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Abstract—Sparse matrix vector multiplication (SpMV) is
one of the most common operations in scientific and high-
performance applications, and is often responsible for the ap-
plication performance bottleneck. While the sparse matrix rep-
resentation has a significant impact on the resulting application
performance, choosing the right representation typically relies
on expert knowledge and trial and error. This paper provides
the first comprehensive study on the impact of sparse matrix
representations on two emerging many-core architectures: the
Intel’s Knights Landing (KNL) XeonPhi and the ARM-based
FT-2000Plus (FTP). Our large-scale experiments involved over
9,500 distinct profiling runs performed on 956 sparse datasets
and five mainstream SpMV representations. We show that the
best sparse matrix representation depends on the underlying
architecture and the program input. To help developers to
choose the optimal matrix representation, we employ machine
learning to develop a predictive model. Our model is first
trained offline using a set of training examples. The learned
model can be used to predict the best matrix representation for
any unseen input for a given architecture. We show that our
model delivers on average 95% and 91% of the best available
performance on KNL and FTP respectively, and it achieves
this with no runtime profiling overhead.

Keywords-Sparse matrix vector multiplication; Performance
optimization; Many-Cores; Performance analysis

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is commonly

seen in scientific and high-performance applications [33, 48].

It is often responsible for the performance bottleneck and

notoriously difficult to optimize [2, 21, 22]. Achieving a

good SpMV performance is challenging because its perfor-

mance is heavily affected by the density of nonzero entries or

their sparsity pattern. As the processor is getting increasingly

diverse and complex, optimizing SpMV becomes harder.

Prior research has shown that the sparse matrix storage

format (or representation) can have a significant impact on

the resulting performance, and the optimal representation

depends on the underlying architecture as well as the size

and the content of the matrices [1, 3, 4, 19, 46]. While there

is already an extensive body of study on optimizing SpMV

on SMP and multi-core architectures [21, 22], it remains

unclear how different sparse matrix representations affect the

SpMV performance on emerging many-core architectures.
This work investigates techniques to optimize SpMV on

two emerging many-core architectures: the Intel Knights

Landing (KNL) and the Phytium FT-2000Plus (FTP) [29,

50]. Both architectures integrate over 60 processor cores to

provide potential high performance, making them attractive

for the next-generation HPC systems. In this work, we

conduct a large-scale evaluation involved over 9,500 pro-

filing measurements performed on 956 representative sparse

datasets by considering five widely-used sparse matrix repre-

sentations: CSR [46], CSR5 [21], ELL [18], SELL [19, 25],

and HYB [1].
We show that while there is significant performance gain

for choosing the right sparse matrix representation, mistakes

can seriously hurt the performance. To choose the right

matrix presentation, we develop a predictive model based

on machine learning techniques. The model takes in a set

of quantifiable properties, or features, from the input sparse

matrix, and predicts the best representation to use on a given

many-core architecture. Our model is first trained offline

using a set of training examples. The trained model can

then be used to choose the optimal representation for any

unseen sparse matrix. Our experimental results show that our

approach is highly effective in choosing the sparse matrix

representation, delivering on average 91% and 95% of the

best available performance on FTP and KNL, respectively.
This work makes the following two contributions:

• It presents an extensible framework to evaluate SpMV

performance on KNL and FTP, two emerging many-

core architectures for HPC;

• It is the first comprehensive study on the impact of

sparse matrix representations on KNL and FTP;

• It develops a novel machine learning based approach

choose the right representation for a given architecture,

delivering significantly good performance across many-

core architectures;

• Our work is immediately deployable as it requires no

modification to the program source code.
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II. BACKGROUND

In this section, we first introduce SpMV and sparse

matrix storage formats, before describing the two many-core

architectures targeted in the work.

A. Sparse Matrix-Vector Multiplication

SpMV can be formally defined as y = Ax, where the

input matrix, A (M×N ), is sparse, and the input, x (N×1),

and the output, y (M×1), vectors are dense. Figure 1 gives

a simple example of SpMV with M and N equal to 4, where

the number of nonzeros (nnz) of the input matrix is 8.

Figure 1. A simple example of SpMV with a 4× 4 matrix and a vector.
The product of the SpMV is a one-dimensional vector.

