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Abstract

Code comments are vital for software mainte-
nance and comprehension, but many software
projects suffer from the lack of meaningful
and up-to-date comments in practice. This pa-
per presents a novel approach to automatically
generate code comments at a function level
by targeting object-oriented programming lan-
guages. Unlike prior work that only uses infor-
mation locally available within the target func-
tion, our approach leverages broader contex-
tual information by considering all other func-
tions of the same class. To propagate and inte-
grate information beyond the scope of the tar-
get function, we design a novel learning frame-
work based on the bidirectional gated recur-
rent unit and a graph attention network with a
pointer mechanism. We apply our approach to
produce code comments for Java methods and
compare it against four strong baseline meth-
ods. Experimental results show that our ap-
proach outperforms most methods by a large
margin and achieves a comparable result with
the state-of-the-art method.

1 Introduction

High-quality code comments are important for soft-
ware maintenance. Yet, few software projects ade-
quately document the code (Kajko-Mattsson, 2005).
One way to overcome the lack of human-written
comments, and guard against mismatch and obso-
lete comments is to automatically generate them.

Classical approaches for auto-comment genera-
tion use hand-crafted templates to produce code de-
scriptions (Sridhara et al., 2010; Cortes-Coy et al.,
2014; Dawood et al., 2017), but suffer from poor
scalability and high maintenance cost due to the
expensive overhead of writing comment templates.
More recent work takes a learning-based approach
by employing neural network (NN) models devel-
oped for natural language processing tasks like

machine translation to automatically generate com-
ments (Sutskever et al., 2014; Luong et al., 2015).
Compared to hand-written templates, a learning-
based approach based on empirical data is more
scalable and sustainable.

The key to generating high-quality comments
is to utilize as much relevant information as pos-
sible from the source code to infer the high-level
algorithmic intents. Prior work achieves this by
converting a representation of the program, e.g.,
an Abstract Syntax Tree (AST), into a sequential
sequence where a sequential model like LSTM can
be applied to translate the token sequence into nat-
ural language descriptions (Hu et al., 2018a; Alon
et al., 2019; LeClair et al., 2019). Some more re-
cent work has employed the Graph Convolution
Network (GCN) to directly operate on a graph rep-
resentation, e.g., an adjacency matrix, of the AST
(LeClair et al., 2020). While promising, all existing
learning-based approaches only capture informa-
tion from the target function (or method) to be
commented but fail to capitalize on the abundant
information and algorithmic intentions available in
a broader context like the definition of the callee
functions or other information (like the purposes
and semantic meanings of data variables) that can
only be gleaned through relevant methods in the
same class. Because the programmer’s strategic
intentions are often encapsulated in a scope greater
than a local function, ignoring such contextual in-
formation would miss massive opportunities.

As a motivation example, consider the Java code
shown in Figure 1. Here, our task is to describe
the purpose of method append defined at lines
10 and 12. This example is from a real-life open-
source project, where a developer-written comment
is given. The human-written comment states that
this method adds a component to a panel object
and then moves to the next data column. Because
neither panel nor the next data column appears in



3939

1 public class DefaultFormBuiler {
2 public DefaultFormBuilder (Composite panel,

FormLayout layout) {
3 this(panel, layout, null);
4 this.panel = panel;
5 }
6 ...
7 /* Human-written comment:
8 Adds a component to the panel using the

default constraints and proceeds to
the next data column

9 */
10 public void append(Control component) {
11 append(component, 1);
12 }
13
14 public void append(Control component, int

columnSpan){
15 ...
16 setColumnSpan(columnSpan);
17 add(component);
18 setColumnSpan(1);
19 nextColumn(columnSpan + 1);
20 }
21 ...
22 }

Figure 1: An example to illustrate that functions in the
same class can help generate meaningful comments.

the target function, existing approaches operate on
the AST of this local method would fail to generate
meaningful descriptions. Simply inlining the callee
function, append(Control, int), does not
offer the context of the panel object, which is also
important for understanding the programmer in-
tentions. If we could look at a broader context
outside the target function, i.e., by leveraging the
construction function, DefaultFormBuilder,
and the callee function, we can then obtain much of
the contextual information needed for generating a
good quality comment text.

