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Abstract—Code virtualization built upon virtual machine (VM)
technologies is emerging as a viable method for implementing
code obfuscation to protect programs against unauthorized
analysis. State-of-the-art VM-based protection approaches use
a fixed set of virtual instructions and bytecode interpreters
across programs. This, however, exposes a security vulnerability
where an experienced attacker can use knowledge extracted
from other programs to quickly uncover the mapping between
virtual instructions and native code for applications protected
under the same scheme. In this paper, we propose a novel VM-
based code obfuscation system to address this problem. The core
idea of our approach is to obfuscate the mapping between the
opcodes of bytecode instructions and their semantics. We achieve
this by partitioning each protected code region into multiple
segments where the mapping of opcodes and their semantics
is randomized in different ways in different segments. In this
way, each bytecode instruction will be translated into different
native code in different sections of the obfuscated code. This
significantly increases the diversity of the program behavior. As
a result, the knowledge of bytecode to native code mappings
obtained from other programs will be less useful when targeting
a new program. We evaluate our approach on a set of real-world
applications and compare it against two state-of-the-art VM-
based code obfuscation approaches. Experimental results show
that our approach is effective, which provides stronger protection
with comparable runtime overhead and code size.

Index Terms—Virtualized obfuscation, reverse engineering,
instruction set randomization, analysis knowledge

I. INTRODUCTION

Unauthorized code reverse engineering is a major concern

for software developers. It is often exploitted by adversaries

to perform various attacks, including removing copyright

protection of software, taking out advertisements from the

application, or injecting malicious code into the program.

By making the program harder to be traced and analyzed,

code obfuscation is a viable means to protect software against

unauthorized code modification [1], [2], [3], [4], [5], [6].

Code virtualization based on a virtual machine (VM) is

emerging as a promising way for implementing code obfusca-

tion [7], [8], [9], [10]. This strategy forces the attacker to move

from a familiar instruction set to an unfamiliar environment,

which can significantly increase the time and effort involved

in the attack.

Reverse engineering of VM-obfuscated code typically fol-

lows several steps. First, the reverse-engineers would need to

analyze the virtual interpreter to understand the semantics of

*Corresponding author.

individual bytecode instructions. Then, they need to translate

the bytecode back to native machine instructions or even high-

level program languages to understand the program logic [11],

[12]. Among the two steps, understanding the semantics of

individual bytecode instructions is often the most-consuming

process, which is involved in analysing the handler that used

to interpret every bytecode instruction.

Numerous approaches have been proposed to protect VM

handlers from reverse engineering. Most of them aim to

increase the diversity of program behavior by obfuscating

the handler implementation [13] or iteratively transforming

a single program multiple times using different interpretation

techniques [14], [15]. However, all previous work has adopted

a fixed strategy in which each bytecode is certainly converted

to a fixed set of native code. Such techniques are vulnerable

for programs protected under the same obfuscation technique.

In particular, an attacker can reuse the knowledge (termed

analysis knowledge) of the handler implementation obtained

from one program to launch the attack on another program.

We present DCVP (Code Virtualization Protection with

Diversity), an enhanced VM-based code obfuscation system to

address the issue of reusing analysis knowledge. We employ

a technique called Instruction Set Randomization (ISR) [16]

to randomly change the opcodes of bytecode instructions

and their semantics. So that the mapping between bytecodes

and their handlers varies across programs. However, the ran-

domization is not sufficient for providing stronger protection,

because it is easy to be bypassed due to the non-uniform

distribution of the bytecode instructions (e.g. the more frequent

a bytecode is used, the more likely the relation between the

bytecode and its handlers can be obtained from other pro-

grams). To overcome this issue, DCVP partitions the protected

code region into several parts where the mappings of bytecode

instructions and their handlers in each part are different. As a

result, the same bytecode instruction in different parts of the

program will have different semantics.