B. Sparse Matrix Representation

Since most of the elements of a sparse matrix are zeros,

it would be a waste of space and time to store these entries

and perform arithmetic operations on them. To this end,

researcher have designed a number of compressed storage

representations to store only the nonzeros. We describe

the sparse matrix representations targeted in this work.

Note that different representations require different SpMV

implementations, and thus have different performance on

distinct architectures and inputs.

COO. The coordinate (COO) format (a.k.a. IJV format) is

a particularly simple storage scheme. The arrays row, col,

and data are used to store the row indices, column indices,

and values of the nonzeros. This format is a general sparse

matrix representation, because the required storage is always

proportional to the number of nonzeros for any sparsity

pattern. Different from other formats, COO stores explicitly

both row indices and column indices. Table I shows an

example matrix in the COO format.

CSR. The compressed sparse row (CSR) format is the most

popular, general-purpose sparse matrix representation. This

format explicitly stores column indices and nonzeros in array

indices and data, and uses a third array ptr to store

the starting nonzero index of each row in the sparse matrix

(i.e., row pointers). For an M ×N matrix, ptr is sized of

M + 1 and stores the offset into the ith row in ptr[i].

Thus, the last entry of ptr is the total number of nonzeros.

Table I illustrates an example matrix represented in CSR. We

see that the CSR format is a natural extension of the COO

format by using a compressed scheme. In this way, CSR

1Note that ‘|’ is used to separate two data tiles.

Table I
MATRIX STORAGE FORMATS AND THEIR DATA STRUCTURES FOR THE

SPARSE MATRIX SHOWN IN FIGURE 1.

Representation Specific Values

COO

row = [0, 0, 1, 1, 1, 2, 3, 3]
col = [1, 2, 0, 2, 3, 2, 1, 2]

data = [6, 1, 2, 8, 3, 4, 7, 5]

CSR

ptr = [0, 2, 5, 6, 8]
indices = [1, 2, 0, 2, 3, 2, 1, 2]

data = [6, 1, 2, 8, 3, 4, 7, 5]

CSR51

ptr = [0, 2, 5, 6, 8] tile ptr = [0, 1, 4]
tile des : bit flag = [T, T, F, F |T, T, T, F ],

y off = [0, 1|0, 2], seg off = [0, 0|0, 0]
indices = [1, 0, 2, 2|3, 1, 2, 2]

data = [6, 2, 1, 8|3, 7, 4, 5]

ELL data =

⎡
⎢⎢⎣
6 1 ∗
2 8 3
4 ∗ ∗
7 5 ∗

⎤
⎥⎥⎦ indices =

⎡
⎢⎢⎣
1 2 ∗
0 2 3
2 ∗ ∗
1 2 ∗

⎤
⎥⎥⎦

SELL
data =

⎡
⎢⎢⎣
6 1 ∗
2 8 3
4 ∗
7 5

⎤
⎥⎥⎦ indices =

⎡
⎢⎢⎣
1 2 ∗
0 2 3
2 ∗
1 2

⎤
⎥⎥⎦

slices = [3, 2]

SELL-C-σ
data =

⎡
⎢⎢⎣
2 8 3
6 1 ∗
7 5
4 ∗

⎤
⎥⎥⎦ indices =

⎡
⎢⎢⎣
0 2 3
1 2 ∗
1 2
2 ∗

⎤
⎥⎥⎦

slices = [3, 2]

HYB
ELL: data =

⎡
⎢⎢⎣
6 1
2 8
4 ∗
7 5

⎤
⎥⎥⎦ indices =

⎡
⎢⎢⎣
1 2
0 2
2 ∗
1 2

⎤
⎥⎥⎦

COO: row = [1], col = [3], data = [3]

can reduce the storage requirement. More importantly, the

introduced ptr facilitates a fast query of matrix values and

other interesting quantities such as the number of nonzeros

in a particular row.

CSR5. To achieve near-optimal load balance for matrices

with any sparsity structures, CSR5 first evenly partitions all

nonzero entries to multiple 2D tiles of the same size. Thus

when executing parallel SpMV operation, a compute core

can consume one or more 2D tiles, and each SIMD lane of

the core can deal with one column of a tile. Then the main

skeleton of the CSR5 format is simply a group of 2D tiles.

