto-tuning onNUMA
and many-core environments with an FDM code,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp.Workshops, 2017, pp. 1399–1407.

[66] L. Liao et al., “UHCL-darknet: An OpenCL-based deep neural net-
work framework for heterogeneous multi-/many-core clusters,”
in Proc. 47th Int. Conf. Parallel Process., 2018, Art. no. 44.

[67] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP pro-
gramming and tuning for GPUs,” in Proc. ACM/IEEE Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2010, pp. 1–11.

[68] Z.Wang et al., “Exploitation of GPUs for the parallelisation of proba-
bly parallel legacy code,” in Proc. Int. Conf. Compiler Construction,
2014, pp. 154–173.

[69] P. S. Rawat et al., “Domain-specific optimization and generation of
high-performance GPU code for stencil computations,” Proc. IEEE,
vol. 106, no. 11, pp. 1902–1920, Nov. 2018.

Peng Zhang received the master’s degree in com-
puter science from the National University of
Defense Technology (NUDT), Changsha, China, in
2016, where is currently working toward the PhD
degree. His research interests include heteroge-
neous programming, performance optimization of
parallel programs, and source-to-source compilers.

Jianbin Fang received the PhD degree from the
Parallel and Distributed SystemGroup, Delft Univer-
sity of Technology, Delft, The Netherlands. He is cur-
rently an assistant professor in computer science
with NUDT. His research interests include parallel
programming for many-cores, parallel compilers,
performancemodeling, and scalable algorithms.

Canqun Yang is currently a full processor in
computer science with NUDT. His research inter-
ests include performance analysis of high-perfor-
mance computing systems, parallel compilers,
parallel programming, and high-performance com-
puting applications.

ZHANG ETAL.: OPTIMIZING STREAMING PARALLELISM ON HETEROGENEOUS MANY-CORE ARCHITECTURES 1895

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

Chun Huang is currently a full processor in com-
puter science with NUDT. Her research interests
include high-performance computing systems, par-
allel compilers, parallel programming, and high-
performancemath libraries.

Tao Tang received the BSc, MSc, and PhD
degrees from the National University of Defense
Technology (NUDT), Changsha, China. He is cur-
rently an associate processor in computer science
with NUDT. His research interests include com-
pilers, parallel programming, and high- perfor-
mance computing.

Zheng Wang is currently an associate professor
with theUniversity of Leeds.His research cut across
the boundaries of parallel program optimisation,
systems security, and applied machine learning. He
received four best paper awards for his work on
machine learning-based compiler optimisation
(PACT ’10, CGO ’17, PACT ’17, andCGO ’19).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1896 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:39:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