The key contribution of this paper is to propose corre-

sponding countermeasures for the reuse of analytical knowl-

edge in code reverse engineering. We compare our approach

with VMProtect [8] and Themida [9] on a set of real-world

applications and algorithms. Experimental results show that

DCVP provides stronger protection with comparable runtime

overhead and code size when compared to two commercial

VM-based code obfuscation tools. It is to note that our work
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Fig. 1: A representative architecture for VM-based obfuscation. The main
work of this paper is to improve the core steps of VM-based protection (areas
marked as “a” and “b”). In the first region (a), we partition the protected code
region into different segments, and obfuscate the bytecode handlers to
generate multiple implementations for each handler. In the second region
(b), we use a number of obfuscation and anti-taint analysis technologies to
protect the important components of the VM core.

focuses on protecting code against code reverse engineering.

II. BACKGROUND

Virtualization techniques is widely used to protect software

programs from unauthorized analyses. Examples of VM-based

code obfuscation tools include VMProtect [8], Code Virtu-

alizer [7] and themida [9]. VM-based protection works by

transforming the native machine code of the protected code

region into a set of bespoke virtual instructions which are

stored as bytecode in the program binary. At runtime, the

virtual instructions will be translated into native code using

byte interpreters.

Figure 1 illustrates a classical VM-based obfuscation sys-

tem. At the heart of this system are the virtual IS (Instruction

Set) and the set of interpreters used to translate the IS to native

code. Interpretation of virtual instructions follows the classical

decode-dispatch approach [17], using a bundle of handlers
and a VMloop. Here, the VMloop is the execution engine

which fetches and decodes a bytecode instruction and then

dispatches a handler to interpret instruction. VMcontext,

which contains hardware-independent virtual registers and

flags. At runtime, the virtual registers and flags will be

mapped down to the underlying hardware, and the VMInit
is responsible for saving the native context and initializing

the VMcontext. In comparison, VMExit restores the native

context when exiting VM. Finally, these VM components will

be assembled into a new section and attached to the end of

the target program through binary rewriting.

Our work focuses on two key components of the VM-based

obfuscation architecture, highlighted using labels ‘a’ and ’b’

in Figure 1. Our approach divides the protected code region

to different sections. It generates multiple implementations

for each bytecode handler using code obfuscation techniques.

Different implementations of the same bytecode handler are

semantically equivalent and will produce an identical output

for a given virtual instruction; but they follow different ex-

ecution paths and exhibit diverse behavior during runtime.

We further enhance the strength of the protection by using

a number of obfuscation and anti-taint analysis technologies

to protect the important components of the VMCore.

III. THE THREAT MODEL

In our threat model, we assume an attacker owns a copy of

the target application and can run it in a malicious host envi-

ronment [18]. Such a threat model is also known as the white-

box attack [19], [20]. In such an environment, the adversary

has full privileged accesses to the system. We also assume the

adversary can use static and dynamic analysis tools, such as

IDA [21], OllyDbg [22] and Sysinternals Suite [23],

to trace and analyze instructions, monitor registers and process

memory, and modify instruction bytes and control flows at

runtime, etc. Prior work has demonstrated that these are reason

assumptions [11], which are often available to an experienced

adversary.

There are two preliminarily used methods to attack VM-

based protection systems. Our work assumes an adversary can

use any of or a combination of the methods to launch the

attack. These two methods are described as follows.

The first technique is based on the virtual execution analysis

proposed by Rolles et al. [12]. This requires an analyst to have

a deep understanding of the code virtualization techniques

employed by the obfuscation system. It works by dynamically

tracking the execution process of the virtual interpreter to

extract the key bytecodes and handlers, and then through the

analysis and code simplification to recover the program logic.

Falliere et al. [11] show that it is possible to perform the above

analysis [8]. This type of attack method is closely related to

the principle and structure of code virtualization, and has been

widely adopted to analyze obfuscated malware.

The second technique is based on behavior and semantic

analysis of the target program. This type of attack method can

be used to attack not only code virtualization but also other

obfuscation methods. Coogan et al. [24] propose a behavior

based analysis method. Their approach aims to analyze impor-

tant behavior of code, but it does not pay attention to restoring

the original code. Yadegari et al. [25] propose a method based

on semantic analysis. The method uses taint propagation to

track the flow of inputs values, and semantics-preserving code

transformations to simplify the logic of the instructions. This

type of method has wider applicability, but is restricted to a

small code region.

