
Combining Structured Static Code Information and Dynamic
Symbolic Traces for Software Vulnerability Prediction

Huanting Wang
Northwest University, China
University of Leeds, U. K.

Zhanyong Tang∗

Northwest University, China
Shin Hwei Tan

Concordia University, Canada

Jie Wang
Northwest University, China

Yuzhe Liu
Northwest University, China

Hejun Fang
Northwest University, China

Chunwei Xia
University of Leeds, U. K.

Zheng Wang∗

University of Leeds, U. K.

ABSTRACT

Deep learning (DL) has emerged as a viable means for identify-

ing software bugs and vulnerabilities. The success of DL relies on

having a suitable representation of the problem domain. However,

existing DL-based solutions for learning program representations

have limitations – they either cannot capture the deep, precise

program semantics or suffer from poor scalability. We present Con-

coction, the first DL system to learn program presentations by

combining static source code information and dynamic program

execution traces. Concoction employs unsupervised active learn-

ing techniques to determine a subset of important paths to collect

dynamic symbolic execution traces. By implementing a focused

symbolic execution solution, Concoction brings the benefits of

static and dynamic code features while reducing the expensive sym-

bolic execution overhead. We integrate Concoction with fuzzing

techniques to detect function-level code vulnerabilities in C pro-

grams from 20 open-source projects. In 200 hours of automated

concurrent test runs, Concoction has successfully uncovered vul-

nerabilities in all tested projects, identifying 54 unique vulnera-

bilities and yielding 37 new, unique CVE IDs. Concoction also

significantly outperforms 16 prior methods by providing higher

accuracy and lower false positive rates.

CCS CONCEPTS

• Security and privacy → Software security engineering; •

Computing methodologies→ Artificial intelligence.

KEYWORDS

Software vulnerability detection, Deep learning, Symbolic execu-

tion

ACM Reference Format:

Huanting Wang, Zhanyong Tang∗, Shin Hwei Tan, Jie Wang, Yuzhe Liu,

Hejun Fang, Chunwei Xia, and Zheng Wang. 2024. Combining Structured

∗Corresponding faculty authors: Zhanyong Tang and Zheng Wang.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639212

Static Code Information and Dynamic Symbolic Traces for Software Vul-

nerability Prediction. In 2024 IEEE/ACM 46th International Conference on

Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3639212

1 INTRODUCTION

Despite significant efforts to enhance software reliability, software

vulnerabilities remain a primary concern in modern software devel-

opment [40, 58]. In recent years, deep learning (DL) techniques have

emerged as a powerful method for constructing sophisticated tools

and models to identify common software bugs and vulnerabilities

[21, 57, 59, 60, 63, 80, 84]. By training a predictive model on large

volumes of training data, DL models can learn the latent code pat-

terns indicative of vulnerable programs. Once trained, these models

can be applied to new, previously unseen programs to identify

potentially buggy code [8, 58].

The success of a supervised learning model is heavily dependent

on having a suitable representation of the problem domain that can

encode the essential information needed for the task at hand, such

as vulnerability detection in our case [72]. In the context of DL-

based code modeling, this requires constructing numerical vectors,

or embeddings, that capture the important characteristics of the

program source code or binary.

The vast majority of DL-based code modeling techniques rely

on deep neural networks (DNNs) to learn program representations

from static code, such as source code texts [57, 59, 60], abstract

syntax trees (ASTs) [54, 75], program data and control flow graphs

(PDCGs) [21, 63, 88], or a combination of these [80]. While static

code information can capture all possible program execution paths,

it can suffer from complex and ambiguous information due to redun-

dant statements, complex data structures, and extensive execution

paths in the source code. Like classical compiler analysis, this can

lead to over-conservative decisions and a high false-positive rate1,

and a low true positive ratio [15] for automatic bug detection.

More recent approaches, like LIGER [81], attempted to use dy-

namic execution traces to learn program representation. These

approaches utilize execution statements seen during profiling to

represent static program information and track changes in program

1In this paper, a false positive occurs when the code does not contain a bug or vulnera-
bility, but the detection model indicates otherwise. By contrast, a false negative occurs
when the model fails to identify a true bug or vulnerability.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639212&domain=pdf&date_stamp=2024-04-12

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Huanting Wang, Zhanyong Tang∗ , Shin Hwei Tan, Jie Wang, Yuzhe Liu, Hejun Fang, Chunwei Xia, and Zheng Wang

variables to capture dynamic program behavior. By considering dy-

namic execution paths, symbolic traces provide precise information

about dynamic program behavior and reduce false-positive rates in

code analysis. While promising, prior approaches have two limi-

tations. Firstly, they solely rely on executed code statements seen

for static code representation. This can suffer from poor coverage

and overlook the structured data flow and dependence information

available in the static program graph. This comprehensive data

and control flow information is crucial for vulnerability detection,

encompassing all possible execution paths. Secondly, they employ

random sampling for dynamic tracing, which presents challenges

when applying dynamic tracing methods to real-world software

projects due to the expensive overhead of symbolic executions [18].

In this paper, we ask the question, “what if we could bring the best

of static and dynamic code information in a single DL framework for

code vulnerability detection?". In response, we develop Concoction,

a new DL system to combine static and dynamic code representa-

tion to detect software bugs and vulnerabilities at the source code

level. Specifically, static code information, such as PDCG (Program

Data and Control-flow dependence Graph), offers a high-level view

of all possible program behaviors and data flow information, which

can mitigate the coverage issue of symbolic execution. On the other

hand, symbolic execution traces on a small set of carefully selected

execution paths can provide more precise information and deeper

program semantics to disambiguate static code information. By

integrating these two types of information, we avoid the computa-

tional overhead of running symbolic executions on every possible

execution path while still leveraging the benefits of deep program

semantics provided by dynamic executions.

Concoction utilizes a Transformer-basedDNN architecture [78]

to leverage static and dynamic code information. The model com-

prises a representation component and a detection component. The

representation component maps static and dynamic program in-

formation into a joint embedding (or feature vector) for program

representations. The detection component takes the program rep-

resentation as input and predicts whether the input code contains

a vulnerability. One of the key features of Concoction is its abil-

ity to minimize the overhead of dynamic tracing. This is achieved

by employing a path selection component during deployment to

determine which execution paths from the PDCG should be chosen

to collect symbolic execution traces. These traces are then fed into

the representation component to generate dynamic embeddings,

which are combined with the static embeddings and passed to the

detection model for vulnerability prediction.

To overcome the challenge of limited numbers of labeled code

samples, Concoction combines supervised and unsupervised learn-

ing techniques. We first leverage unsupervised contrastive learning

to pretrain the representation network. For this purpose, we employ

the language masking method [76] and train the representation

model on a dataset of 100K unlabeled C functions sourced from

GitHub and open datasets. To generate additional training samples,

we introduce a dropout-based contrastive learning component [34].

The contrastive loss function encourages the model to understand

code semantics better by mapping similar samples closely and dis-

tantiating those with different semantics in the embedding space.

Furthermore, we also extend unsupervised learning to train the

path selection component using the same unlabeled training dataset.

Once the representation component is trained, we remove the con-

trastive learning network and combine the representation layers

with the detection component, creating an end-to-end model. This

model takes joint embeddings of static and dynamic information

as input and predicts whether the input code contains a bug. To

train the end-to-end model, we use the learned weights of the

representation model to initialize the corresponding layers of the

model and fine-tune the entire architecture on a dataset of 14K

labeled code samples obtained from public datasets, including the

Software Assurance Reference Dataset (SARD) [64] and Common

Vulnerabilities and Exposures (CVE) [2].

We have implemented a working prototype of Concoction2.

Our implementation utilizes KLEE [17] to generate the symbolic

execution traces. We demonstrate the benefits of Concoction by

applying it to C programs to detect function-level vulnerabilities

from source code. We further integrate Concoction with fuzzing

test techniques [12] to automatically generate bug-exposing test

cases when a function is predicted to have a code vulnerability,

aiming to minimize the effort of manual examination.

We evaluate Concoction by applying it to 20 diverse, real-

life open-source projects that are not presented in our training

dataset. We compare Concoction against 16 prior methods, includ-

ing eleven state-of-the-art learning-based methods [21, 23, 33, 39,

43, 57, 60, 63, 80, 81, 88], two symbolic execution engines [16, 17],

two static analysis tools [1, 4] and a fuzzing tool [31] for identify-

ing security flaws. Experimental results show that Concoction

consistently outperforms 16 competing methods across evaluation

settings by discovering more code vulnerabilities with a lower false-

positive rate. In less than 200 hours of automated concurrent test-

ing runs, Concoction has uncovered vulnerabilities in all tested

projects and successfully identified 54 software vulnerabilities, with

37 new CVE IDs assigned.

This paper makes the following contributions:

• It presents the first DL framework to effectively combine struc-

tured code information and symbolic executions for vulnerability

prediction (Sec. 3.2);

• It demonstrates how unsupervised active learning can be em-

ployed to reduce symbolic execution overhead through execution

path selection (Sec. 3.4);

• The release of two open datasets to facilitate research in leverag-

ing static code information and symbolic execution traces.

2 MOTIVATION

Static code analysis techniques for bug detection can suffer from

false positives (incorrectly flagging a bug). For example, Figure 1

shows a function b() which will not be invoked during execution

because the static array a is initialized to zero by definition, and the
condition at line 9 is evaluated to false. However, modern compilers

such as GCC and LLVM cannot detect dead code due to complex

and inaccurate pointer aliasing analysis. Similarly, DL-based bug

detection approaches [21, 39, 57, 59, 60, 63, 80, 88] that rely on static

code features predict that this example contains a “division-by-zero"

vulnerability at line 4, which is a false positive.