The above example demonstrates the importance
of leveraging broader contextual information for
comment generation. In object-oriented program-
ming, object classes are the building block for ex-
pressing algorithmic intentions. Indeed, it is the
class (but not a single local method) that forms the
mental boundary of functionality. Since a class
encapsulates much of the calling relationship and
semantic information that cannot be obtained from
a local function, the global structural information
in a class should not be ignored when we attempt
to understand the purpose of a function.

This paper thus presents a new code comment
generation approach by leveraging the global struc-
tural information in object-oriented programming
languages. Doing so allows us to utilize much
of the contextual information within a class to en-
hance function-level comment generation. As a
departure from all prior methods that only consider

local information during encoding, our approach
employs a two-way encoding mechanism by con-
sidering both information within and outside the
target function. We achieve this by simultaneously
modeling the token sequence of the target function
and a program graph that connects all methods of
the same class to the target function. We then learn
the approximate synergy between the information
available within the local function and the wider
class scope. A key challenge here is how to deter-
mine the importance and relevance of information
available at code scopes. To this end, we design a
novel decoder for the comment generation process
by learning what information at both the local and
class level should be emphasized. Our encoder is
composed of a local encoder for extracting informa-
tion from the local function and a global encoder
for extracting information at the class level. The
decoder then decides which code segmentations
within the class should be paid most attention to so
that we can employ a pointer mechanism to copy
words directly from the source code to generate
comments.

We apply our approach to generate function-
level comments for Java programs. We evaluate
our approach on Java methods collected from over
1,600 open-source repositories hosted on GitHub,
and compare it against four strong baseline meth-
ods of code comment generation. Experimental
results show that our approach consistently deliv-
ers higher-quality comments, improving BLUE and
Rouge by at least 7.7% and 5.1% (up to 87.1% and
68.3%), respectively.

This paper makes the following contributions:

• It presents the first approach to exploit rele-
vant methods of the same class to enhance the
understanding of the target function.

• It is first to show that other functions or meth-
ods outside the call graph of the target func-
tion can also have a positive contribution to
the generated comment.

• It proposes a novel learning framework that
can leverage both local and class-level con-
textual information for code comment genera-
tion.

2 Our Approach

As depicted in Figure 2, our code comment genera-
tion framework consists of three innovative compo-
nents. The local encoder, based on a bi-directional
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Figure 2: The overall architecture of our approach.

Gated Recurrent Unit (bi-GRU) (Cho et al., 2014),
extracts features from the source code of the target
function. The global encoder, built upon a Graph
Attention (GAT) network ((Velickovic et al., 2018),
propagates and exchanges information between all
functions with the target class. The decoder aggre-
gates the local and global information learned by
the local and global encoders. Our decoder em-
ploys an attention mechanism to determine which
part of the local and global contexts we should
pay attention to and then uses a pointer mechanism
to copy words from the source code to generate
comments.

2.1 Local Encoder
Our local encoder extracts features from the source
code token sequence of the target function. Given
the source code of a function x = (x1, ..., xn) of
n words, we use a bi-GRU to encode it to a dense
representation sequence {(−→q1,←−q1), ..., (−→qn,←−qn)},
where −→qj and←−qj are the hidden state of xj in both
directions. We concatenate the last hidden states of
both directions to be used as the local representa-
tion of the function:

qn = [−→qn||←−qn] (1)

2.2 Global Encoder

Graph Construction. Unlike prior work that only
focuses on extracting information from the target
function, we aim to exploit the information avail-
able at the class level. To do so, we connect the
target function to all other functions in the same
class to form a class-level contextual graph, for

which we refer to as a C-Graph. We then use a
GAT network to exchange information between all
the nodes in C-Graph to construct a global, class-
level representation for the target function. Given
a C-Graph G = (V,E), each vertex vi ∈ V repre-
sents a function in the class, vt represents the target
function, and each edge et,j = (vt, vj) ∈ E indi-
cates the connection between the target function vt
and other functions vj .

Vertex Initialization. To encode each vertex in the
graph to a hidden vector, we apply the local encoder
to each individual function (i.e., a vertex in our C-
graph) and concatenate the last hidden states in
both directions as the initial vertex representation
{g0i |vi ∈ Vf} for GAT.