IV. MOTIVATION

Figure 2 depicts an reverse analysis scenario where an

analyst can reuse the analysis knowledge to attack applications

protected by the same VM-based code obfuscation scheme. In

this example, there are four different programs to be protected,

labelled as A, B, C and D. In the right side of the diagram,

all the four programs are protected using an identical set of

virtual instructions and bytecode handlers.

Under this setting, an experienced analyst would be able

to use the knowledge of the mapping of virtual instructions

and bytecode handlers obtained from one program to reverse-

engineer the other three programs. Bear in mind that, uncover-

ing the mapping between virtual instructions and native code

is often the most time-consuming process for attacking VM-

based code obfuscation. Having able to reuse the attacking
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Fig. 2: The process of reusing attacking knowledge for code reverse engineer-
ing. Here we have four different target programs, A, B, C and D. In the right
side of the scenario, all programs are obfuscated with a code obfuscation
scheme that a virtual instruction will be deterministically translated to a
fixed set of native code. This allows an attacker to reuse knowledge obtained
from one program to efficiently reverse engineer other programs. In another
scenario, the mapping between virtual instructions and native code is different
for different programs. In this way, the attacker is unable to reuse the
previously extracted knowledge to perform reverse analysis across programs.

knowledge thus can significantly reduce the cost involved in

the attack. In another scenario, the translations between virtual

instructions and native code vary among programs. Therefore,

the knowledge obtained from one program will be inapplicable

to others. This forces the analyst to start from the scratch when

reverse engineering a new program. This example shows that

shuffle the relationship between the virtual instructions and

bytecode handlers can significantly increase the effort and cost

involved in performing the attack. In the remainder sections of

the paper, we describe how we can construct such as scheme

in details.

V. OVERVIEW

DCVP consists of four components, described as follows.

Virtual Instruction Set and Handlers. The native machine

instructions within the target code region are translated into

bespoke virtual instructions and stored as bytecode in the

program binary. The virtual instructions will be decoded by

the handlers during runtime. A virtual instruction can be

decoded by multiple semantically-equivalent handlers. A brief

description of the design of a virtual instruction set is given

in Section VI.

Native code translation. We develop a tool to automatically

translate the native machine code into virtual instructions and

stored as bytecode. This is detailed in Section VII-A.

Bytecode diversification. The generated bytecode instructions

will be diversified using a special encoding scheme. Each

protected code region is partitioned to multiple segments and

the opcodes of the virtual instructions in each segment will be

mapped to different native code. This means that a mapping

from opcode to native code found at one segment is likely to

be inapplicable for other segments. This is the key component

of DCVP, presented at Section VII-B.

PE Refactoring. Finally, the generated bytecode program and

other VM components will be linked together through binary

rewriting.

VI. VIRTUAL INSTRUCTION SET AND HANDLERS

The virtual instruction set and their handlers are the founda-

tions of any VM-based code obfuscation system. The virtual

instruction set must be Turing-equivalent to target native

machine code. This means that any native instruction could

be substituted with some virtual instructions without violating

the semantics of the original code. Virtual instructions will be

interpreted by the hand-crafted handlers during program

execution. It is to note that the instruction handlers are

written in native instructions.

There are two mainstream approaches for implementing

a VM: a stack-based approach and a register-based one. In

this paper, we choose to use the stack-based architecture to

implement DCVP for the following reasons:

• In a stack-based VM, operations are carried out with the

help of stack, where operands and results of operations

are stored. This simplifies the addressing of operands and

ultimately simplifies the implementation of handlers.

• The process of converting native x86 instructions to

virtual instructions is simpler compared to a register-

based alternative.

• Stack-based VMs require more virtual instructions for

a given computation; this makes the instructions more

complex and conforms to our objective of impeding

reverse analysis.

A näive approach to design a virtual instruction set that

is semantically equivalent to the native instruction set, is to

map every single native instruction to a virtual instruction.