Avoiding a false positive (FP) of Figure 1 would require capturing

program semantics between variables, function calls and structured

2Code and data are available at https://github.com/HuantWang/CONCOCTION.

Combining Structured Static Code Information and Dynamic Symbolic Traces for Software Vulnerability Prediction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 extern void foo(void);
2 static int a[] = {0,0};

3 static int b(int c)

4 { return a[1] % c; } // false positive

5

6 int test() {

7 static int *a_ptr , c;

8 a_ptr = &(a[1]);

9 if (*a_ptr) { // unreachable branch

10 if (b(c)) {foo();}

11 }

12 return 0;}

Figure 1: This example contains a false “division-by-zero"

issue at line 4 because the branch at line 10 will not be taken.

Test case

generation

 Prediction Pre-processing
Detection

model
Detection

model

Path selection

Symbolic
execution

1 2 3
. . .

Dynamic info

Static info
Program

representation
Program

representation

ProjectsProjects
<...>

FunctionsFunctions

<...>

Functions

Figure 2: Workflow of Concoction during deployment.

data. An approach that uses only static information may not accu-

rately trace the data flow across function calls and data structures.

Meanwhile, DL-based solutions based on static code information,

such as AST or PDCG, suffer from the same issue.

Can we do better by combining static and dynamic information?

This is the insight shared in this paper. For this example, we can

infer from symbolic execution traces that the function b() will

not be executed due to the values in array a by inlining the callee

function b() to test(). The static PDCG further reveals that a
is an invariant in all possible execution paths. Combining static

and dynamic information, we can observe that this branch is never

taken, making a “division-by-zero" error impossible.

A natural question is: “why not just rely on symbolic executions?".

In an ideal world where computation resources and symbolic execu-

tion overhead are not an issue, a symbolic execution engine will be

able to identify the vulnerability of this example through exhaustive

executions. However, this is often infeasible because exhaustively

trying all possible execution paths is prohibitively expensive. This

example highlights the need to leverage static and dynamic pro-

gram information for code vulnerability detection. Concoction is

designed to offer this capability.

3 OUR APPROACH

Concoction is a DL framework for detecting software vulnerabili-

ties in source code. In this work, we apply Concoction to identify

bugs at the function level in C programs. Specifically, our work

focuses on detecting bugs and security flaws defined in the CWE

database [3]. In practice, Concoction can be integrated into an

automated build system like Jenkins [5] to execute the vulnerabil-

ity detection process as a background process when a new merge

request is submitted. As these build systems often run overnight

on a dedicated backend server, they do not affect the standard de-

velopment activities and the overhead of Concoction should be

acceptable to many developers.

The key technical contributions of Concoction include: (1) com-

bining structured static code information and symbolic execution

traces to learn program representation (Sec. 3.2.1 and 3.2.2), and (2)

a learnable path selection component to reduce symbolic execution

overhead (Sec. 3.4). Concoction builds upon prior foundations in

enhanced AST (Sec. 3.2.1), Transformer-based neural architectures,

and contrastive learning (Sec. 3.3).

3.1 Overview of Concoction

Figure 2 depicts the workflow of using Concoction to detect

function-level code vulnerabilities during deployment.

Pre-processing. Concoction uses a LLVM compiler plugin [50]

to partition the project code into individual functions by inlining

callee functions, relevant data structures, and global variables.

Prediction. Concoction extracts two types of information for

each target function: (1) AST and PDCG from static source code,

and (2) the symbolic execution traces of selected execution paths

using a symbolic execution engine [17]. It employs a path selection

component (Sec. 3.4) to identify critical paths to collect dynamic

symbolic execution traces. The static and dynamic information

produce static and dynamic embeddings through dedicated repre-

sentation networks, which are then concatenated to create a joint

representation to be used by the detection model for prediction.

Test case generation. When the model detects a potential vulner-

ability in the input function, it invokes a fuzzing engine to identify

and expose the weakness by generating randomized test inputs for

the function. As we only employ fuzzing for functions suspected to

contain vulnerabilities, the fuzzing overhead is manageable, taking

less than 12 hours for all fuzzed functions within a project.

3.2 The Concoction Architecture

Figure 3 shows the workflow of training the Concoction DL com-

ponents for program representations and vulnerability detection.

Program representation. Our representation component uses

two Transformer-based networks to map the input source code

and symbolic execution traces into a numerical embedding vector.

Then, a dense layer concatenates the embeddings generated by the

two networks to a joint vector as the output. We set the embedding

length of the static and dynamic embedding vectors to 100 dimen-

sions, leading to a joint embedding vector of 200 dimensions. As

in prior work [37], using a larger dimension does not yield better

performance in our setting but may increase the training overhead.

Vulnerability detection.The detection component is amulti-layer

perceptron (MLP) network that takes joint embedding to predict

the vulnerability. It includes a fully connected layer, a dropout layer

with a rate of 0.1, and a sigmoid layer. Our current implementation

only predicts if a function may contain a vulnerability and does not

identify the type of vulnerability.

3.2.1 Extracting static code information. We use a parser built upon

the Language Server Protocol (LSP) [38] to rewrite the variable

names with a consistent naming scheme. This step handles syn-

tactic variations in the programs. Next, we construct an enhanced

AST, using the LSP, which contains the standard syntax nodes, i.e.,

nonterminals in the language grammar like an AST node for an if
statement or function declaration, and syntax tokens, i.e., terminals

like identifier names and constant values. Following [9], we also

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Huanting Wang, Zhanyong Tang∗ , Shin Hwei Tan, Jie Wang, Yuzhe Liu, Hejun Fang, Chunwei Xia, and Zheng Wang

Unlabeled
functions

Dynamic information D
ense

D
ropout

. . .

Transformer

C
ontrastive
learning

Labeled
Functions

AST and PDCG
embeddings

Execution traces
embeddings

Detection
model

Vulnerability detection model training

D
ense

Program representation model training

D
ense

D
ropout

. . .

Dynamic
representation

model

Static
representation

modelStatic informationStatic information

C
ontrastive
learning

Figure 3: The Concoction DNN architecture and its training workflow.

Data Augmentation

. . .

Minimize
Function 1Function 1

<...>

Function 1

<...>

Function nFunction n

<...>

Function n

<...> MaximizeInput twice Positive pair

Negative pair

Input twice

D
ense

D
ropout

Pooling

Bi-Transformer

. . .

Training

Input twice

Figure 4: Contrastive learning for representation training.

introduce eight additional types of edges to the AST, including

Child, Data and Control Flows, GuardedBy, Jump, ComputedFrom,

NextToken and LastUse and LastLexicalUse, shown in Figure 3.

3.2.2 Extracting dynamic information. We use KLEE [17] to obtain

symbolic execution traces. To pre-train the representation model

(Sec. 3.3), we generate execution traces using a non-uniform ran-

dom search heuristic to explore different execution paths. During

deployment, symbolic traces are generated solely on the selected

paths instead of random search to minimize the overhead of sym-

bolic executions (Sec. 3.4). We terminate symbolic execution after

a configurable time limit (4 hours for collecting training data and

5 minutes when using the trained model). Subsequently, we com-

bine different symbolic inputs and their corresponding reachable

program paths as a sequence of execution traces to be fed into the

dynamic embedding network (Figure 3).

3.3 Contrastive Pre-training

We use a bidirectional Transformer network [39] to learn static and

dynamic program embeddings. We pre-train the static and dynamic

embedding models separately on the same unlabeled dataset. Our

pre-training dataset contains 100K C code snippets collected from

GitHub and SARD shown as Table 1. After training, we use the out-

put of the last hidden layer of the embedding networks as the static

or dynamic embedding vector. We employ contrastive learning to

increase the dataset size and enhance the model’s robustness.

3.3.1 Model inputs. We pair the source code text and flattened

enhanced AST sequence, sending them to the static embedding

network. The AST sequence is generated by traversing the AST

in a breadth-first manner. During training, the static embedding

model predicts masked tokens from either the source code or AST’s

data and control flow relations to generate contextual representa-

tions. Likewise, the dynamic embedding network takes symbolic

execution traces and maps them to an embedding vector, capturing

temporal dependencies and runtime behavior of the program.

3.3.2 Training methodology. To enhance the model’s robustness

and generalization ability, we employ dropout-based contrastive

learning [34]. Our approach includes dense, dropout, and pooling

layers, depicted in Figure 4. Specifically, we individually attach the

contrastive learning component to the static and dynamic represen-

tation networks. Then, we train each combined network separately

and remove them from the contrastive learning component.

Contrastive learning increases the training dataset size by adding

noises to the data. Concoction randomly disables neurons in the

representation network, generating various dropouts as shown in

Figure 4. Specifically, it passes the code sample inputs 𝑥𝑖 through the
representation network twice with different dropout probabilities,

resulting in two different embeddings as a “positive pair” for 𝑥𝑖 .
Another sample is paired with 𝑥𝑖 to create a “negative pair”. The

contrastive learning component is then used to predict positive

samples from negatives in a training mini-batch and calculate the

loss. The training process aims to minimize the standard Noise

Contrastive Estimate (NCE) loss function [47] to maximize the

agreement between semantically similar pairs.