The CSR5 format has two tuning parameters: ω and σ, where

ω is a tile’s width and σ is its height. CSR5 is an extension

to the CSR format [21]. Apart from the three data structures

from CSR, CSR5 introduces another two data structures: a

tile pointer tile_ptr and a tile descriptor tile_des.

Table I illustrates an example matrix represented in CSR5,

where ω=σ=2.

ELL. The ELLPACK (ELL) format is suitable for the vector

architectures. For an M ×N matrix with a maximum of K
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Figure 2. A high-level view of the FT-2000Plus architecture. Processor
cores are groups into panels (left) where each panel contains eight ARMv8
based Xiaomi cores (right).

nonzeros per row, ELL stores the sparse matrix in a dense

M × K array (data), where the rows having fewer than

K are padded. Another data structure indices stores the

column indices and is zero-padded in the same way with

that of data. Table I shows the ELL representation of the

example sparse matrix, where K = 3 and the data structures

are padded with *. The ELL format would waste a decent

amount of storage. To mitigate this issue, we can combine

ELL with another general-purpose format such as CSR or

COO (see Section II-B).

SELL and SELL-C-σ. Sliced ELL (SELL) is an extension

to the ELL format by partitioning the input matrix into strips

of C adjacent rows [25]. Each strip is stored in the ELL

format, and the number of nonzeros stored in ELL may differ

over strips. Thus, a data structure slice is used to keep the

strip information. Table I demonstrates a matrix represented

in the SELL format when C = 2. A variant to SELL is the

SELL-C-σ format which introduces sorting to save storage

overhead [19]. That is, they choose to sort the matrix rows

not globally but within σ consecutive rows. Typically, the

sorting scope σ is selected to be a multiple of C. The effect

of local sorting is shown in Table I with C = 2 and σ = 4.

HYB. The HYB format is a combination of ELL and COO,

and it stores the majority of matrix nonzeros in ELL while

the remaining entries in COO [1]. Typically, HYB stores

the typical number of nonzeros per row in the ELL format

and the exceptionally long rows in the COO format. In the

general case, this typical number (K) can be calculated

directly from the input matrix. Table I shows an example

matrix in this hybrid format, with K = 2.

III. EVALUATION SETUP

A. Hardware Platforms

Our work targets two many-core architectures designed

for HPC, described as follows.

FT-2000Plus. Figure 2 gives a high-level view of the FT-

2000Plus architecture. This architecture [29] integrates 64

Figure 3. A high-level overview of the Intel KNL architecture. Cores are
grouped into tiles (left) with two cores per title (right).

ARMv8 based Xiaomi cores, offering a peak performance of

512 Gflops for double-precision operations, with a maximum

power consumption of 100 Watts. The cores can run up to

2.4 GHz, and are groups into eight panels with eight cores

per panel. Each core has a private L1 data cache of 32KB,

and a dedicated 2MB L2 cache shared among four cores.

The panels are connected through two directory control units

(DCU) and a routing cell [50], where cores and caches are

linked via a 2D mesh network. External I/O are managed by

the DDR4 memory controllers (MC), and the routing cells at

each panel link the MCs to the DCUs.

Intel KNL. A KNL processor has a peak performance of 6

Tflops/s and 3Tflops/s respectively for single- and double-

precision operations [31]. A KNL socket can have up to

72 cores where each core has four threads running at 1.3

GHz. Each KNL core has a private L1 data and a private L1

instruction caches of 32KB, as well as two vector processor

units (VPU), which differs from the KNC core [10, 11].

As shown in Figure 3, KNL cores are organized around

36 tiles where each title has two cores. Each title also

has a private, coherent 1MB L2 data cache shared among

cores, which is managed by the cache/home agent (CHA).