However, this would require us to implement a large number

of instruction handlers as our goal is to provide multiple

handlers for a single virtual instructions. We choose a different

approach that has a lower implementation cost, by exploiting

the characteristics of a stack-based VM. Our design choice

is based on the following observation. In a stack VM, a

native operation is either executed or virtualized a three-step

fashion: (i) pushing the operand into the stack, (ii) executing

an operation, and (iii) storing the result into the execution

context. Therefore, we can use the following, smaller number

of instructions to implement a virtual instruction set:

• We need load and store instructions for data transfers.

load instructions are for pushing operands into the stack,

and store instructions are for popping results out of the

stack and storing the results back the virtual context.

• We need arithmetical and logical instructions. The num-

ber of these virtual instructions needed are smaller than

their Intel x86 counterparts, as the addressing mode

of operands is simpler and uniform (i.e., stack-based

memory addressing).

• Branch instructions for changing the control flow of the

bytecode program.

Other instructions that are not included in the above cat-

egories are defined as special virtual instructions, and are

labelled as undef, When encountering such an instruction

at time, we will first restore the native context and exits the

VM. Then, we execute the undefined native instruction in the
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native context and re-enter the VM to continue executing the

remaining bytecode instructions.

VII. OFFLINE CODE OBFUSCATION

We now describe how to translate native instruction instruc-

tions to virtual instructions and store them in the bytecode

format.

A. Native Instructions to Virtual Instructions

First,we convert native instructions into virtual instructions.

This conversion process follows the three-step execution pro-

cess in a stack-based VM, which is described in Section VI.

Specifically, we load the operands into stack with the load
virtual instruction; then, we execute the ready to execute

operation; and store the result into virtual context or a cer-

tain memory address with store virtual instructions.Native

data transfer instructions are mainly mapped into load and

store instructions. Examples of such instructions in the x86

instruction set include mov, push, and pop. Arithmetical

and logical instructions will be translated by strictly follow-

ing the aforementioned three-phase processing, and branch

instructions are mapped into a load instruction followed

by a virtual branching instruction. Native instructions with

complex addressing modes are processed iteratively using a

combination of the aboved virtual instructions.

B. Virtual Instructions to Bytecodes

Virtual instructions are stored in the bytecode format.

Specifically, we assign each virtual instruction a distinct ID

as its opcode. The ID is used by VMloop as an index to find

the address of the handler of the virtual instruction in the

address table recording the addresses of each handler. Since

the number of virtual instructions is less than 256, one byte is

sufficient to encode their IDs. As for the operands, since they

could be of different size1, we use one, two, or four bytes to

encode them correspondingly.

1) Randomize the Semantics of Bytecode Instructions:
From the above demonstration, if an analyst gets known

the semantics of a bytecode instruction, the next time she

encounters it, she does not bother to analyze its handler
once again to figure out what it does2. For example, in Figure

3, the bytecode instruction "10" means an addition operation

through analyzing Handler 4023e0. The next time we

encounter a bytecode instruction of "10", we could say that

it does an addition operation immediately. To mitigate the

effect of reuse of previously obtained analysis knowledge,

we randomize the semantics of virtual instructions. According

to the encoding scheme we adopt, it is easy to achieve this

goal. The idea is to change the relationship between the IDs

(opcodes) and the virtual instructions, which is similar to [16].

Every time to encode the virtual instructions, the IDs are

1The operand of a virtual instruction could be an index for virtual register,
an immediate value, or a memory address. They could be of different size:
a virtual register index being 8 bits, an immediate value being 8/16/32 bits,
and a memory address being 32 bits.

2Since handlers could be mutated to hinder analysis, it saves an analyst
a lot of time end effort without bothering to analyze them once again.

00 02:  load_r 02
00 03:  load_r 03
10 :  add32
04 02:  store_r 02

movzx eax, byte[vpc]
add vpc, 1
push[VMcontext+eax*4]
jmp VMloop

movzx eax, byte[vpc]
add vpc, 1
pop[VMcontext+eax*4]
jmp VMloop

pop eax
add dword[esp], eax
jmp VMloop

402300   

402300:

40236a:

Handler Address Tables:

VMloop:

HAT[00] HAT[04] HAT[10]

Bytecode: VI Handlers Set:

40236a 4023e0

movzx eax, byte[vpc]
add vpc, 1
jmp HAT[eax]

4023e0:

Fig. 3: Examples of virtual instructions and bytecodes. Each virtual instruction
is encoded into a bytecode instruction, which consists of an opcode and an
optional operand. The bytecode instructions are fed into VMloop and the
opcode of each bytecode instruction is used by VMloop as an index to find
the address of the corresponding handler in the HAT (Handler Address Table).

first shuffled once. Then the shuffled IDs are used to encode

the virtual instructions. The addresses of handlers are also

filled into the handler address table accordingly.

