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a b s t r a c t 

Recently, channel state information ( CSI ) is shown to be an effective side-channel to per- 

form attacks in public environments. Prior work has demonstrated that by analyzing how 

the CSI measurements of the wireless signal are affected by the mobile user’s finger move- 

ments or gestures, an attacker can recover the user’s input with a high success rate. Further- 

more, the setup of this new attack is trivial, where the adversary only needs to place one 

or two malicious wireless devices near the target user. It would be difficult for many users 

to identify the nearby malicious devices while they want to continue to use mobile appli- 

cations in public places. This dilemma makes protection of CSI -based attacks an urgent 

need. 

This article presents the first countermeasure for CSI -based attacks. Our key insight is that 

the success of any CSI -based attack requires high-quality CSI measurements; and we can 

significantly reduce the risk of information leakage by directing the user to a nearby location 

where the CSI readings are inherently noisy. To this end, we develop a regression based 

method to assess the risk of CSI -based attacks and exploit a well-established localization 

technique to identify potential malicious wireless devices. We then use this information 

to guide the user to a safe zone. We evaluate our approach by applying it to protect 

pattern lock and keystrokes in various indoor and outdoor environments. Experimental 

results show that our approach can effectively protect mobile users against CSI -based 

attacks. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Portable mobile devices, such as smart phones and tablets, are
widely used in public places – from indoor restaurants and
shopping malls to outdoor bus stations. At the same time,
many mobile services, including shopping and banking appli-
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cations, use PIN- and text-based passwords or locking patterns
for authentication and authorization; and people are increas-
ingly relying on their mobile devices to perform activities like
social networking and mobile payment. Given that a leakage
of passwords or locking patterns could lead to a catastrophic
consequence, there is an urgent need to protect using mobile
devices in public places. 
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In recent years, channel state information ( CSI ) 1 is shown 

o be an effective side-channel for uncovering users’ input.
SI has been demonstrated to be useful in inferring PIN- 
nd text-based passwords ( Li et al., 2016 ) and locking pat- 
erns ( Zhang et al., 2016 ). Launching a CSI -based attack is 
elatively simple. The setup of the attack only requires the 
dversary to place one or two wireless devices (which could 

e WiFi routers, mobile phones, tablets, or laptops etc.) next 
o the target user. By recording how the CSI measurements 
re affected by the user’s finger movements or gestures (while 
yping in sensitive information), an attacker can then map the 

easured CSI readings to a pattern or keystroke. This is be- 
ause the gesture or fingertip movement of each pattern or 
eystroke usually corresponds to a unique CSI pattern. 

Compare with other side-channel attacks that exploit the 
coustic signal ( Liu et al., 2015; Zhu et al., 2014 ), video ( Shukla
t al., 2014; Yue et al., 2014 ), sensors ( Raij et al., 2011; 
ang et al., 2015a ), oil residues ( Aviv et al., 2010 ) or finger-

rints ( Zhang et al., 2012 ), CSI -based attacks have the advan- 
ages that the malicious devices 2 used to launch the attack 
an be placed further away from the target, and the attack 
oes not require having physical access to the target device 
r seeing the content showing on the screen. This increases 
he success of CSI -based attacks. Furthermore, because wire- 
ess devices are very common in public places, users will find 

t difficult to identify malicious wireless devices to stay vigi- 
ant. For these reasons, we believe CSI -based attacks are a real 
ecurity threat in public places. 

In this article, we propose, for the first time, a countermea- 
ure for CSI -based attacks. Our key insight is that any CSI - 
ased attack relies on high-quality CSI measurements col- 

ected during the input of sensitive information; and if we can 

uantify the quality of the CSI measurements, and guide the 
ser to a location where the CSI readings will be inherently 
oisy, the attack will unlikely to be successful. Our counter- 
easure detects the attack by monitoring the network traf- 

cs ( Zhang et al., 2017 ). We define a signal to noise ( SNR ) met-
ic of CSI readings from the attack’s perspective, which is 
sed by our countermeasure to quantify how likely a CSI - 
ased attack will succeed in the current physical environment.
ur approach uses sensors that are common on smartphones 

o identify potential malicious WiFi devices, as well as the 
alking direction and pace of the user. Such information is 
btained by leveraging the well-established localization tech- 
iques developed by the wireless communication community.
e then use the SNR to assess the risk of CSI -based attacks. If

 potential CSI -based attack is detected, our countermeasure 
hen suggests the user to add some body noise – e.g., shake 
he mobile devices or turn around when input sensitive infor- 

ation – or combines the risk assessment with the location 

nformation to guide the user to move away from the mali- 
ious devices, and to determine towards which direction the 
ser should move, as well as when and where the user is safe 
rom CSI -based attacks. 
1 CSI is a property that describes how a wireless signal is af- 
ected by the surrounding environment and the movement of ob- 
ects. See also Section 2 . 