3.3.3 Training the end-to-end detection model. After training the

static and dynamic embedding networks, we attach them to a dense

layer to create joint embeddings for the detection network. This

forms the final end-to-end architecture shown in the right part

of Figure 3. The joint representation component serves as the en-

coder, and we initialize its weights using those obtained during

pre-training. We train the end-to-end network using labeled data

samples, which consist of 13,768 C code snippets from CVE and

SARD datasets. Each sample has a two-dimensional one-hot label

indicating whether it contains a vulnerability. Vulnerable code sam-

ples are collected from open-source projects using the assigned

CVE or SARD IDs, whereas benign samples are obtained from the

patched version of the same project. For each training sample, we

generate an enhanced AST and randomly sampled symbolic traces

(Sec. 3.2.1 and 3.2.2). We use the pre-trained representation compo-

nent to generate the joint embedding as the program representation,

which becomes the detection model’s input. Our end-to-end model

is trained to optimize the cross-entropy loss for classifications.

3.4 Path Selection for Symbolic Execution

After training the end-to-end model, we use the path selection

component to choose significant paths for symbolic executions dur-

ing deployment. This differs from execution traces collected during

training, where we use a random sampling scheme to improve the

Combining Structured Static Code Information and Dynamic Symbolic Traces for Software Vulnerability Prediction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

All execution
paths

Encoder

D
ecoder

. . .

L2 norm

Top-K
Important

paths
Ranking
vectors

Selection
block

. . .

1 2 4
1 5

1 3 4
. . .

1 2 4

1 3 4

1 5

<...>

Function
source
code

1
23

44
5

1
23

44
5

PDCG

P Q

P

Represen
tation

Q
H

Figure 5: Rank and select paths for symbolic execution.

training data size, as symbolic execution overhead is less of an issue

for offline model training.

3.4.1 Overview of path selection. Figure 5 shows the workflow of

choosing 𝑘 most important paths from all possible execution paths

of the target function. Like ContraFlow [23], we use unsupervised

active learning to identify most representative paths for encoding

programs [51], such that the number of paths for code embedding

is reduced while important program semantics are well-preserved.

Unlike ContraFlow, our goal is to select paths to collect symbolic

execution traces. As we will show in Sec. 5.2 and 5.3, our approach

outperforms ContraFlow.

Our goal. Given 𝑛 execution paths 𝑯 = [ℎ1, ..., ℎ𝑛] collected from

the PDCG of the test sample, our goal is to choose a subset of im-

portant paths to collect symbolic execution traces, which ℎ𝑖 is an
embedding vector generated by our static representation model.

The objective is to choose representative data points that can recon-

struct most of the input PDCG information and preserve the unique

features of the sample. In this work, we use the K-means clustering

algorithm to model the path features by grouping data points into

clusters on the embedding space. The path selection component is

trained to find a sample subset that captures the input patterns and

preserves the cluster structure of the data.

3.4.2 Execution path representation. For each test sample (func-

tion), we extract static execution paths from the PDCG. For each

static execution path, we first eliminate irrelevant code (and AST

nodes) and then feed the code segmentation to the trained static

representation model (fine-tuned when training the end-to-end

model) to generate embeddings for the code segments. This pro-

cess is repeated for each static path, resulting in a matrix, 𝑯 , to

serve as the input of the path selection component, which each

matrix element being an embedding vector produced by our static

representation model. Since path collection involves traversing the

PDCG without program execution, the overhead is negligible.

3.4.3 Network structure. As our path selection component uses

unsupervised learning (we do not have labels to tag if a path is

important), using an encoder-decoder network to map the input

into a latent space for path selection is a natural choice. We add a

selection block between the encoder and decoder to select samples

(or paths) from all input paths to be passed into the decoder. As the

selection block is differentiable, the selection network is trainable.

Selection block. The selection block comprises two branches,

each consisting of a single fully connected layer without bias and

nonlinear activation functions. The first branch aims to identify a

subset of paths (𝑯 ′) that can effectively approximate all paths from

the input matrix (𝑯). The second branch initially clusters the data

in the latent space and then selects a sample subset approximating

the resulting cluster centroids.

3.4.4 Unsupervised active learning. For all input paths of a test

sample, our approach constructs two coefficient matrices, 𝑸 and 𝑷 ,
where each matrix element is a 𝑑-dimensional embedding vector

produced by the encoder. The matrix 𝑸 is constructed by the first

branch of the selection block to approximate the input matrix (𝑯),

while the matrix 𝑷 , constructed by the second branch of the selec-

tion block, aims to preserve the cluster structure when applying

K-means to the latent space learned by the encoder.

Training objectives. Our active learning process refines the ma-

trices to maximize the distance between (1) 𝑯 and matrix 𝑸 , (2) the

cluster centroid matrix 𝑪 obtained using K-means clustering on 𝑯 ,

and the reconstructed matrix 𝑷 , and (3) 𝑯 and the decoder outputs.

Loss function. Our overall loss function is defined as 𝑀𝑖𝑛 ℓ =
𝛼ℓ𝑎 + 𝛽ℓ𝑏 + ℓ𝑐 , where 𝛼 and 𝛽 are tradeoff parameters. The terms in

the loss function are:

ℓ𝑎 = | |𝜙 (𝐻) − 𝜙 (𝐻)𝑄 | |2𝐹 + 𝛾 | |𝑄 | |2 (1)

ℓb = | |𝐶 − 𝜙 (𝐻)𝑃 | |2𝐹 + 𝜂 | |𝑃 | |2 (2)

ℓ𝑐 = | |𝜙 (𝐻) −𝐺 | |2𝐹 (3)

Eq. 1 approximates the input patterns. The value of 𝜀 represents
either 2 (l2-norms) or F (Frobenius norm) for the normalization

function | | · | |𝜀 , which is used to measure the informativeness of

each feature. 𝜙 (𝐻) is a nonlinear transformation that maps input

paths 𝐻 to a new latent representation, and the tradeoff parameter

𝛾 controls the balance between the reconstruction loss and the

regularization term. Eq. 2 aims to minimize the cluster centroids

reconstruction loss, corresponding to objective (2), with the tradeoff

parameter 𝜂. Finally, Eq. 3 corresponds to the reconstruction loss

of the encoder-decoder model, which represents the third objective.

𝑮 denotes the decoder’s output for a given input 𝜙 (𝐻).

Training process.We iteratively train the selection component on

the unlabeled Concoction training data. Firstly, we pre-train the

encoder and decoder without considering the selection block. After

that, we perform K-means on the encoder output and consider the

obtained K cluster centroids as the centroid matrix 𝑪 for subse-

quent sample selection. The number of clusters (𝐾) is determined

automatically using the Bayesian information criterion (BIC) [62].

Finally, we use the pre-trained parameters to initialize the encoder

and decoder, batch all data, and minimize the overall loss function

using Adam optimizer with a 0.001 learning rate.

3.4.5 Path selection during deployment. Once the selection compo-

nent is trained on the Concoction training data, we can obtain two

reconstruction coefficient matrices 𝑸 and 𝑷 . To use the selection

component, we normalize the columns of 𝑸 and 𝑷 using l2-norm

and convert the values to [0, 1]. This produces two ranking vectors

𝑞, 𝑝 ∈ R𝑛 , which we merge and sort in descending order to identify

𝐾 top-ranked paths. Parameter 𝐾 can be flexiblely set by the user.

In this work, we set 𝐾 to be 30%, sufficient to cover important paths

of vulnerable functions in our training dataset. If the number of

paths of the target code is less than 10, we consider all execution

paths as the overhead of symbolic executions is small.

3.4.6 Symbolic execution for chosen paths. We extended KLEE [17]

to cover the selected paths of the target function. To do so, we use

a compiler-based pass to insert a callback function to the target

program to guide KLEE skip paths not selected by our path selection

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Huanting Wang, Zhanyong Tang∗ , Shin Hwei Tan, Jie Wang, Yuzhe Liu, Hejun Fang, Chunwei Xia, and Zheng Wang

Table 1: Open datasets used in training and evaluation

Source #Projects Versions #Samples #Vulun. samples

SARD / / 30,954 5,477

CVE

Jasper v1.900.1-5, v2.0.12 24,330 663
Libtiff v4.0.3-9 4,896 558
Libzip v0.10, v1.2.0 5,618 49
Libyaml v0.1.4 27,773 41
SQLite v3.8.2 1,794 31
ok-file-fromats 203defd 1,014 25
libpng v1.2.7, v1.5.4, v1.6.0 954 12
libming v0.4.7-8 1,104 15
libexpat v2.0.1 1,051 13

component. We also use a script to record the addresses, sizes,

and names of all variables of the target function during symbolic

execution. The script also generates a test driver program for KLEE

to facilitate the execution of KLEE.

By skipping unwanted execution traces early, we can manage

the overhead of symbolic execution effectively. We terminate sym-

bolic execution after a configurable threshold (5 minutes in this

work) during evaluation. The symbolic inputs and corresponding

reachable code paths produce execution traces that we pass to the

dynamic representation model to generate dynamic embeddings.

Note that our approach guarantees that there are always symbolic

execution traces generated for the test function.

3.4.7 Targeted fuzzing for test case generation. When our detec-

tion model identifies a potentially buggy function that symbolic

execution fails to expose, we use AFL++ [31] (an AFL extension)

for fuzzing functions predicted to be vulnerable. The idea is to

generate bug-exposing test cases to help developers analyze and

verify the identified vulnerabilities. In this work, we use the AFL++

partial instrumentation mode to guide AFL++ towards targeting

functions predicted by Concoction to have vulnerabilities. To this

end, we provide AFL++ with the project’s source code, build scripts,

vulnerable functions identified by Concoction, and seed program

inputs to be mutated using the default AFL++ configurations. We

then ask AFL++ to instrument the compiled assembly code and

mutate the seed test inputs to cover the target functions. Fuzzing is

terminated if AFL++ detects a program crash or exceeds a 12-hour

runtime (which may involve fuzzing multiple functions together).