Graph Attention Network. We feed the initial
state of each vertex into a GAT, which applies dif-
ferent weights to different nodes when exchanging
information with neighbors. In the l + 1th layer
of the GAT network, each vertex vi sends its own
current hidden state to all neighbors represented
as N(vi). At the same layer, each vertex vi also
receives a set of messages {glj |vj ∈ N(vi)}, where
glj is the hidden state of vertex vj in the lth layer.
Then, each vertex calculates a linear combination
of the neighborhood hidden states from the mes-
sage as its new hidden state:

gl+1
i = Σj∈N(vi)αijWgg

l
j (2)

where Wg is a learnable matrix and αij is the
graph attention distribution between vertex vi and
its neighbors vj . αij is computed as:

eij = σ(aT [Wag
l
i||Wag

l
j ]) (3)
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αij = softmax(eij) =
exp(eij)

Σkexp(eik)
(4)

whereWa and a are learnable parameters, σ stands
for an activation function, usually LeakyReLU and
[·||·] means the concatenation of two matrices.

We repeat this neighborhood aggregation pro-
cess L times, and get the final state for each vertex
of the C-Graph, represented as {gLi |vi ∈ Vf}. We
use the final state of the target function gLt as the
global representation.

2.3 Decoder

As our encoders embed both local and global infor-
mation, the decoder needs to integrate information
extracted at different levels and takes the integrated
information into consideration during the genera-
tion of comment tokens. Once again, we adopt
a GRU as decoder and use the concatenation of
local representation qn and global representation
gLt as its initial state. hi is the hidden state of de-
coder in step i. When generating the ith words, we
leverage a graph attention mechanism to extract
the most relevant methods of the class and use a
pointer mechanism to copy words from the method
body to form the comment text.

Graph Attention. In the ith decoding step , we
leverage results of the global encoder and compute
a global context vector cgi reflecting which parts
of the graph structure should be paid attention to.

cgi = Σvj∈Gγijg
L
j (5)

γij =
exp(hT

i Wgag
L
j )

Σvk∈Gexp(h
T
i WgagLk )

(6)

where gLj and gLk are the representations of func-
tions in the C-Graph and Wga is a trainable matrix.

Local Attention. We apply another attention
mechanism to locate most relevant words in the
body of target function when generating the ith

word of comment, which is represented as a local
context vector ci:

ci = Σxj∈xβijqj (7)

βij =
exp(hT

i Wlaqj)

Σxj∈xexp(h
T
i Wlaqk)

(8)

where qj and qk are the contextual embeddings of
words xi and xj in the input sequence of the target
function andWla is a trainable parameter.

Pointer. As source codes may contain information
which can be directly used in comment, we pro-
pose to add a pointer mechanism (See et al., 2017)
which can copy useful words from source codes.
Pointer mechanism merges a copy distribution with
a normal output prediction distribution. In the ith

decoding step,

Pvocab = softmax(Wv[hi||ci||cgi] + bv) (9)

pgen = σ(wT
hhi +wT

c ci +wT
yyi) (10)

P (w) = pgenPvocab + (1− pgen)β (11)

where β is the local attention distribution in Eq 8
and Wv, bv, wh,wc,wy are all trainable param-
eters. Pvocab is the normal output prediction dis-
tribution and pgen serves as a switch that chooses
between generating words normally from vocabu-
lary or directly copying from the source codes.

3 Experimental Setup

3.1 Dataset
We apply our approach to Java programs. Our
dataset1 downloaded from 1,634 open-source
repositories hosted on Github. These projects are
top-ranked Github projects with Java as the pri-
mary programming language. Our dataset consists
of 150239 target methods within 27323 classes,
where each target method has a developer-written
comment as the golden comment.

We split the dataset by projects, and use 90%
of the project data for training, 5% for validation
and 5% for testing. This gives us 133,058 method-
comment pairs for training, 6,952 pairs for vali-
dation, and 10,229 pairs for testing. The average
number of tokens in target functions and target
comments are 26.27 and 8.25 respectively. The
average number of nodes of the C-Graph is 37.