Tiles are connected into a 2D mesh to facilitate coherence

among the distributed L2 caches. Furthermore, a KNL chip

has a ‘near’ and a ‘far’ memory components. The near

memory components are multi-channel DRAM (MCDRAM)

which are connected to the tiles through the MCDRAM

Controllers (EDC). The ‘far’ memory components are DDR4

RAM connected to the chip via the DDR memory controllers

(DDR MC). While the ‘near’ memory is smaller than the

‘far’ memory, it provides 5x more bandwidth over traditional

DDRs. Depending how the chip is configured, some parts

or the entire near memory can share a global memory space

with the far memory, or be used as a cache. In this context,

MCDRAM is used in the cache mode and the dataset can

be hold in the high-speed memory.
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Algorithm 1 The SpMV Bench based on CSR5

1: procedure BENCHSPMV(A, x; y)

2: COOFMT* ctx ← ReadMatrix(mtx file)

3: CSR5FMT* ntx ← ConvertToCSR5(ctx)

4: for t← 1, 2, . . . , FRQ do
5: #pragma omp for
6: for each tile dt in ntx do
7: y′ ← CalculateSpMV(dt)
8: end for
9: UpdateProduct(y, y′)

10: end for
11: DumpInfo(runT , gflops, bw)

12: DeleteMTX(ctx, ntx)

13: end procedure

B. Systems Software

Both platforms run a customized Linux operating system

with Kernel v4.4.0 on FTP and v3.10.0 on KNL. For

compilation, we use gcc v6.4.0 on FTP and Intel icc v17.0.4

on KNL with the default “-O3” compiler option. We use the

OpenMP threading model on both platforms with 64 threads

on FTP and 272 threads on KNL.

C. Datasets

Our experiments use a set of 956 square matrices (with

a total size of 90 GB) from the SuiteSparse matrix collec-

tion [7]. The number of nonzeros of these matrices ranges

from 100K to 20M. The dataset includes both regular and

irregular matrices, covering application domains ranging

from scientific computing to social networks.

D. SpMV Implementation

Algorithm 1 illustrates our library-based SpMV imple-

mentation using the CSR5 format as an example. Our library

takes in the raw data of the Matrix Market format into

memory of the COO format. Then we convert the COO-

based data into our target storage format (CSR, CSR5,

ELL, SELL, or HYB). When calculating SpMV, we use the

OpenMP threading model for parallelization. This process

is format dependent, i.e., the basic task can be a row,

a block row, or a data tile. When calculating a single

element of y falls into different tasks, we will have to

gather the partial results. This efficient data gathering can

be achieved by manually vectorize the SpMV code with

intrinsics. Due to the lack of the gather/scatter
function, we do not use the neon intrinsics on FTP. This is

because our experimental results show that explicitly using

the intrinsics results in a loss in performance, compared with

the C version. When measuring the performance, we run the

experiments for FRQ times and calculate the mean results.

IV. MEMORY ALLOCATION AND CODE VECTORIZATION

SpMV performance depends on a number of factors on

a many-core architecture. These include memory allocation

and code optimization strategies, and the sparse matrix

representation. The focus of this work is to identify the op-

timal sparse matrix representation that leads to the quickest

running time. To isolate the problem, we need to ensure

that performance comparisons of different representations

are conducted on the best possible memory allocation and

code optimization strategies. To this end, we investigate how

Non-Uniform Memory Access (NUMA) and code vectoriza-

tion affect the SpMV performance on FTP and KNL. We

then conduct our experiments on the best-found strategy of

NUMA memory allocation and vectorization.

A. The Impact of NUMA Bindings

Unlike the default setting of KNL, the FTP architecture

exposes multiple NUMA nodes where a group of eight cores

are directly connected to a local memory module. Indirect

access to remote memory modules is possible but slow.

This experiment evaluates the impact of NUMA on SpMV

performance on FTP. We use the Linux NUMA utility,

numactl, to allocate the required data buffers from the

local memory module of a running processor.

Figure 4 show the performance improvement when using

NUMA-aware over non-NUMA-aware memory allocation

across five sparse matrix representation. We see that static

NUMA bindings enables significant performance gains for

all the five storage formats on FTP. Compared with the

case without tuning, using the NUMA tunings can yield

an average speedup of 1.5x, 1.9x, 6.0x, 2.0x, and 1.9x for

CSR, CSR5, ELL, SELL, and HYB, respectively. Note that

we have achieved the maximum speedup for the ELL-based

SPMV. This is due to the fact that using ELL allocates the

largest amount of memory buffers, and the manual NUMA

tunings can ensure that each NUMA node accesses its local

memory as much as possible.