We then manually verified and reported the issue to developers

with information to reproduce the issue. If AFL++ does not trigger

any crash, we manually examine the predicted function to check

for a vulnerability and file an issue report for each confirmed bug.

4 EXPERIMENTAL SETUP

We implemented Concoction in 10+K lines of Python and 5K lines

of C/C++ code. Our DL model is implemented using PyTorch (ver.

1.13). We use Joern (ver. 1.1) [6] to construct the AST for static code

representation and KLEE (ver. 2.1) to collect the symbolic execution

traces. We train and test Concoction models and all baselines on

a multi-core server with two 32-core AMD EPYC 7532 CPUs at

2.40GHz and an NVIDIA 2080Ti GPU. The server has 128GB of

RAM and runs Ubuntu 18.04 with Linux kernel ver. 5.4.

4.1 Workloads

Open-source projects.We applied Concoction to 20 open-source

projects from various domains. These projects, listed in Table 3,

were chosen because they are widely used, have been used in related

Table 2: Open-source projects with known CVEs

No. Project Versions #Lines of code #vuln.

1 SQLite v3.30.1, v3.8.2 242K 13
2 Libtiff v4.0.9 140K 10
3 Libpng v1.2.7, v1.5.4 32K 12

(a) #Code lines (b) #Paths

Figure 6: CDF for the (log-scale) number of lines (a) and

execution paths (b) our test samples.

work [7], or have active development teams. We stress that none of

these projects was used to train Concoction, and we tested the

latest version of each project at the time of testing. We also note

that bugs discovered by Concoction were previously unreported

at the time of testing; hence, there were no data leakage issues.

Open datasets. In Sec. 5.2 and 5.3, we compare Concoction with

prior work on three datasets used by the prior work for evaluation

purposes. In Sec. 5.2.1 and 5.2.2, we use samples from SARD [64]

and CVE datasets (see Table 1), respectively. In Sec. 5.3, we evaluate

Concoction on three open-source projects that have known CVEs

(see Table 2). We use three-fold cross-validation to evaluate all

approaches on the above datasets, where samples are split on the

project-level, and samples of a test project are excluded from the

training dataset.

Data collection and workload characteristics. Our program

representation model, Concoction, was trained and tested on a

dataset of over 100K functions from SARD and 9 large C-language

open-source projects (Table 1). Four security researchers spent 600

man-hours on manual labeling and cross-verification to collect

these samples. Additionally, we spent 200+ machine hours extract-

ing dynamic and static information using KLEE. Figure 6 shows

the cumulative distribution functions (CDF) of the number of lines

and execution paths in the test samples in Tables 1 and 3. The

SARD dataset consists mainly of short functions, where over 50%

have <40 lines of code and 4 paths, leading to high detection ac-

curacy with baseline methods. However, the functions from the

CVE dataset and open-source projects are much larger, with over

50% containing ≥ 400 lines of code (up to 10K) and 128 paths (up

to 12K). This increased complexity in the CVE dataset and open-

source projects reduces the accuracy and recall for our baselines

compared to SARD.

4.2 Competing Baselines

We evaluate Concoction by comparing it with 16 prior methods.

These include (1) eleven state-of-the-art DL-based models, (2) two

symbolic execution tools, (3) one fuzzing tool that our approach

relies on, and (4) two static analysis tools. Before running the DL

baselines on the same datasets, we ensure that our evaluation setup

Combining Structured Static Code Information and Dynamic Symbolic Traces for Software Vulnerability Prediction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

achieves results comparable to those reported in their source publi-

cations for a fair comparison.

DL models based on static information. We compared Con-

coction against eleven DL models that use static code informa-

tion. These include Vuldeepecker [57], which utilizes a BiLSTM

architecture, as well as Funded [80], Devign [88], ReVeal [21],

and ReGVD [63], which employ a variant of graph neural net-

works to learn program representations. We also compared against

LineVul [33], LineVD [43], CodeXGLUE [60] and Graphcode-

BERT [39], which use the Transformer architecture, and Con-

traFlow [23] which utilizes contrastive learning to represent the

code, followed by an LSTM architecture to identify vulnerabilities.

DL models based on dynamic information. LIGER [81] is a

closely related work that learns program representations from sym-

bolic execution traces. However, unlike our approach, LIGER uses

a random sampling method for collecting symbolic traces and does

not utilize structured data flow and dependence information from

static source code. Additionally, it employs a multi-tier recurrent

neural network (RNN) architecture, whereas Concoction uses the

Transformer architecture. For our evaluation, we used the open-

source implementation of LIGER, adapting it for vulnerability de-

tection and training it on the same datasets as Concoction.

Static tools. We compare Concoction with two representative

static analysis tools: CodeQL [1] and Infer [4], by using the default,

recommended configurations of the tools.

Symbolic execution engines. We also compare Concoction to

two state-of-the-art symbolic execution tools, including KLEE [17]

and MoKLEE [16]. The latter is designed to reduce the overhead

of symbolic executions by allowing symbolic executions to run on

previous paths while continuing to explore new paths.

Fuzzing tool. As noted in Sec. 3.4.7, Concoction uses AFL++ to

fuzz predicted buggy functions and generate bug-exposing tests. We

compare Concoctionwith the native AFL++, which tests the entire

program without Concoction’s guidance. For a fair comparison,

both AFL++ and Concoction use the same seed program inputs.

4.3 Evaluation Methodology

Weapplied Concoction to 20 open-source projects and 14K function-

level source code samples (vulnerable and benign). Our evaluation

is designed to answer the following research questions:

RQ1: Does combining static and dynamic information help detect

code vulnerabilities in real-life open-source projects (Sec 5.1)?

RQ2: How does Concoction compare with prior approaches in

detecting function-level vulnerabilities (Sec. 5.2 and 5.3)?

RQ3: How do individual components of Concoction contribute

to its overall performance (Sec. 5.4)?

Evaluation metrics.We consider four higher-is-better statistical

metrics: accuracy, precision, recall and the F1 score. Accuracy is

computed as the ratio of correctly labeled cases to the total test cases.

Precision is the ratio of correctly predicted samples to the total

number of samples predicted to have the same label. It answers the

question, “Out of all the samples predicted to contain a vulnerability,

how many are correct?” High precision indicates a low false-positive

rate, meaning that a lower proportion of the samples predicted to

Table 3: Vulnerability statistics for each tested project.

#Confirmed
Projects Versions Release

date
#Stars

#Lines
of
code

#Sub-
mitted #Verified #Fixed in

verf.

Linux Ker-
nel

v6.1-rc5,
v6.1-rc4

Apr. 2023 160k 30M 2 2 0

assimp v5.1.4 Sep. 2023 9.7k 374k 6 6 (6 CVE) 0
Image-
Magick

v7.0.11-5 Jul. 2023 10.2k 42k 1 1 (1 CVE) 1

lepton v1.0-1.2.1 Feb. 2023 5k 80k 1 1 (1 CVE) 1
zydis 770c320 Apr. 2023 3.0k 80k 4 4 4
openEXR v2.2.0 Jul. 2023 1.5k 246k 1 1 (1 CVE) 1
openjpeg a44547d Apr. 2023 902 124k 1 1 (1 CVE) 1
Leanify b5f2efc Dec. 2022 801 61k 2 2 2
astc-
encoder

v3.2k Jun. 2023 885 148k 3 3 (2 CVEs) 3

AudioFile 004065d Apr. 2023 355 7k 1 1 (1 CVE) 1
xlsxio af485eb Nov. 2022 231 9k 1 1 1
mediancut-
posterizer

v2.1 Feb. 2023 203 1.8k 1 1 (1 CVE) 0

ELFLoader 34fd7ba May 2022 203 3k 4 4 0
pdftojson 94204bb Oct. 2017 138 148k 3 2 (2 CVEs) 0
epub2txt2 71dc41 Jun. 2022 153 10k 1 1 (1 CVE) 1
deark v1.6.2 Jul. 2023 136 154k 3 3 (1 CVE) 3
ok-file-
formats

203defd Sep. 2021 136 15k 7 7 (7 CVEs) 7

sqlcheck 391ae84 Mar. 2022 2.3k 4.5k 4 4 (4 CVEs) 0
packJPG v2.5k Apr. 2020 151 11k 7 7 (7 CVEs) 0
json2xml v3.14.0 Nov. 2023 88 2.9k 1 1 (1 CVE) 1
Total / / / / 54 53 (37

CVEs)
27

Table 4: Top-3 types of issues found by Concoction.

Category #Submitted #Confirmed #Fixed #Dyn-related

buffer-overflow 33 33 20 23
segmentation-violation 6 6 1 5
memory-leaks 4 3 1 3
other types 11 11 5 6
Total 54 53 27 37

have bugs are bug-free. Recall is the ratio of correctly predicted

samples to the total number of test samples belonging to a class. It

answers questions like “Of all the vulnerable test samples, how many

are actually predicted to be vulnerable?”. High recall suggests a low

false-negative rate. Finally, the F1 score is the harmonic mean of

Precision and Recall, calculated as 2 × 𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . It is useful

when the test data have an uneven label distribution.