3.2 Evaluation Metrics
We evaluate our approach by using BLEU, BLEU-
1, BLEU-2, BLEU-3, BLEU-4 (Papineni et al.,
2002) and ROUGE-L (Lin, 2004). These metrics
are widely used in natural language generation.

1Available to be downloaded at: [url redacted for double-
blind review].
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3.3 Preprocessing

At the preprocessing stage, we serialize source code
of the target method as a sequential token sequence
and remove any none-alphabetical letters. We also
split identifier and function names written in camel-
Case or underscore style into independent words.
Due to the memory limitation of applying GRU to
long sequences, we truncate the source sequence
of a function to 100 tokens.

3.4 Model Structures and Hyper-parameters

The dimension of embedding and hidden vectors
are set to 128, and word embeddings are randomly
initialized. The layer of our GRU encoder is set
to 1. The GAT network has four layers since we
find using more layers does not improve the results.
Each of the GAT layers has a residual connection to
avoid gradient vanishment except for the last layer.
We set the dropout (Srivastava et al., 2014) rate to
0.1, the weight decay rate to 0.0001 and the batch
size to 20. We use Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.001. To reduce
randomness, we run each model setting five times
and take the average as the report performance.

3.5 Baseline Models

We compare our model with three types of models,
described as follows.

The first kind of models, CodeNN (Iyer et al.,
2016) and Seq2Seq (Luong et al., 2015), treat
source code as a sequential sequence of words. Co-
deNN is a modified language model with attention
mechanism, and it is among the earliest NN models
for code comment generation. Seq2Seq is the most
widely used model for many generation tasks. For
these models, we use a bidirectional GRU as the
encoder and a GRU with attention as the decoder.

The second kind of models incorporate infor-
mation from the AST into the model and exploit
the structural information of the AST to assist
comment generation. We choose two state-of-
the-art AST-based generation models: DeepCom
(Hu et al., 2018a) and Code2Seq (Alon et al.,
2019). DeepCom works by flattening the whole
AST and the applying a Seq2Seq model with at-
tention mechanism to the flatten sequence. It has a
specially designed method called structure-based
traversal (SBT) that guarantees the relationship be-
tween functions and flatten sequences is injective.
Code2Seq exploits the AST structural information
lies in the paths between leaf nodes. It randomly

samples k paths and encodes them together as the
representation of AST and apply a simple decoder
with attention to generate comments.

Besides, we propose two kinds of model that
also leverage class-level information but in a sim-
pler way. The first model, GraphAttn, utilizes
the C-Graph with an attention mechanism. It ap-
plies a bi-GRU on all functions in C-Graph as the
graph encoding results and during decoding stage,
it attends to each function with a graph attention
module. The second model, GraphFlatten, flat-
tens the C-Graph into sequences. It concatenates
all functions in the C-Graph together, applies a bi-
GRU and takes concatenation of last hidden states
as the global representation for target function.

4 Experimental Results

4.1 Main Result

We summarize the main results in Table 1. As
we can see, most models manage to outperform
Seq2Seq in all alternative metrics and introducing
AST structural information or global information
can both bring improvements. We can draw that
structural information is essential if we want to
better comprehend source codes and generate more
accurate comments.

AST related models show quite different perfor-
mance results. DeepCom has a BLEU score of
less than 15 and this result consists with LeClair
et al. (2019) who also performs experiments on
Java projects and indicates that splitting functions
by project and length growth of input sequence for
GRU both have a bad influence on DeepCom. In
contrast to DeepCom, Code2Seq achieves the best
results in all baseline models, which means it ef-
fectively extracts the local structural information
provided by AST. Code2Seq generally generates
comments that are shorter than ours. It achieves a
higher score at n-gram accuracy but suffers from
a larger penalty, so our model outperforms it by
Rouge-L and BLEU. We can draw that AST pro-
vides local information that can assist comment
generation and we assume combining AST struc-
ture with our methods together can bring further
improvement, as it can benefit both AST structural
information and global context information of re-
lated methods.