2) Partition Bytecode Program: With the randomization

of the semantics of bytecode instructions, an analyst can

not directly reuse her analysis knowlege to work out what

a bytecode instruction actually does. However, the effect of

the randomization could be easily bypassed. The frequencies

of virtual instructions are not uniform, where load r and

store r are two of the most frequently used virtual instruc-

tions. Thus, an analyst could infer the semantics of bytecode

instructions based on the non-uniform frequencies of opcodes.

3) Bytecode Program Partitioning: To obfustrate the infer-

ences based on the frequencies of opcodes, we partition all the

generated virtual instructions into several parts, each part been

encoded differently. Specifically, during obfuscation, instead

of encoding the generated virtual instructions all at a time,

we encode those resulted parts separately. And prior to each

encoding process, we first randomly shuffle the IDs of virtual

instructions and then use the results for encoding. The effect

of the shuffles is that an identical opcode in different parts

of the bytecode program probably reveals different semantics,

thus the frequencies of opcodes are obscured . Figure 4 shows

an example of partitioning the virtual instructions into two

parts. The opcode of a virtual instruction is probably encoded

differently in different parts. For example, load r is encoded

into "00" in the first part, while "7a" in the other.

As the opcodes of bytecode instructions are used by

VMloop as the indexes for the addresses of their corre-

sponding handlers, and different partitions are encoded

differently, each partition needs their own HAT. At the end

of a partition, the HAT used by VMloop should be switched

to the HAT of the next partition. This is done by a new

virtual instruction - switch HAT. Since switch HAT is

always added to the end of a partition and the orders of HATs

are in accordance with that of the partitions, switch HAT
needs to add the size of a HAT to the HAT pointer used by
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00 03:  load_r 03
10 :  add32
93 :  switch_HAT

7a 05:  load_r 05
17 :  add32
52 :  switch_HAT

  

movzx eax, byte[vpc]
add vpc, 1
push[VMcontext+eax*4]
jmp VMloop

mov eax, [esp]
add esp, 4
add dword[esp], eax
jmp VMloop

add HAT, 250h
jmp VMloop

pop eax
add dword[esp], eax
jmp VMloop

add HAT, 250h
mov ecx, ecx
jmp VMloop

push [vpc]
pop eax
add vpc, 1
push[VMcontext+eax*4]
jmp VMloop

402300  4023e0 4024a6  

4026a4    

402300:

4023e0:

4024a6:

4026a4:

4026f8:

402740:

Handler Address Tables:
HAT0:

HAT1: 4026f8 402740

VMloop:

HAT0[00] HAT0[10] HAT0[93]
HAT1[17] HAT1[52] HAT1[7a]

Bytecode: VI Handlers Set 0: Handlers Set 1:

movzx eax, byte[vpc]
add vpc, 1
jmp HAT[eax]

Fig. 4: Example of partitioning virtual instructions into several parts (two
parts in this figure). Virtual instructions in different partitions are encoded
differently and interpreted using different handlers set. The number of
HAT increases accordingly. To switch the currently used (by VMloop) HAT
to the next one, we add a new virtual instruction switch HAT. The operand
of switch HAT is the size of a HAT.

jmp 4020a8h
(direct inner jump)

load_i32 42a585h
load_i32 dest_HAT
jmp_di

Handler_jmp_di:
pop eax
mov HAT, eax
pop eax
mov VPC, eax

virtualization

Fig. 5: The virtualization of a direct inner transfer instruction with HAT
switching. The address of the destination HAT is pushed into stack by
load i, and is assigned to the HAT pointer used by VMloop at runtime.

VMloop (as Handler 4024a6 does in figure 4). In our

prototype, the number of Handlers is 148 and the address

of a Handler is 4 bytes, thus the size of a HAT is 592
(250h in hexadecimal) bytes.