5 EXPERIMENTAL RESULTS

5.1 Detect Vulnerabilities in Large-scale Testing

This subsection quantifies Concoction’s ability to detect function-

level code vulnerabilities in the 20 projects listed in Table 3. For

ethical considerations, we first contacted the developers through a

private email for vulnerabilities that are likely exploitable (including

all those with a CVE ID assigned), and followed their advice.

5.1.1 Vulnerability count. Table 3 reports the distribution of our

submitted vulnerability reports across the tested projects. In total,

we have submitted 54 reports, 53 were confirmed by developers. At

the time of submission, 27 vulnerabilities have been fixed, with 37

new, unique CVE IDs assigned and 17 CVE applications pending.

5.1.2 Vulnerability types. Table 4 categorizes the vulnerabilities

found by Concoction3. The top three security flaw-related cate-

gories are presented here. The “other types" category includes six

types of vulnerabilities: ‘allocation-size-too-big’, ‘out-of-memory’,

‘use-after-free’, ‘memcpy-param-overlap’, ‘illegal-memory-access’,

3A full list can be found at https://github.com/HuantWang/CONCOCTION/blob/main/
vul_info/README.md.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Huanting Wang, Zhanyong Tang∗ , Shin Hwei Tan, Jie Wang, Yuzhe Liu, Hejun Fang, Chunwei Xia, and Zheng Wang

and ‘DEADLYSIGNAL’. Of all the detected vulnerabilities, 62.3%

are buffer-overflow related, covering both heap and stack-buffer-

overflow. Concoction’s ability to detect buffer-overflow vulnera-

bilities comes from its capability to reason about input value change

ranges by combining static code structures and carefully selected

symbolic traces. During testing, Concoction discovered six vul-

nerabilities (11.3%) related to SEGV (segmentation violation), which

were later confirmed by developers. Concoction identifies SEGV

by inferring and verifying bounds on the variable value of array

references. Additionally, Concoction submitted four vulnerabili-

ties (7.5%) related to memory-leaks. The combination of static and

dynamic code features enables Concoction to infer this type of

vulnerability by correlating the allocated and released memory

buffer sizes within the test function. Listing 1 shows an example

of a heap-buffer-overflow vulnerability detected by Concoction,

caused by an incomplete bounds-checking pattern. Meanwhile,

Listing 2 presents a SEGV example uncovered by Concoction.

5.1.3 Concoction detected examples. We present several exam-

ples of Concoction-detected vulnerabilities, covering three types

of memory-related security flaws. As DL models generally work

as a black box [20], to understand Concoction’s workings and

the vulnerability’s root cause, we compare the original buggy code

with the developer-generated patch after reporting the issue.

Heap buffer overflow. Listing 1 shows CVE-2022-26181, a heap-
buffer-overflow vulnerability identified by Concoction. The vul-

nerability stems from the value of the data variable. By making the

data variable symbolic, Concoction allows the DL model to infer

that when data is not null, the execution trace consistently reaches

line 6. Concoction successfully identifies the incomplete bounds

checking, which may overlook certain non-compliant inputs.

1 void aligned_dealloc(unsigned char *data) {
2 if (!data) return;
3 // function always_assert(condition) is used to catch

exception when condition is ture
4 + always_assert (((size_t)(data -0) & 0xf) == 0);
5 + always_assert(data[-1] <= 0x10);
6 data -= data [-1];
7 custom_free(data);}

Listing 1: Patch for CVE-2022-26181, a heap-buffer-overflow
vulnerability in the Lepton project.

Segmentation violation. Listing 2 shows a segmentation-violation

vulnerability resulting from an out-of-bounds read. The issue arises

when the value of dctx->dcmpri.len exceeds dctx->dcmpri.f->len,
causing a reference to a memory location beyond the allocated

buffer boundary. Concoction could not discover this vulnerability

without the symbolic trace input.

1 dctx ->dcmpri.f->len = sizeof(dctx ->dcmpri.f->rcache);
2 buf = dctx ->dcmpri.f->rcache;
3 + if(dctx ->dcmpri.len > dctx ->dcmpri.f->len)
4 + { dctx ->dcmpri.len = dctx ->dcmpri.f->len; }
5 ... // pass variable dctx ->dcmpri.len to buf_len
6 for(i=0; i<buf_len; i++) {...
7 b = buf[i];
8 ...}

Listing 2: Patch for a segmentation-violation vulnerability

that reassigns dctx->dcmpri.len to avoid memory overflow.

Accuracy Precision Recall F1 Score
0.6
0.7
0.8
0.9

111

Devign
GraphCodeBERT
ReGVD

REVEAL
Liger
Funded

ContraFlow
CodeXGLUE
VulDeePecker

LineVul
LineVD
Concoction

Figure 7: Evaluation on standard vulnerability databases.

Min-max bars show performance across vulnerability types.

Memory leak. Listing 3 shows CVE-2021-3574, a memory leak

vulnerability discovered by Concoction. This issue can be de-

tected by inspecting the execution trace from the memory allo-

cation size of samples_per_pixel to the memory-free size of

MaxPixelChannels. Concoction detects this vulnerability by learn-

ing to compare the sizes of these two variables because memory
leaks are typically caused by allocating more memory than re-

quired and subsequently freeing less.

1 malloc (samples_per_pixel) // malloc a buffer with size
equal to variable samples_per_pixel

2 ...
3 + if (samples_per_pixel > MaxPixelChannels) {
4 + TIFFClose(tiff);
5 + ThrowReaderException(CorruptImageError ,
6 + "MaximumChannelsExceeded ");}
7 ... RelinquishMagickMemory(MaxPixelChannels) // free the

buffer with size equal to variable MaxPixelChannels

Listing 3: Patch of CVE-2021-3574 for fixing a memory leak
vulnerability in the ImageMagick project.

5.1.4 Importance of bugs found. It is difficult to assess the impor-

tance of the bugs we found. Still, we found some evidence to show

their importance: (1) some of the bugs we found were also reported

by other application users later, indicating that the issues we iden-

tified are relevant and have occurred in real-world use cases; (2)

most of our newly reported issues were confirmed and fixed by the

developers demonstrates their importance; (3) developers promptly

welcomed and resolved 14 of our reported issues within 48 hours,

showing the importance of these issues.

5.2 Comparison on Open Datasets

5.2.1 SARD dataset. Figure 7 reports four “higher-is-better" met-

rics (Sec. 4.3) achieved by Concoction and the baselines on the

SARD dataset (Table 1). The min-max bar shows variances across

cross-validation runs. Concoction outperforms other methods

in all metrics and has the most reliable performance across cross-

validation runs, with the narrowest min-max bar. While LineVul

and LineVD achieve high precision (low false-positive rate) similar

to Concoction, they have lower Recall and miss some vulnerable

cases. For example, LineVD only detects 70.3% of the CWE-126 vul-

nerability typed test cases, whereas Concoction detects all. Other

baselines show low detection accuracy. Concoction achieved 100%

recall in detecting certain vulnerability types like CWE-416 and

CWE-789. Other methods, in contrast, failed to detect all of these

vulnerabilities. Notably, Concoction is highly effective in detecting

the use-after-free vulnerability by leveraging dynamic traces

and static code structures to infer the use of pointers.

Combining Structured Static Code Information and Dynamic Symbolic Traces for Software Vulnerability Prediction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Accuracy Precision Recall F1 Score
0.5
0.6
0.7
0.8
0.9

LineVul
VulDeepecker
Devign

GraphCodeBERT
REVEAL
LineVD

CodeXGLUE
Funded
ContraFlow

ReGVD
LIGER
Concoction

Figure 8: Evaluation on the CVE dataset.

Table 5: The number of vulnerabilities found by different

methods for the projects in Table 2. The “#vuln.” column

shows the total vulnerabilities across all tools for a category.

Categories Approaches #vuln.

Static analysis tools Infer [4], CodeQL [1] 5
Symbolic execution engines KLEE [17], MoKLEE [16] 6
Fuzzing tool AFL++ [31] 8
DL based on static code information Vuldeepecker [57], Funded [80], Devign [88],

ReVeal [21], ReGVD [63], LineVul [33],
LineVD [43], CodeXGLUE [60], Graphcode-
BERT [39], ContraFlow [23]

22

DL based on dynamic information LIGER [81] 16
Concoction 31

5.2.2 CVE dataset. As explained in Sec. 4.1, test samples in the

CVE dataset (Table 1) are more complex than the SARD dataset. As

such, it is more challenging to achieve good performance. However,

Concoction outperforms all other methods across all evaluation

metrics shown as Figure 8. Thanks to the carefully selected exe-

cution traces, Concoction can track changes in program states

and variables (shown in examples in Sec. 5.1). This information

enhances precision by reducing the false positive rate and helps

discover more vulnerabilities with a higher true positive rate than

static information alone, resulting in a higher recall. Among the

baseline methods, LIGER performs best, but its F1 score is 10.4%

lower than that of Concoction. This shows that Concoction

strikes a better balance between false and negative positives, lever-

aging the advantages of structured static source code information.

5.3 Comparison on Known CVEs
We compare Concoction to the baselines on three open-source

projects listed in Table 2. These projects contain 35 CVEs reported

by independent users, which were also used by prior work [69, 71].

We apply all methods to functions associatedwith a CVE and use the

reported CVEs to compute evaluation metrics (Sec. 4.3). To ensure

a fair comparison, we train all methods, including Concoction,

on the same training dataset, but we exclude these projects from

the training data. For the dynamic methods listed in Sec. 4.2, we

allocate 200 hours of machine time for each project.