After introducing class-level information, both
GraphAttn and GraphFlatten show improvements
compared to Seq2Seq, indicating that related func-
tions in the same class are beneficial to the target
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Models BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L

CodeNN 12.71 27.67 14.72 9.92 6.80 26.08
Seq2Seq 18.74 39.13 21.17 13.97 10.66 39.36
DeepCom 14.69 31.80 16.90 12.50 10.30 27.50
Code2Seq 22.07 44.79 26.48 19.32 15.77 41.77
GraphAttn 19.38 40.19 22.12 14.67 10.85 39.63
GraphFlatten 20.24 41.77 23.40 15.14 11.46 41.83
Ours 23.78 43.49 26.03 18.86 14.98 43.90
Call 21.06 40.14 23.30 16.35 12.86 40.70
Random 19.13 39.25 21.51 14.36 11.06 39.59
Sample 18.86 39.19 21.29 14.12 10.73 39.36

Table 1: Model performance compared with baselines.

function in comment generation. Despite the inad-
equate utilization, global information still shows
effectiveness in both models.

Our model manages to outperform most base-
line models which indicates that global informa-
tion has an obviously positive effect towards com-
ment generation. When comparing our model
with GraphAttn and GraphFlatten, we can find that
building C-Graph is a better choice than utilizing
attention mechanism or simply flattening the whole
class to extract global information.

4.2 Ablation Study

We perform an ablation study to evaluate the effect
of each component of our model. As shown in table
2, we can see that all components of the model
contribute to the final results.

Among all the results, removing local encoder
has the worst performance, dropping 8 in BLEU
score, indicating the importance of local encoder.
Though introducing graph structure into the model
brings much improvement, the target function
alone still manages to provide indispensable infor-
mation towards the comment generation process.

Comparing our model with ours-pointer (our
model without pointer module), we can see that
adding pointer mechanism brings about 0.3 im-
provement. However, comparing Seq2Seq with
PointerNet, which is the same architecture as ours-
global encoder (our model without global encoder
module), we find a 0.6 improvement. Thus, we can
see that introducing global information into model
enhances the ability to copy words directly from
the source codes.

After removing attention module, both perfor-
mance drops, indicating the benefit of attention
mechanism in our decoder. In each step of word
generation, it is essential to attend to different func-
tions and words. The attention module not only

helps decoder determine the most related part to
focus on, but also enhances the local and global
information during the decoding process.

4.3 Analysis

Q1: What kind of information is useful?
When the scale of a class grows larger, the func-

tions in the same class start to become various.
Given a function, not all of its neighbors are guar-
anteed to be closely related to it when the class is
large. Therefore, it leads to the question of what
kind of information is useful in C-Graph. To ex-
plore this question, we run a set of experiments and
find that inside a class, function calls are able to
provide the most valuable information while other
functions can provide useful but messier informa-
tion.

We divide all functions connected to the target
function into two categories, function calls and
other functions. Experiment Call uses a graph
only containing edges between target function and
function calls. Experiment Random uses a graph
which has same structure as Call but replaces
all nodes with functions randomly selected from
other functions in class. Experiment Sample also
has the same architecture as Call but replaces all
nodes with functions randomly selected from other
classes.

As shown in Table 1, Call outperforms most
baseline models by a large margin and exceeds
Random by 2 points in BLEU score, indicating
that function calls are particularly effective towards
comment generation process and they serve the key
role in forming the global information. Although
Random is outperformed by Call, it still achieves
some improvement, indicating that other functions
except function calls also have a positive effect
towards comment generation. But their enhance-
ment is relatively weaker compared to function
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Models BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L

Ours 23.78 43.49 26.03 18.86 14.98 43.88
- local encoder 15.15 34.43 17.39 10.86 8.09 34.26
- global encoder 19.30 39.61 21.45 14.62 11.18 39.98
- graph attention 20.47 39.92 22.43 15.70 12.49 40.07
- local attention & pointer 20.09 38.97 22.02 15.67 12.11 39.68
- pointer 23.46 43.07 25.84 18.61 14.64 43.50

Table 2: Results of ablation study, where ’-’ means removing this module from our model.

calls. Sample shows nearly no improvement at all,
indicating functions from other classes are of no
use towards target function as we expect.

Q2: What is the impact of C-Graph on com-
ment generation?

We hypothesize that the global information of
the C-Graph can have a positive impact on com-
ment generation. To quantify the impact of C-
Graph, we define two metrics at the word level.