B. The Impact of Vectorization on KNL

The two many-core architectures considered in the work

support SIMD vectorization [12]. KNL and FTP have a

vector unit of 512 and 128 bits respectively. Figure 5 shows

that vectorization performance of CSR5 and SELL-based

SpMV on KNL. Overall, we see that manually vectorizing

the code using vectorization intrinsics can significantly

improve the SpMV performance on KNL. Compared with

the code without manual vectorization, the vectorized code

yields a speedup of 1.6x for CSR5 and 1.5x for SELL.

However, we observe no speedup for vectorized code on

FTP. This is that because FTP has no support of the gather
operation which is essential for accessing elements from

different locations of a vector. By contrast, KNL supports

_mm512_i32logather_pd, which improves the speed

of the data loading process. Therefore, for the remaining

652

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:29:35 UTC from IEEE Xplore.  Restrictions apply. 



Figure 4. The violin diagram shows the speedup distribution of NUMA-
aware memory allocation over NUMA-unaware memory allocation on FTP.
The thick black line shows where 50% of the data lie. NUMA-aware
memory allocation can significantly improve the SpMV performance.

Figure 5. The SpMV performance with and without explicit vectorization
on KNL.

experiments conducted in this work, we manually vectorize

the code on KNL but not on FTP.

C. FTP versus KNL

Figure 6 shows the performance comparison between

KNL and FTP. In general, we observe that SpMV on KNL

runs faster than it on FTP for each format. The average

speedup of KNL over FTP is 1.9x for CSR, 2.3x for CSR5,

1.3x for ELL, 1.5x for SELL, and 1.4x for HYB. The perfor-

mance disparity comes from the difference in the memory

hierarchy of the architectures. KNL differs from FTP in that

it has a high-speed memory, a.k.a., MCDRAM, between the

L2 cache and the DDR4 memory. MCDRAM can provide

5x more memory bandwidth over the traditional DDR mem-

ory. Once the working data is loaded into this high-speed

memory, the application can then access the data with a

higher memory bandwidth which leads to a better overall

performance. SpMV on KNL also benefits from the support

of gather/scatter operations (see Section IV-B). This

is key for the overall SpMV performance, which is limited

Figure 6. Comparing the SpMV performance between KNL and FTP. The
x-axis labels different sparse matrix representation, and the y-axis denotes
the achieved speedup of KNL over FTP.

Table II
THE BEST FORMAT DISTRIBUTION ON FTP AND KNL.

CSR CSR5 ELL SELL HYB

FTP 127(14.1%) 149(16.5%) 22(2.4%) 443(49.2%) 160(17.6%)

KNL 493(51.8%) 273(28.7%) 39(4.1%) 121(12.7%) 25(2.6%)

Table III
THE AVERAGE SLOWDOWNS OVER ALL THE MATRICES WHEN USING A

SINGLE FORMAT INSTEAD OF THE INDIVIDUAL BEST.

CSR CSR5 ELL SELL HYB

FTP 1.4x 1.8x 6.4x 1.3x 1.3x

KNL 1.3x 1.4x 8.7x 1.5x 1.6x

by the scattered assess of the input vector. To sum up, we

would have a significant performance increase when the

aforementioned memory features are enabled on FTP.

From Figure 6, we also observe FTP outperforms KNL on

some matrices, specially when the size of the input matrices

is small. The performance disparity is due to the fact that

KNL and FTP differ in L2 cache in terms of both capacity

and coherence protocol.

D. Optimal Sparse Matrix Formats

Figure 7 shows the overall performance of SpMV on FTP

and KNL . We see that there is no “one-size-fits-all” format

across inputs and architectures. On the FTP platform, SELL

is the optimal format for around 50% of the sparse matrices

and ELL gives the worse performance on most of the cases.

On the KNL platform, CSR gives the best performance for

most of the cases, which is followed by CSR5 and SELL.

On KNL, ELL and HYB give the best performance for just

a total of 64 sparse matrices (Table II).

Table III shows the average slowdowns when using a fixed

format across test cases over the optimal one. The slowdown

has a negative correlation with how often a given format

being optimal. For example, CSR gives the best overall
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(a) On FTP with 64 threads

(b) On KNL with 272 threads

Figure 7. The overall performance of SpMV on FTP and KNL. The x-axis
labels different sparse matrices ordered by the number of nonzeros, and the
y-axis denotes the achieved SpMV performance in GFlops.