5.3.1 Vulnerabilities identified. Table 5 demonstrates Concoction’s

advantages over other methods in identifying vulnerabilities across

the three open-source projects evaluated. Concoction achieved

100% precision and 89% recall, correctly detecting 31 out of 35 con-

firmed CVEs. Additionally, Concoction identified all issues found

by other methods and uncovered 9 additional vulnerabilities that

others missed. Among DL-based static methods, ReGVD had the

second-best and highest recall rates, detecting 21 vulnerabilities.

However, they struggled to identify 14 vulnerabilities caused by

API parameter misuse. Static tool baselines, CodeQL and Infer,

can only detect five vulnerabilities at their best (5 for CodeQL and

0 for Infer) because they rely on hand-crafted rules with limited

coverage. They missed all vulnerabilities related to “CWE-754: Im-

proper Check for Unusual or Exceptional Conditions" because it was

not in their rule sets. Dynamic methods using symbolic execution

and fuzzing tools have a low recall of 0.26 in our evaluation due

to limited path coverage within the testing time (12 hours). MoK-

LEE found 2 more bugs than KLEE (which found 4) in this context.

Without Concoction’s DL component, native AFL++ detected 8

vulnerabilities in 12 hours, while Concoction improved efficiency

by finding 31 CVEs within the same test time by guiding the fuzzing

engine to focus on potentially buggy code paths.

Though highly effective, Concoction missed four vulnerabili-

ties (one example in Sec. 5.3.3) due to incomplete vulnerable exe-

cution traces during feature extraction. Addressing this limitation

could involve extending symbolic execution time and improving

the path selection model or the number of paths selected.

5.3.2 Case missed by baselines. Listing 4 shows CVE-2020-35523,
an integer overflow vulnerability identified by Concoction but

missed by all baselines. Other methods missed this bug because they

mainly rely on static information, such as tokens typically associ-

ated with integer overflow (e.g., malloc), which is insufficient in

this case. Concoction detects this vulnerability by symbolizing the

tw and w variables, allowing the DL model to infer the absence of a

corresponding INT32 bounds check, which aligns with the pattern

of integer overflow.

1 if (flip & FLIP_VERTICALLY) {
2 + if ((tw + w) > INT_MAX) {
3 + TIFFErrorExt (...) ;//
4 + return (0);}
5 y = h - 1;
6 toskew = -(int32)(tw + w);

Listing 4: An integer overflow vulnerability in Libtiff.

5.3.3 Case missed by Concoction . List 5 shows CVE-2020-35523,
a memory leak vulnerability missed by Concoction and all other

baselines. The issue is caused by the function directly returning

without closing the input file handle in, causing resource leakage.

Concoctionmissed this because the memory leakage is introduced

within the file handle data structure but Concoction does not learn

such patterns from the training dataset. This can be improved by

extending the training dataset to cover a wider range of patterns.

1 extern int optind;
2 in = TIFFOpen(argv[optind], "r");
3 ...
4 if (...) {
5 fprintf (...);
6 + (void) TIFFClose(in);
7 return (-1);}

Listing 5: A memory leak vulnerability in Libtiff that occurs

because the file handle in is not released.

5.4 Ablation Study

5.4.1 DL model implementation choices. We conduct an ablation

study [36] on Concoction using the CVE dataset. The study in-

cludes the following variants: Static (using enhanced AST, Sec 3.2.1),

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Huanting Wang, Zhanyong Tang∗ , Shin Hwei Tan, Jie Wang, Yuzhe Liu, Hejun Fang, Chunwei Xia, and Zheng Wang

Accuracy Precision Recall F1 Score
0.5

0.7

0.9

Concoction-MisSam
Static

Dynamic
Concoction-IT

NonSel
NonCL

Conc

Figure 9: Concoction variants on CVE dataset.

Dynamic (utilizing randomly sampled symbolic traces with 30 min-

utes of symbolic execution for each project, Sec.3.2.2), NonCL (with-

out the contrastive learning module, Sec.3.3), NonSel (omitting the

path selection module by using randomly sampled symbolic exe-

cution traces with static code information, Sec 3.4), and Conc (the

complete Concoction implementation).

The results are given in Figure 9. Using only static or dynamic

representations is insufficient for accurately modeling program

structures, with F1 scores of 68.7% and 77.2% for each variant, re-

spectively. In our approach, we employed dropout-based contrastive

learning as data augmentation for training our representationmodel

(Sec.3.3.2). This helps extend our training set and mitigates overfit-

ting [70]. Removing the contrastive learning component led to a

3.7% decrease in the F1 score, reaching 82.4% compared to the full

model. Additionally, removing the path selection method resulted

in an F1 score drop to 77.6% since random sampling may not capture

crucial path information within a given budget.

5.4.2 Sensitivity analysis. To test the sensitivity of Concoction

on mislabeled training samples, we introduce mislabeled samples

that account for from 20% to 80% of the training samples into the

training dataset of Concoction, leading to a variant of Concoc-

tion-MisSam. Similarly, we randomly remove some symbolic exe-

cution traces selected by Concoction to simulate a scenario where

some traces are missing. This led to another implementation variant

named Concoction-IT. The performance of Concoction-MisSam

on Figure 9 shows that mislabeled training samples can harm per-

formance, where the F1 score of Concoction-MisSam drops from

78.0% to 64.3%. This is expected, as machine learning techniques can

suffer from noisy and mislabeled training data [30, 32]. However,

the impact of mislabeled samples can be mitigated by increasing the

training dataset and using data cleaning methods [13, 66], which

are orthogonal to our approach. Similarly, missing execution traces

can also negatively impact the performance, where the F1 score

of Concoction decreases from 86.1% to 77.1% in Concoction-IT,

which is still at least 2.1% higher than other DL baselines that rely

on static code information. Missing symbolic execution traces is

likely to happen when testing external libraries where the tool has

no access to the source code. This issue is beyond the capability

and scope of a source code-level detection tool. In the worst case,

where all symbolic traces are missing, our DNN model can still use

static information to detect bugs, albeit less efficiently.

5.4.3 Training and deployment overhead. Figure 10 compares train-

ing overhead for various DL-based methods. It includes one-off time

spent on feature extraction (e.g., AST and symbolic executions) on

training samples and iterative training time using labeled samples

from Table 1. Training terminates when the loss does not improve

within 20 consecutive epochs or meets the termination criteria

0 2 4 6 8 10 12 14 16
Overhead (hours)

Concoction
Liger

Reveal
Funded
ReGVD

Contraflow
GraphCodeBERT

Devign
Lin

VulDeePecker
CodeXGLUE Feature extraction phase

Model training phase

Figure 10: Training overhead of different DL methods.

specified in the baselines’ source publication. The experiment was

conducted on a multi-core server using a desktop-level NVIDIA

2080Ti GPU. Vuldeepecker, CodeXGLUE, and Lin et al. achieved

the shortest training overhead, relying mainly on sequence neural

networks like Bi-LSTM. However, they have a low F1 score, indi-

cating a limited ability to capture complex code structures. More

advanced models that use ASTs required longer feature extraction

and training times but showed higher accuracy during evaluation.

Additionally, LIGER and Concoction incur a more expensive fea-

ture extraction time due to collecting dynamic runtime information

by symbolic execution. It is important to note that model training

is performed offline and is a one-off cost.

During deployment, Concoction can complete predictionswithin

minutes, and the fuzzing tool may take several hours to generate

a vulnerability-exposing test case. Since Concoction can be inte-

grated with a parallelized overnight build system, the deployment

overhead should be acceptable for many software developers.

6 DISSCUSSIONS AND THREATS TO VALIDITY

Naturally, there is room for further work and improvement. We

discuss a few points here.

Runtime overhead. The runtime overhead of Concoctionmainly

comes from collecting symbolic execution traces. The Concoction

path selection component is designed to minimize this overhead.

There are methods to accelerate symbolic executions through paral-

lelizing symbolic test case generation [14, 28, 65]. These approaches

are orthogonal to Concoction.

Large and complex code. During our evaluation of 23 large open-

source projects, we used function inlining to remove the proce-

dural boundaries for code analysis. Our current implementation

does not support analysis for complex code involving recursive

functions, pointer aliasing, and function pointers with dynamic

dispatching, which remains an open problem. Concoction will

benefit from techniques for reasoning these complex code pat-

terns [24, 49, 52, 55, 68]. Our current implementation parallelizes

symbolic executions and fuzzing on individual code regions. We

envision that extending Concoction to larger code regions would

require new techniques. For example, it would require capturing the

data flow across methods and potentially pointer alias analysis [44],

as well as techniques to accelerate symbolic executions [14, 28, 65].

We are excited about the potential of Concoction and hope its

initial promising results can encourage further research.

Other languages. We showcased Concoction in C, but it can

extend to other languages. Doing so requires adapting the source

code rewriting tool (see Sec. 3.2.1) and having a tool to generate

Combining Structured Static Code Information and Dynamic Symbolic Traces for Software Vulnerability Prediction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

symbolic traces for the target language. Nevertheless, our DL frame-

work for combining static and dynamic information broadly applies

to other languages. Concoction already supports using the Lan-

guage Server Protocol (LSP) [38] to construct the enhanced AST.

LSP currently supports C, C++, Java, JavaScript and Python with

a single interface so Concoction can be easily ported to these

languages. Concoction can also use symbolic execution engines

built for other languages, including JDart [61] for Java, PyExZ3 for

Python [45], and Jalangi2 [73] for JavaScript.