The first metric Po evaluates if C-Graph can help
emphasize key information in the target function.
We define set So as the set of words in target com-
ment that exist in both target function and neigh-
borhood functions and Po is the percentage of So
that can be correctly generated by a model.

The second metric Pc evaluates if C-Graph can
provide information that does not exist in the target
function. We define set Sc as the set of words of tar-
get comment that exist in neighborhood functions
instead of target function and Pc is the percentage
of Sc that can be correctly generated by a model.
To be noted, we neglect all the stop words when
collecting sets So and Sc.

Seq2Seq has a result of Po = 51.6%, Pc =
19.1% while our model has Po = 53.1%, Pc =
25.1%, which proves that C-Graph is able to pro-
vide extra information as well as help emphasize
important information to the comment generation
process.

Q3: Does more contextual information bring
more improvement?

We apply a statistic experiment on our results
and find that with more information brought by
C-Graph, there is more improvement. We evaluate
the amount of information that C-Graph provides
by word overlaps.

3 depicts the BLEU score over the percentage
of functions that has word overlap with target com-
ment on C-Graph on the left. As we can see, with
more functions overlap with target comment, we
achieve better BLEU scores, except the last point.
Figure 3 depicts the BLEU score over word over-
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Figure 3: The left sub-figure shows BLEU score over
the percentage of functions that has word overlap with
target comment on C-Graph. The right sub-figure il-
lustrates BLEU score over word overlap rate between
target comment and comments of its related functions
on C-Graph.

lap rate between target comment and comments of
neighbor functions on C-Graph on the right. Along
with the increase of this word overlap rate, the
metric improvement start to increase, presenting a
horn-shape. Figure

Using word overlap as a simple measure of the
information amount given by C-Graph, we found
that the more information is provided, the more
improvement can be observed.

4.4 Case Study
Table ?? gives four example comments generated
by our approach and Seq2seq, as well as the golden
comment written by the developer. As we can see,
the comments given by our model are more closer
to the golden comments and is more meaningful
than the one produced by Seq2seq.

In the first case, function y2 does not give much
information and we can not understand its meaning
by looking at it alone. Therefore, the comment
generated by Seq2Seq is meaningless and unread-
able. However, when taking other functions in
the same class into consideration, we can find that
function setBox uses y2 as well as other similar
variables including x1, x2, y1, and they are
obtained from a object named location. Based
on these extra information, we can infer that y2 is
a coordinate of a point. As we can see, comment
generated by our model successfully capture the
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Example 1 Example 2

Target function p u b l i c double y2() {
re turn y2;

}

p r i v a t e String elementString(String
name, Object value) {

re turn name + "=" +
toStringHelper(value);

}

Related function p u b l i c vo id setBox (BoundingBox
location) {

x1 = location.x1();
y1 = location.y1();
x2 = location.x2();
y2 = location.y2();

}

p r o t e c t e d String toStringHelper(Map<
String, SoyData> map) {

StringBuilder mapStr = new
StringBuilder();

...
mapStr.append(entry.getKey()).

append(": ").append(entry.
getValue().toString());

...
re turn mapStr.toString();

}

Golden comment getter function for the y coordinate of the second point on the box string representation of the value pair of the form
Seq2Seq returns the value of the pay pal field code x code this is used to acquire the element from the element
Our model returns the y coordinate of the point this method is used to convert the value into the string

Example 3 Example 4

Target function p u b l i c vo id insert(ForceItem item) {
t r y{

insert(item, root,
xMin, yMin, xMax
, yMax);

} catch(StackOverflowError e
) {

e.printStackTrace();
}

}

p u b l i c String PALO_EFIRST(String
servdb, String dimensionName) {

re turn PALO_ENAME(servdb,
dimensionName, new
Double(1), nul l , n u l l);

}

Related function p r i v a t e vo id insert(ForceItem p,
QuadTreeNode n,

f l o a t x1, f l o a t
y1, f l o a t x2
, f l o a t y2)

{
i f ( n.hasChildren ) {

insertHelper(p,n,x1,y1,x2,y2
);