The switchings of HATs is not limited to the end of parti-

tions. A branch instruction also causes the switching when its

destination resides in a different partition. Branch instructions

change the control flow of a program through changing the

VPC. When encounter such an instruction, we cannot simply

append a switch HAT to it, since the switch HAT may

not get interpreted by VMloop if the VPC is changed to

a location in another partition. Hence, we put the code for

switching inside the Handlers of the branch instructions.

Here, the branch instructions indicate the direct inner ones, as

direct outer branches and indirect branches all leave the virtual

context and need not to worry about the switching of HATs.

During protection, for each direct inner branch instruction,

we first calculate its destination, and then figure out which

partition the destination resides. The address of the HAT of

that partition is pushed into stack by load i and will be

used by the Handler of the branch instruction to set the

value of the HAT pointer used by VMloop. Figure 5 shows

the virtualization of a direct inner branch instruction.

4) Security Analysis of Partition Design: The number of

HAS obfuscated is determined by the number of partitions.

Our system will randomly select several methods from the

obfuscation method library which contains the junk instruc-

tions injection, equivalent instruction substitution [26], code

out-of-order [27] and control flow flattening [28]. Then the

system will use the selected method in a random order to

obfuscate the handler. Finally we have multiple equivalent

but different forms of HAS. We will also adopt some anti-taint

analysis techniques (some details are presented in section III)

to protect the HAS that after obfuscated. This can effectively

prevent the virtual interpreter from being attacked by some

de-obfuscation methods.

For example, HAS (Handler Set) as an original handler
set that consists of m handler. We use a HAT to store the

address of these handlers, and their index corresponds to

the opcode of virtual instruction. HAS will be obfuscated for n
times with different strategies, n is dependent on the number of

partitions. Then we get multiple HASs and which are semantic

equivalence but have different forms. At this time, all of the

equivalent handlers still have the same index. This is a

type of insecure and direct mapping relationship. Therefore,

according to the method that partitions bytecode program and

randomizes the semantics of bytecode instructions described

in Section VII-B2, we first randomly shuffle the IDs of virtual

instructions and then use these results to generate a new HAT

for each partition (as shown in Figure 4). The effect of shuffles

is that an identical opcode in different parts of the bytecode

program probably reveals different semantics. The relationship

of these equivalent handlers in different HASs should be:

HAS1(i)⇔HAS2(j)⇔ ... ⇔HASn(k), 1≤i, j, k≤m.

This various semantics of bytecode instructions and different

forms of handlers can effectively prevent the attacker from

using the attack knowledge base matching to realize the

automated reverse analysis. The attacker has to spend a lot

of time to analyze every detail.

The above methods can prevent the spread of tainted data by

laundering tainted data and resist the taint analysis effectively

.

VIII. EVALUATION

In this section, we first evaluate the effectiveness of DCVP

by computing the likelihood of a bytecode instruction of two

partitions to be mapped to an identical machine code. We

then evaluate the overhead of DCVP in terms of code size

and running time.

A. Effectiveness Evaluation

DCVP is effective for impeding reverse analysis by invalidat-

ing existing analysis knowledge. From Section II, we learned

that understanding the semantics of bytecode instructions is

essential for reverse engineering a VM-obfuscated program.

Semantics are encapsulated in handlers, and the work of

extracting them form handlers is tedious and error-prone.

Therefore, it will save analysts lots of time and energy if the

semantics of bytecode instructions are accessible,

without bothering to trace and analyze the handlers
once again. DCVP’s aim is to frustrate this attempt and

force analysts to analyze the handlers every time. Through
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TABLE I: Statistics of the Target Programs.