7 RELATEDWORK

Our work builds on the past foundations of deep learning, source

code vulnerability analysis, and static symbolic execution. We apply

Transformer-based networks [39, 78] to learn program representa-

tions and contrastive learning to train our models.

Deep learning-based vulnerability detection. Our research is

part of the recent efforts in DL-based software vulnerability de-

tection [21, 57, 59, 60, 63]. Prior studies primarily relied on static

information like ASTs and control flow graphs. Concoction in-

corporates symbolic traces with static code information to capture

deeper program semantics, enhancing vulnerability detection.

Symbolic execution. Symbolic execution [17, 41] sidesteps the

need for hand-crafted rules by exploiting symbolic values and an-

alyzing their use over the execution tree of a program on source

code. However, language constructs like loops and branches can

significantly increase the number of execution states, limiting the

scalability of the technique to large programs [11].

Contrastive learning. Contrastive learning is popular for its abil-

ity to reduce the costs of annotating large-scale datasets [46]. It has

been used in computer vision [19, 22, 42], natural language pro-

cessing [10, 35], and other domains. Concoction uses contrastive

learning for addressing label scarcity in vulnerability detection.

This allows us to train our models effectively with unsupervised

learning, reducing the need for extensive manual labeling.

Path selection for code embedding. Several techniques use

learning-based approaches for path selection [23, 41]. Like Con-

traFlow [23], Concoction also employ unsupervised active learn-

ing to train a path selection network. ContraFlow is designed to

pinpoint static value-flow paths that may trigger a vulnerability,

but it still solely relies on static code features. Unlike [23], we use

path selection to minimize the overhead of symbolic executions,

which are then combined with static code features to learn more

efficient program representation. Nevertheless, our experiments in

Sec. 5.2 and 5.3 show that our approach outperforms ContraFlow.

Machine learning in software engineering. Machine learn-

ing techniques have been powerful in software development [26,

27, 79, 82, 84]. Existing approaches address a variety of develop-

ment tasks, including fuzz testing [31, 83], detecting code clone

[29, 39, 48, 56], improving static analysis for vulnerability detection

[55, 77], repairing programs [74], defect prediction [53, 85], attack

detection [86] and processing vulnerability reports [25, 67, 87]. Con-

coction builds on those past foundations but is quite different from

these studies.

8 CONCLUSION

We have presented Concoction, a newDL system for detecting vul-

nerabilities at the source code level. It utilizes structured static code

features and dynamic symbolic execution traces to learn program

representations, enabling accurate prediction of bugs. We train

Concoction by combining unsupervised and supervised learning

and minimizing the overhead of symbolic executions by using a

path selection network. We apply Concoction to detect bugs and

vulnerabilities for C programs from 20 open-source projects. In 200

hours of automated concurrent test runs, Concoction successfully

detected vulnerabilities in all tested projects, discovering 54 unique

vulnerabilities and yielding 37 new, unique CVE IDs. Compared to

16 previous methods, Concoction finds more vulnerabilities with

higher accuracy and a lower false positive rate.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science

Foundation of China (NSFC) under grant agreements 61972314 and

62372373, the Shaanxi International Science and Technology Coop-

eration Program (2023-GHZD-04), the Shaanxi Province “Engineers

+ Scientists” Team Building Program (2023KXJ-055), the Mitacs

Globalink Research Award (GRA) program and the UK Engineer-

ing and Physical Sciences Research Council (EPSRC) under grant

agreement EP/X018202/1.

For the purpose of open access, the author has applied a Cre-

ative Commons Attribution (CCBY) license to any Author Accepted

Manuscript version arising from this submission. For any correspon-

dence, please contact Zhanyong Tang (Email: zytang@nwu.edu.cn)

and Zheng Wang (Email: z.wang5@leeds.ac.uk).

REFERENCES
[1] [n. d.]. CodeQL, discover vulnerabilities with semantic code analysis engine.

https://codeql.github.com/
[2] [n. d.]. Common Vulnerabilities and Exposures (CVE). https://cve.mitre.org/.
[3] [n. d.]. Common Weakness Enumeration. https://cwe.mitre.org/.
[4] [n. d.]. Infer, a static program analyzer. https://fbinfer.com/docs/about-Infer
[5] [n. d.]. Jenkins, open source automation server. https://www.jenkins.io/
[6] [n. d.]. Joern(Open-Source Code Querying Engine for C/C++.). https://joern.io/.
[7] [n. d.]. OSS-Fuzz. https://github.com/google/oss-fuzz.
[8] Elena N Akimova, Alexander Yu Bersenev, Artem A Deikov, Konstantin S

Kobylkin, Anton V Konygin, Ilya P Mezentsev, and Vladimir E Misilov. 2021. A
survey on software defect prediction using deep learning. Mathematics 9, 11
(2021), 1180.

[9] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning
to Represent Programs with Graphs. In Proceedings of the ICLR.

[10] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis,
and Nikunj Saunshi. 2019. A theoretical analysis of contrastive unsupervised
representation learning. arXiv preprint arXiv:1902.09229 (2019).

[11] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A survey of symbolic execution techniques. ACMComputing
Surveys (CSUR) 51, 3 (2018), 1–39.

[12] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security. 2329–2344.

[13] Carla E Brodley and Mark A Friedl. 1999. Identifying mislabeled training data.
Journal of artificial intelligence research 11 (1999), 131–167.

[14] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel
Symbolic Execution for Automated Real-World Software Testing. In Proceedings
of the Sixth Conference on Computer Systems (Salzburg, Austria) (EuroSys ’11).
Association for Computing Machinery, New York, NY, USA, 183–198. https:
//doi.org/10.1145/1966445.1966463

[15] Frank Busse, Pritam Gharat, Cristian Cadar, and Alastair F Donaldson. 2022.
Combining static analysis error traces with dynamic symbolic execution (experi-
ence paper). In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis. 568–579.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Huanting Wang, Zhanyong Tang∗ , Shin Hwei Tan, Jie Wang, Yuzhe Liu, Hejun Fang, Chunwei Xia, and Zheng Wang

[16] Frank Busse, Martin Nowack, and Cristian Cadar. 2020. Running symbolic exe-
cution forever. In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 63–74.

[17] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209–224.

[18] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. Commun. ACM 56, 2 (2013), 82–90.

[19] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and
Armand Joulin. 2020. Unsupervised Learning of Visual Features by Contrasting
Cluster Assignments. https://doi.org/10.48550/ARXIV.2006.09882

[20] Davide Castelvecchi. 2016. Can we open the black box of AI? Nature News 538,
7623 (2016), 20.

[21] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.
Deep learning based vulnerability detection: Are we there yet. IEEE Transactions
on Software Engineering (2021).

[22] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[23] Xiao Cheng, Guanqin Zhang, Haoyu Wang, and Yulei Sui. 2022. Path-Sensitive
Code Embedding via Contrastive Learning for Software Vulnerability Detection.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis (Virtual, South Korea) (ISSTA 2022). Association for Comput-
ing Machinery, New York, NY, USA, 519–531. https://doi.org/10.1145/3533767.
3534371

[24] Khushboo Chitre, Piyus Kedia, and Rahul Purandare. 2022. The road not taken:
exploring alias analysis based optimizations missed by the compiler. Proceedings
of the ACM on Programming Languages 6, OOPSLA2 (2022), 786–810.

[25] Nathan Cooper, Carlos Bernal-Cárdenas, Oscar Chaparro, Kevin Moran, and
Denys Poshyvanyk. 2021. It takes two to tango: Combining visual and textual
information for detecting duplicate video-based bug reports. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 957–969.

[26] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017.
End-to-end deep learning of optimization heuristics. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE,
219–232.

[27] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017.
Synthesizing benchmarks for predictivemodeling. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 86–99.

[28] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[29] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020.
Functional code clone detection with syntax and semantics fusion learning. In
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 516–527.

[30] Farzaneh S. Fard, Paul Hollensen, Stuart Mcilory, and Thomas Trappenberg.
2017. Impact of biased mislabeling on learning with deep networks. In 2017
International Joint Conference on Neural Networks (IJCNN). 2652–2657. https:
//doi.org/10.1109/IJCNN.2017.7966180

[31] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In Proceedings of the 14th
USENIX Conference on Offensive Technologies (WOOT’20). USENIX Association,
USA, Article 10, 1 pages.

[32] Benoît Frénay and Michel Verleysen. 2013. Classification in the presence of label
noise: a survey. IEEE transactions on neural networks and learning systems 25, 5
(2013), 845–869.

[33] Michael Fu and Chakkrit Tantithamthavorn. 2022. Linevul: A transformer-based
line-level vulnerability prediction. In Proceedings of the 19th International Confer-
ence on Mining Software Repositories. 608–620.

[34] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Con-
trastive Learning of Sentence Embeddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing. Association for Compu-
tational Linguistics, Online and Punta Cana, Dominican Republic, 6894–6910.
https://doi.org/10.18653/v1/2021.emnlp-main.552

[35] John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader. 2020. Declutr: Deep
contrastive learning for unsupervised textual representations. arXiv preprint
arXiv:2006.03659 (2020).

[36] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
580–587.

[37] Weiwei Gu, Aditya Tandon, Yong-Yeol Ahn, and Filippo Radicchi. 2021. Principled
approach to the selection of the embedding dimension of networks. Nature
Communications 12, 1 (2021), 3772.