} e l s e i f ( n.value != n u l l ) {
i f ( isSameLocation(n.value,

p) ) {
insertHelper(p,n,x1,y1,

x2,y2);
} e l s e {

ForceItem v = n.value; n
.value = n u l l;

insertHelper(v,n,x1,y1,
x2,y2);

insertHelper(p,n,x1,y1,
x2,y2);

}
} e l s e {

n.value = p;
}

}

p u b l i c String PALO_ENAME(String
servdb, String dimensionName,
Object aindex, Object afig,
Object apath, Object alias) {

t r y {
i f (aindex i n s t a n c e o f Double

) {
IDimension dimension =

manager.getDimension
(servdb,
dimensionName);

...
re turn

getAliasElementName(
dimension, element.
getName(), alias);

} e l s e i f (aindex i n s t a n c e o f
String) {

re turn PALO_ESIBLING
(servdb,
dimensionName, (
String)aindex,
0, alias);

}

re turn "#INVALID PARAMETERS"
;

} ca tch( Exception e ) {
re turn n u l l;

}
}

Golden comment inserts an item into the quadtree retrieves the name of the first element within a dimension
Seq2Seq insert the methods description here returns the value of the specified string
Our model inserts an item into the tree returns the value of the specified name from the given dimension

Table 3: Example comments produced by our approach and Seq2Seq.

correct meaning of y2.

In the second case, the function
elementString mainly calls a function
toStringHelper in its return statement. When

we refer to function toStringHelper, we
know that it is to convert a map object to a
string representation. With this extra information,
we can understand the goal of the target func-
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tion. As we can see, the name of the function
elementString is not a good reflection of
this function. Comment generated by Seq2Seq is
misled to a completely irrelevant meaning while
our model successfully captures the important
position of function call and manage to generate
correct description for target function.

In the third case, the target function
insert(ForceItem item) mainly calls
another function insert(ForceItem p,
QuadTreeNode n...) to accomplish its goal.
The target function itself is too short to give
enough information to generate a meaningful and
useful comment. We can only tell that the target
function is to insert something but we do not know
more details. However, when referring to its callee
function, we can know that it is to insert an item
into a quadtree With this extra information,
we can understand the goal of the target function.
As we can see, comment generated by our model
successfully captures that the it is to insert an item
into the tree structure.

In the fourth case, comment generated by
Seq2Seq model only uses ambiguous words such
as ”value” and ”special string” which do not of-
fer any useful information. However, with related
function involved, our model manages to capture
the key information ”dimension” and ”name”.

5 Related Work

As a critical task in software engineering, code
comment generation has been exploited with vari-
ous solutions. In recent years, deep learning based
methods has dominated this line of research, most
of which follow an encoder-decoder framework
and can produce readable comments. Iyer et al.
(2016) proposes an LSTM based language model
with attention mechanism to generate short descrip-
tion for C# and SQL queries. Hu et al. (2018b)
exploits the transferred knowledge from automatic
API summaries to enhance the generation of code
comments. However, this kind of methods fail
to utilize the structural characteristics of program-
ming codes. More recent efforts explicitly adopt
the AST structure to explore the structure of code.
Hu et al. (2018a) introduces AST sequences gen-
erated by Structure-Based Traversal (SBT) as a
structured summary of the code into the genera-
tion model. Liang and Zhu (2018) applies an RNN
unit over AST trees to extract both semantic and
syntactic information and design a special decoder

Code-GRU for the generation process. Alon et al.
(2019) decomposes AST trees into paths between
leaf nodes and sample a certain amount from them
as the structural input for the model. LeClair et al.
(2019) proposes to use both AST sequences and
source code sequence as multiple input for model.
LeClair et al. (2020) proposes to employ GNN over
AST structures to better extract structure informa-
tion. Our work, on the contrast, explores broader
context, class-level neighboring functions, to intro-
duce rich information for comment generation.

6 Conclusion

We have presented a novel approach for auto-
matic code comment generation, targeting object-
oriented programming languages. Unlike prior
work that only leverages information of the target
function, our approach leverages related methods
of the same class to exploit the information avail-
able in a broader context to improve the quality
of the generated comment. Our novel learning
framework extracts local information from the tar-
get function and global contextual information at
the class level. Experiment results show that our
model can efficiently combine both local and class-
level information and generate more detailed and
higher-quality comments over prior methods.
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