Target Program Version Size(KB) Critical Code N1 N2 Ratio N3

md5 2.3 11 Transform() 1327 563 42.36% 85013

gzip 1.2.4 56 deflate() 10181 153 1.50% 539082

bcrypt 1.1.2 68 Blowfish Encrypt() 2997 54 1.80% 1735710

mat mul - 184 ijkalgorithm() 49327 60 0.12% 84325

Note:The 5th and 6th column gives the number of instructions in the entire program and these critical functions respectively, The 7th column gives the
proportion of critical code. We use Pin [29] to count the number of the dynamically executed instructions in the critical functions and the results are shown
in the last column. We chose only 60 instructions of mat mul is special to verify the impact of DCVP on the program overhead when protecting a small
amount of code. The results are shown in figure 8 and the impact is not obvious.
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Fig. 6: The average frequency of an opcode is used during runtime execution.
The x-axis shows the opcode ID and the y-axis shows how often (normalized
between 0 and 1) an opcoded is chosen.

randomizing the semantics of bytecode instructions, the same

bytecode instruction probably means different obfuscated in-

stances, and even different in the same obfuscated program by

adopting different encoding schemes for different partitions of

the bytecode program, which can largely confuse analysts and

increase their workload.

Assuming that the number of virtual instructions, or the

number of handlers in other words, is H , then the prob-

ability of a bytecode instruction in two obfuscated programs

having the same semantics is 1
H . The total number of distinct

shuffle of the opcodes is H!. In an obfuscated program,

supposing the bytecode program is partitioned into N parts,

then the probability that a bytecode instruction in different

partitions having the same semantics is
(

1
H

)N−1
. Therefore,

we believe DCVP can effectively remove the analysis knowlege
about the semantics of bytecode instructions.

We also count the average frequencies of opcodes of our

benchmarks. We take the obfuscated programs with 2, 8,

and 32 partitions for comparison. The results are presented

in figure 6. As we can see, as the number of partitions

increases, the frequencies of opcodes tend to be closer. When

the partition number is 1, we can easily get the instruction that

has the highest frequency is “load r”, since it is the most

commonly used instruction.

B. Overhead Evaluation

To evaluate the spatial and temporal overhead of our

method, we implemented a prototype, namely DCVP, for

obfuscating x86 PE executables on the Windows platform.

In the implementation, we devised 148 virtual instructions

and their corresponding handlers. We conducted all the

experiments on a Dell Optiplex 960h with an Intel®CoreTM 2

Duo Processor E8400 at 3.00GHz with 4.00GB of RAM. The

operating system environment is Windows 7 Enterprise.

We use DCVP to protect four x86 PE executables, namely

md53, gzip4, bcrypt5, mat_mul6. The first three are used

to process a text file (test.txt) of 10KB and mat mul
is used to calculate the product of two 5×5 matrices. Table I

shows the statistics of these executables. For each program,

we choose a piece of critical code to protect, as shown

in table I. The programs are protected 10 times, each time

with a parameter that specifies a different number (1∼10) of

partitions.

Figure 7 shows the code size of the obfuscated programs.

The horizontal axis specifies the number of partitions in the

obfuscated programs and “0” means the original program. As

the partitions increase, the increased bytes mostly come from

the added HATs and HAS. Since the size of a HAT is only

592 bytes, the sizes of the HATs increase slowly. Besides,

the sections in PE executables are aligned to a value (4096 or

512 usually)[30], the filesize of the program is mainly affected

by the number of HAS, and it increases with the increase of

partition’s number regularity.

To evaluate the runtime overhead that DCVP introduces, we

run the obfuscated programs for several times and calculate

the average execution time of them: md5, gzip, bcrypt and

matrix mul. The average execution time is shown in figure

8. Among them, bcrypt has the largest increase of execution

time from original program7 to the obfuscated program with

one partition. This resulted from that the critical instructions

in bcrypt is executed much more times than others (as

shown in the last column in table I). Besides, the execution

time changes little as the number of partitions increases. From

section VII-B2 we can learn that if the number of partitions

3MD5. http://www.fourmilab.ch/md5/.
4gzip. http://www.gzip.org/#sources.
5Bcrypt - Blowfish file encryption. http://sourceforge.net/projects/bcrypt/.
6Matrix Multiply. https://github.com/MartinThoma/matrix-multiplication.
7The execution time of the original program is specified by “0” on the

horizontal axis.
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Fig. 9: The average runtime overhead per dynam-
ically executed critical instruction.

increases by one, the program only needs to execute an extra

handler to interpret the switch HAT instruction. The

introduced runtime overhead is negligible.