Feature 
Extraction

feature values
Predictor

Optimum rep.matrix

Figure 8. Overview of our approach.

performance on KNL and as such it has the lowest overall

slowdown. Furthermore, SELL and HYB have a similar

average slowdown on FTP because they often deliver similar

performance (see Figure 7(a)).

Given that the optimal sparse matrix storage format varies

across architectures and inputs, finding the optimal format

is a non-trivial task. What we like to have is an adaptive

scheme that can automatically choose the right format for a

given input and architecture. In the next section, we describe

how to develop such a scheme using machine learning.

V. ADAPTIVE REPRESENTATION SELECTION

A. Overall Methodology

Our approach takes a new, unseen sparse matrix and is

able to predict the optimal or near optimal sparse matrix

representation for a given architecture. An overview of our

Training 
matrices

Profiling 
runs

Feature 
extraction

optimum rep.

feature values
Learning 

A
lgorithm

Predictive Model

Figure 9. The training process of our predictive model.

approach can be seen in Figure 8, and is described in more

details in Section V-B. Our predictive model is built upon

the scikit-learn machine learning package [28].

For a given sparse matrix, our approach will collect a set

of information, or features, to capture the characteristics of

the matrix. The set of feature values can be collected at

compile time or during runtime. Table IV presents a full list

of all our considered features. After collecting the feature

values, a machine learning based predictor (that is trained

offline) takes in the feature values and predicts which matrix

representation should be used for the target architecture.

We then transform the matrix to the predicted format and

generate the computation code for that format.

B. Predictive Modeling

Our model for predicting the best sparse matrix rep-

resentation is a decision tree model. We have evaluated

a number of alternate modelling techniques, including re-

gression, Naive Bayes and K-Nearest neighbour (see also

Section V-D). We chose the decision tree model because

it gives the best performance and can be easily interpreted

compared to other black-box models. The input to our model

is a set of features extracted from the input matrix. The

output of our model is a label that indicates which sparse

matrix representation to use.

Building and using such a model follows the 3-step pro-

cess for supervised machine learning: (i) generate training

data (ii) train a predictive model (iii) use the predictor,

described as follows.

1) Training the Predictor: Our method for training the

predictive model is shown in Figure 9. We use the same

approach to train a model for each targeting architecture. To

train a predictor we first need to find the best sparse matrix

representation for each of our training matrix examples,

and extract features. We then use this set of data and

classification labels to train our predictor model.

Generating Training Data. We use five-fold-cross valida-

tion for training. This standard machine learning technique

works by selecting 20% samples for testing and using 80%

samples for training. To generate the training data for our

model we used 756 sparse matrices from the SuiteSparse

matrix collection. We execute SpMV using each sparse

matrix representation a number of times until the gap of

the upper and lower confidence bounds is smaller than 5%

under a 95% confidence interval setting. We then record
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Table IV
THE FEATURES USED IN OUR MODEL.

Features Description

n rows number of rows
n cols number of columns
nnz frac percentage of nonzeros
nnz min minimum number of nonzeros per row
nnz max maximum number of nonzeros per row
nnz avg average number of nonzeros per row
nnz std standard derivation of nonzeros per row
variation matrix regularity

the best-performing matrix representation for each training

sample on both KNL and FTP. Finally, we extract the values

of our selected set of features from each matrix.

Building The Model. The optimal matrix representation

labels, along with their corresponding feature set, are passed

to our supervised learning algorithm. The learning algorithm

tries to find a correlation between the feature values and

optimal representation labels. The output of our learning

algorithm is a version of our decision-tree based model.

Because we target two platforms in this paper, we have

constructed two predictive models, one model per platform.

Since training is performed off-line and only need to be

carried out once for a given architecture, this is a one-off
cost.

Total Training Time. The total training time of our model is

comprised of two parts: gathering the training data, and then

building the model. Gathering the training data consumes

most of the total training time, in this paper it took around

3 days for the two platforms. In comparison actually building

the model took a negligible amount of time, less than 10 ms.