[38] Nadeeshaan Gunasinghe and Nipuna Marcus. 2021. Language Server Protocol and
Implementation. Springer.

[39] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/
forum?id=jLoC4ez43PZ

[40] Hazim Hanif, Mohd Hairul Nizam Md Nasir, Mohd Faizal Ab Razak, Ahmad Fir-
daus, and Nor Badrul Anuar. 2021. The rise of software vulnerability: Taxonomy
of software vulnerabilities detection and machine learning approaches. Journal
of Network and Computer Applications 179 (2021), 103009.

[41] Jingxuan He, Gishor Sivanrupan, Petar Tsankov, and Martin Vechev. 2021. Learn-
ing to Explore Paths for Symbolic Execution. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 2526–2540.

[42] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[43] David Hin, Andrey Kan, Huaming Chen, and M Ali Babar. 2022. LineVD:
Statement-level vulnerability detection using graph neural networks. In Pro-
ceedings of the 19th International Conference on Mining Software Repositories.
596–607.

[44] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. 1999. Interpro-
cedural pointer alias analysis. ACM Transactions on Programming Languages and
Systems (TOPLAS) 21, 4 (1999), 848–894.

[45] M Irlbeck et al. 2015. Deconstructing dynamic symbolic execution. Dependable
Software Systems Engineering 40, 2015 (2015), 26.

[46] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-
jee, and Fillia Makedon. 2020. A survey on contrastive self-supervised learning.
Technologies 9, 1 (2020), 2.

[47] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive
learning. Advances in Neural Information Processing Systems 33 (2020), 18661–
18673.

[48] Seulbae Kim, SeunghoonWoo, Heejo Lee, and Hakjoo Oh. 2017. Vuddy: A scalable
approach for vulnerable code clone discovery. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 595–614.

[49] Sun Hyoung Kim, Dongrui Zeng, Cong Sun, and Gang Tan. 2022. Binpointer:
towards precise, sound, and scalable binary-level pointer analysis. In Proceedings
of the 31st ACM SIGPLAN International Conference on Compiler Construction.
169–180.

[50] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In
The BSD conference, Vol. 5. 1–20.

[51] Changsheng Li, Handong Ma, Zhao Kang, Ye Yuan, Xiao-Yu Zhang, and Guoren
Wang. 2021. On deep unsupervised active learning. In Proceedings of the Twenty-
Ninth International Conference on International Joint Conferences on Artificial
Intelligence. 2626–2632.

[52] Guoren Li, Hang Zhang, Jinmeng Zhou, Wenbo Shen, Yulei Sui, and Zhiyun Qian.
2023. A hybrid alias analysis and its application to global variable protection
in the linux kernel. In 32nd USENIX Security Symposium (USENIX Security 23).
4211–4228.

[53] Ning Li, Martin Shepperd, and Yuchen Guo. 2020. A systematic review of un-
supervised learning techniques for software defect prediction. Information and
Software Technology 122 (2020), 106287.

[54] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. 2019. Improving bug
detection via context-based code representation learning and attention-based
neural networks. Proceedings of the ACM on Programming Languages 3, OOPSLA
(2019), 1–30.

[55] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John CS Lui. 2021. MirChecker:
detecting bugs in Rust programs via static analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security. 2183–2196.

[56] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016.
VulPecker: an automated vulnerability detection system based on code similarity
analysis. In Proceedings of the 32nd Annual Conference on Computer Security
Applications. 201–213.

[57] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. Proceedings of the NDSS (2018).

[58] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang. 2020.
Software vulnerability detection using deep neural networks: a survey. Proc. IEEE
108, 10 (2020), 1825–1848.

[59] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Olivier De Vel, Paul Montague, and
Yang Xiang. 2019. Software vulnerability discovery via learning multi-domain
knowledge bases. Proceedings of the IEEE Transactions on Dependable and Secure
Computing (2019).

[60] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understand-
ing and Generation. In Thirty-fifth Conference on Neural Information Processing

Combining Structured Static Code Information and Dynamic Symbolic Traces for Software Vulnerability Prediction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Systems Datasets and Benchmarks Track.
[61] Kasper Luckow, Marko Dimjašević, Dimitra Giannakopoulou, Falk Howar, Malte

Isberner, Temesghen Kahsai, Zvonimir Rakamarić, and Vishwanath Raman. 2016.
JD art: a dynamic symbolic analysis framework. In Tools and Algorithms for the
Construction and Analysis of Systems: 22nd International Conference, TACAS 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings 22. Springer,
442–459.

[62] Andrew A Neath and Joseph E Cavanaugh. 2012. The Bayesian information cri-
terion: background, derivation, and applications. Wiley Interdisciplinary Reviews:
Computational Statistics 4, 2 (2012), 199–203.

[63] Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran,
and Dinh Phung. 2022. ReGVD: Revisiting Graph Neural Networks for Vulnera-
bility Detection. In Proceedings of the 44th International Conference on Software
Engineering Companion (ICSE ’22 Companion).

[64] NIST. [n. d.]. Software Assurance Reference Dataset Project. https://samate.nist.
gov/SRD/.

[65] Hristina Palikareva and Cristian Cadar. 2013. Multi-solver support in symbolic
execution. In Computer Aided Verification: 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings 25. Springer, 53–68.

[66] Xiaojiang Peng, Kai Wang, Zhaoyang Zeng, Qing Li, Jianfei Yang, and Yu Qiao.
2020. Suppressing mislabeled data via grouping and self-attention. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XVI 16. Springer, 786–802.

[67] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. Vccfinder: Finding potential
vulnerabilities in open-source projects to assist code audits. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
426–437.

[68] Gabriel Poesia and Fernando Magno Quintão Pereira. 2020. Dynamic dispatch
of context-sensitive optimizations. Proceedings of the ACM on Programming
Languages 4, OOPSLA (2020), 1–28.

[69] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of
patch plausibility and correctness for generate-and-validate patch generation
systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis. 24–36.

[70] Leslie Rice, Eric Wong, and Zico Kolter. 2020. Overfitting in adversarially robust
deep learning. In Proceedings of the 37th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and
Aarti Singh (Eds.). PMLR, 8093–8104. https://proceedings.mlr.press/v119/rice20a.
html

[71] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis.. In OSDI, Vol. 20. 667–682.

[72] Iqbal H Sarker. 2021. Machine learning: Algorithms, real-world applications and
research directions. SN Computer Science 2, 3 (2021), 1–21.

[73] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-Replay and Dynamic Analysis Framework for
JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). Association for Comput-
ing Machinery, New York, NY, USA, 488–498. https://doi.org/10.1145/2491411.
2491447

[74] Ridwan Shariffdeen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury. 2021.
Concolic program repair. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 390–405.

[75] Ke Shi, Yang Lu, Jingfei Chang, and Zhen Wei. 2020. PathPair2Vec: An AST path
pair-based code representation method for defect prediction. Journal of Computer
Languages 59 (2020), 100979. https://doi.org/10.1016/j.cola.2020.100979

[76] Wilson L Taylor. 1953. “Cloze procedure”: A new tool for measuring readability.
Journalism quarterly 30, 4 (1953), 415–433.

[77] David A Tomassi and Cindy Rubio-González. 2021. On the Real-World Effec-
tiveness of Static Bug Detectors at Finding Null Pointer Exceptions. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 292–303.

[78] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[79] Huanting Wang, Zhanyong Tang, Cheng Zhang, Jiaqi Zhao, Chris Cummins,
Hugh Leather, and Zheng Wang. 2022. Automating reinforcement learning
architecture design for code optimization. In Proceedings of the 31st ACM SIGPLAN
International Conference on Compiler Construction. 129–143.

[80] H. Wang, G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, Y. Feng, L. Bian, and Z.
Wang. 2021. Combining Graph-Based Learning With Automated Data Collection
for Code Vulnerability Detection. IEEE Transactions on Information Forensics and
Security 16 (2021), 1943–1958. https://doi.org/10.1109/TIFS.2020.3044773

[81] Ke Wang and Zhendong Su. 2020. Blended, Precise Semantic Program Em-
beddings. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (London, UK) (PLDI 2020). Association for
Computing Machinery, New York, NY, USA, 121–134. https://doi.org/10.1145/

3385412.3385999
[82] Zheng Wang and Michael O’Boyle. 2018. Machine learning in compiler optimiza-

tion. Proc. IEEE 106, 11 (2018), 1879–1901.
[83] Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xi-

aoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated
conformance testing for JavaScript engines via deep compiler fuzzing. In Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 435–450.

[84] Guixin Ye, Zhanyong Tang, HuantingWang, Dingyi Fang, Jianbin Fang, Songfang
Huang, and Zheng Wang. 2020. Deep program structure modeling through multi-
relational graph-based learning. In Proceedings of the ACM International conference
on parallel architectures and compilation techniques. 111–123.

[85] Zhengran Zeng, Yuqun Zhang, Haotian Zhang, and Lingming Zhang. 2021. Deep
just-in-time defect prediction: how far are we?. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 427–438.

[86] Dan Zhang, Qing-Guo Wang, Gang Feng, Yang Shi, and Athanasios V Vasilakos.
2021. A survey on attack detection, estimation and control of industrial cyber–
physical systems. ISA transactions 116 (2021), 1–16.

[87] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and
William GJ Halfond. 2019. Recdroid: automatically reproducing android applica-
tion crashes from bug reports. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 128–139.

[88] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. In Proceedings of the Advances in Neural
Information Processing Systems. 10197–10207.