We evaluate the average runtime overhead per dynamically

executed instruction. We use Tob to denote the execution

time of a obfuscated program, To for that of the original

program, and Ce for the count of the critical instructions

been dynamically executed. The average runtime overhead per

dynamically executed instruction is calculated by

(Tob − To)/Ce.

The results are shown in figure 9. From this figure, we can

learn that md5 has the largest average runtime overhead per

dynamically executed instruction. The reason is that the critical

code of md5 is full of arithmetical and logical instructions,

which takes a longer time to interpret.

Finally, we compare DCVP with two commercial code

virtualization protection systems. We select some instructions

from the previous four test cases, and then protect them with

DCVP, VMProtect [8] and Themida [9] respectively. Then

we check the size of protected programs and calculate their

average execution time of protected test cases. Figure 10 shows

the impact of the three virtualization protection system on

the file size of the four target programs. The resulting code-

size of DCVP and VMProtect are comparable, and are smaller

than the ones given by Themida. This is largely attributed to

the design of virtual instructions and handlers. Runtime

overhead as shown in Figure 11. In general, the effects of

the three protection systems are similar. Special, the runtime

overhead of bcrypt that protected by Themida is far greater

than the other target programs. This may be related to the

design of the Themida and the executed number of critical

instructions in bcrypt. According to above comparison, we

can see that DCVP is similar to VMProtect in temporal and

spatial overhead, and they are all smaller than the Themida

counterparts.

IX. RELATED WORK

Code deobfuscation techniques have been proposed in re-

cent years. Coogan et al. [24] proposed an approach to identify

instructions that related to system calls, and automatically

extract an approximate dynamic trace of the original code.
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Fig. 10: The comparison of impact on file size (KB) with VMProtect and
Themida.
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Fig. 11: The comparison of runtime performance (μs) with VMProtect and
Themida.

Yadegari et al. [25], proposed an approach to track the flow

of inputs values, and then use semantics-preserving code

transformations to simplify the logic of the instructions. These

approach, however, or can only extract some execution char-

acteristics of target program and can not restore the structure

of the original code completely, or needed taint analysis to

track and analyze the data flow, and this process may be

impeded by enforcing dataflow obfuscation to the handling

procedures [20]. These methods are limited more or less.

DCVP adopts ISR (Instruction Set Randomization) tech-

niques while generating randomized and distinct virtual in-

struction sets. ISR has been used to prevent code injection at-

tacks by randomizing the underlying system instructions [31],

[16], [32]. In this approach, instructions are encrypted with a
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set of random keys and then decrypted before being fetched

and executed by the CPU. ISR is effective for defeating code

injection attacks but cannot prevent from reverse engineering

attacks. As in our attack model, software programs are exe-

cuted in a malicious host environment, where attackers are able

to trace and log the decrypted instructions for later analysis.

DCVP employs an approach similar to ISR while generating

random virtual instruction sets, by changing the relationship

between the opcodes and the virtual instructions [16], but it

never “decrypts” the virtual instructions back into their original

ones. Instead, DCVP uses handlers to interpret the virtual

instructions. and the handlers of virtual instructions are

more complex than their corresponding native instructions. Be-

sides, DCVP uses the multiple partitions and has the different

ISRs in a single program, making the reverse analyses even

more difficult and tedious.

X. CONCLUSIONS

This paper has presented DCVP, a VM-based code obfus-

cation scheme. DCVP is designed to prevent code reverse en-

gineering attacks that use knowledge obtained from programs

protected under the same code obfuscation technique. At the

core of DCVP is a novel strategy to diversify the obfuscated

program behavior. We achieve this by first partitioning the

protected code region to different segments; then randomly

mapping the opcode of each virtual instruction from different

segments to different bytecode handlers. As a result, the

mapping between a virtual instruction and native code changes

from one code segment to the other. This makes the program

behavior to be less predictable, increasing the difficulty for

reusing knowledge obtained from other programs to attack the

target application. We evaluated our approach on real-world

applications and compared it against state-of-the-art VM-based

code protection tools. Experimental results show that DCVP

provides stronger protection with comparable overhead.
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