2) Features: One of the key aspects in building a suc-

cessful predictor is developing the right features in order

to characterize the input. Our predictive model is based

exclusively on static features of the target matrix and no

dynamic profiling is required. Therefore, it can be applied

to any hardware platform. The features are extracted using

our own Python script. Since our goal is to develop a

portable, architecture-independent approach, we do not use

any hardware-specific features [9].

Feature Selection. We considered a total of seven candidate

raw features (Table IV) in this work. Some features were

chosen from our intuition based on factors that can affect

SpMV performance e.g. nnz frac and variation, other fea-

tures were chosen based on previous work [33]. Altogether,

our candidate features should be able to represent the

intrinsic parts of a SpMV kernel.

Feature Scaling. The final step before passing our features

to a machine learning model is scaling each scalar value of

the feature vector to a common range (between 0 and 1)

in order to prevent the range of any single feature being a

(a) FTP

(b) KNL

Figure 10. The predicted performance of SpMV on FTP and KNL. We
show the achieved SpMV performance with respect to the best available
performance across sparse matrix format.

factor in its importance. Scaling features does not affect the

distribution or variance of their values. To scale the features

of a new image during deployment we record the minimum

and maximum values of each feature in the training dataset,

and use these to scale the corresponding features.

3) Runtime Deployment: Deployment of our predictive

model is designed to be simple and easy to use. To this end,

our approach is implemented as an API. The API has encap-

sulated all of the inner workings, such as feature extraction

and matrix format translation. We also provide a source to

source translation tool to transform the computation of a

given SpMV kernel to each of target representations. Using

the prediction label, a runtime can choose which SpMV

kernel to use.

C. Predictive Model Evaluation

We use cross-validation to evaluate our approach. Spe-

cially, we randomly split the 965 matrices into two parts: 756

matrices for training and 200 matrices for testing. We learn

a model with the training matrices and five representations.

We then evaluate the learned model by applying it to make

prediction on the 200 testing matrices. We repeat this process

multiple times to ensure each matrix is tested at least once.
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Figure 11. Compare to alternative modeling techniques

Figure 10 shows that our predictor achieves, on average,

91% and 95% of the best available SpMV performance

(found through exhaustive search) on FTP and KNL re-

spectively. It outperforms a strategy that uses only a single

format. As we have analyzed in Table III, SELL and HYB

can achieve a better performance than the other three formats

on FTP. But they are still overtaken by our predictor. On

KNL, however, the performance of our predictor is followed

by using the CSR representation. Also, we note that using

the ELL representation yields poor performance on both FTP

and KNL. This shows that our predictor is highly effective

in choosing the right sparse matrix representation.

D. Alternative Modeling Techniques

Figure 11 shows resulting performance with respect to the

best available performance when using different techniques

to construct the predictive model. In addition to our decision

tree based model (DTC), we also consider Gaussian naı̈ve

bayes (GNB), multilayer perception (MLP), soft voting/ma-

jority rule Classification (VC), k-Nearest Neighbor (KNC,

k=1), logistic regression (LR), random forests classification

(RFC). Thanks to the high-quality features, all classifiers

are highly accurate in choosing sparse matrix representation.

We choose DTC because its accuracy is comparable to

alternative techniques and can be easily visualized and

interpreted.

VI. RELATED WORK

SpMV has been extensively studied on various platforms

over the past few decades [24, 30, 46]. A large body of

work has been dedicated to efficient and scalable SpMV on

multi-core and many-core processors. However, our work is

the first to conduct a comprehensive study on KNL and FTP.

On the SIMD processors., some researchers have designed

new compressed formats to enable efficient SpMV [1, 13, 17,

46, 47]. Liu et al. propose a storage format CSR5 [21], which

is a tile-based format. CSR5 offers high-throughput SpMV

on various platforms and shows good performance for both

regular and irregular matrices. And the format conversion

from CSR to CSR5 can be as low as the cost of a few SpMV

operations. On KNC, Liu et al. have identified and addressed

several bottlenecks [22]. They exploit the salient architecture

features of KNC, use specialized data structures with careful

load balancing to obtain satisfactory performance. Wai Teng

Tang et al. propose a SpMV format called vectorized hybrid

COO+CSR (VHCC) [35], which employs a 2D jagged

partitioning, tiling and vectorized prefix sum computations

to improve hardware resource. Their SpMV implementation

achieves an average 3x speedup over Intel MKL for a range

of scale-free matrices.

In recent years, ELLPACK is the most successful format

on the wide SIMD processors. Bell and Garland propose

the first ELLPACK-based format HYB, combining ELL-

PACK with COO formats [1]. The HYB can improve the

SpMV performance especially for matrix which are “wide”.

Sliced ELLPACK format has been proposed by Monakov

et al., where slices of the matrix are packed in ELLPACK

format separately [25]. BELLPACK is a format derived

from ELLPACK, which sorts rows of the matrix by the

number of nonzeros per row [5]. Monritz Kreutzer et al.

have designed a variant of Sliced ELLPACK SELL-C-sigma

based on Sliced ELLPACK as a SIMD-friendly data format,

in which slices are sorted [19].

There have also been studies on optimizing SpMV ded-

icated for SIMT GPUs [1, 23, 35, 39]. Wai Teng Tang

et al. introduce a series of bit-representation-optimized

compression schemes for representing sparse matrices on

GPUs including BRO-ELL, BRO-COO, BRO-HYB, which

perform compression on index data and help to speed up

SpMV on GPUs through reduction of memory traffic [34].

Jee W. Choi et al. propose a classical blocked compressed

sparse row (BCSR) and blocked ELLPACK (BELLPACK)

storage formats [5], which can match or exceed state-of-

the-art implementations. They also develop a performance

model that can guide matrix-dependent parameter tuning

which requires offline measurements and run-time estima-

tion modelling the architecture of GPUs. Yang et al. present

a novel non-parametric and self-tunable approach [49] to

data presentation for computing this kernel, particularly

targeting sparse matrices representing power-law graphs.

They take into account the skew of the non-zero distribution

in matrices presenting power-law graphs.

Sparse matrix storage format selection. is required be-

cause various formats have been proposed for diverse appli-

cation scenarios and computer architectures [52]. In [33],

Sedaghat et al. study the inter-relation between GPU ar-

chitectures, sparse matrix representation, and the sparse

dataset. Further, they build a model based on decision tree to
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automatically select the best representation for a given sparse

matrix on a given GPU platform. The decision-tree technique

is also used in [20], where Li et al. develop a sparse matrix-

vector multiplication auto-tuning system to bridge the gap

between specific optimizations and general-purpose usage.

This framework provides users with a unified programming

interface in the CSR format and automatically determines

the optimal format and implementation for any input sparse

matrix at runtime. In [52], Zhao et al. propose to use the deep

learning technique to select a right storage format. Compared

to the traditional machine learning techniques, using deep

learning can avoid the difficulties in coming up with the

right features of matrices for the purpose of learning. The

results have shown that the CNN-based technique can cut

format selection errors by two thirds.

Predictive Modeling. Machine learning has been employed

for various optimization tasks [42], including code optimiza-

tion [6, 16, 26, 27, 36, 38, 40, 41, 43, 44, 45, 51], task

scheduling [8, 14, 15, 32], model selection [37], etc.

Although SpMV optimization has been extensively stud-

ied, it remains unclear how the widely-used sparse matrix

representations perform on the emerging many-core archi-

tectures. Our work aims to bridge this gap by providing an

in-depth analysis on two emerging many-core architectures

(KNL and FTP), with a large number of sparse matrices and

five well-recognized storage formats. Our work is the first

attempt in applying machine learning techniques to optimize

SpMV on KNL and FTP.

VII. CONCLUSION

This paper has presented a comprehensive study of SpMV

performance on two emerging many-core architectures us-

ing five mainstream matrix representations. We study how

the NUMA binding, vectorization, and the SpMV storage

representation affect the runtime performance. Our experi-

mental results show that the best-performing sparse matrix

representation depends to the underlying architectures and

the sparsity patterns of the input datasets. To facilitate the

selection of the best representation, we use machine learning

to automatically learn a model to predict the right matrix

representation for a given architecture and input. Our model

is first trained offline and the learned model can be used

for any unseen input matrix. Experimental results show

that our model is highly effective in selecting the matrix

representation, delivering over 90% of the best available

performance on our evaluation platforms.
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