2 In this article, we refer the wireless devices used to launch the 
ttack as malicious devices. 
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Our prototype system is implemented as a background ser- 
ice for Android. The system automatically detects when the 
ser is entering sensitive information, by monitoring relevant 
ystem events. If a sensitive input is detected, the system will 
ssess the risk of the surrounding environment and suggest 
he user to move to a safe location if the risk is considered to
e high. 

We evaluate our approach by applying it to protect Android 

attern lock, which is commonly used by mobile payment sys- 
ems for authentication and authorization. Experiments per- 
ormed in various indoor environments show that our ap- 
roach can successfully protect users against CSI -based at- 
acks. This work is the first countermeasure for CSI -based at- 
acks. We show that our approach is simple to implement and 

oes not require specialized hardware, yet it can effectively 
rotect users against CSI -based attacks. 

. Background 

SI is a metric that describes how the wireless signal trans- 
ission is affected by the surrounding physical environ- 
ent, due to effects like reflections, diffractions and scatter- 

ng ( Halperin et al., 2010 ). In recent years, researchers have 
hown that CSI can be used as a side channel to reconstruct 
ensitive information with a high accuracy. The range of CSI - 
ased attacks includes guessing PIN-based passwords ( Zhang 
t al., 2016 ), keystrokes ( Ali et al., 2015 ) and pattern lock ( Li
t al., 2016 ) for mobile devices, as well as lip-reading ( Wang
t al., 2014a ). The underlying principle of CSI -based attacks 
s that the different fingertip or lip motions will cause a 
nique interference to the multi-path signals and can be re- 
ected by the CSI which can then be used to infer sensitive 

nformation. 
Implementing a CSI -based attack is relatively trivial. In a 

ypical attacking scenario, the adversary only needs to place 
ne or two standard wireless devices near the user (see Fig. 1 ).
o launch the attack, the adversary needs to record the CSI 
alues while the user is entering the sensitive information.
btaining the CSI readings requires some hacking to the 
river program of the wireless device, but there is already 
n open source CSI toolkit implementation available ( Daniel 
t al., 2012 ). As public WiFi access points are now common- 
lace, users will find it difficult to identify malicious WiFi de- 
ices in public places. This makes CSI -based attacks a real 
hreat that must be tackled. 

SI -based Attacks. There are in general two types of CSI 
ased attacks, the in-band inference ( IBI ) and the out-band 

nference ( OBI ) modes. Using the former technique, the adver- 
ary needs to deploy only one malicious WiFi device as a public 
ccess point, but the attack itself requires the user’s device to 
onnect to the malicious device. This attack is illustrated in 

ig. 1 a. Using the latter technique, the adversary needs to de- 
loy two malicious WiFi devices ( Fig. 1 c), but the attack does
ot require the user to connect to any of the malicious de- 
ices. However, the OBI attack is hard to implement because 
t is difficult to detect when to track the user’s input. This work
olely focuses on protecting users againt IBI attacks . 
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Fig. 1 – Example attacking scenarios which are common in our day to day life. To launch the attack, the adversary places a 
number of malicious WiFi devices (marked by a circle) near the target user (marked by a rectangle). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CSI -based Attack Setup. A classical CSI -based attack follows
several steps. First, the adversary needs to identify when the
user is entering sensitive information, i.e., the sensitive in-
put window. Doing so is relatively straightforward for a screen
lock, as this is often the first activity users perform when pick-
ing up their mobile devices. For other sensitive inputs, previ-
ous attacks ( Li et al., 2016 ) show that is possible to do so by
analyzing the meta data (such as the IP address that the ap-
plication is connecting to) of mobile applications. Secondly,
during the sensitive input window, the malicious device pe-
riodically sends ICMP Echo requests to the target device (for
IBI attacks). Per the ICMP protocol, the target device replies
to each Echo request a response packet. The reply is then used
to calculate the CSI value 3 . Finally, at the end of the input win-
dow, the collected CSI values will be analyzed and matched
against a pattern database to recover the user’s input. 

Data analysis. After collecting the CSI measurements, an at-
tacker needs to preprocess the CSI measurements to remove
the noises. The high dimensional raw CSI data are projected
into a lower-dimensional space using techniques like the Prin-
cipal Component Analysis. The attacker will then need to
determine the start and the end points of the CSI data of
interests (e.g., when the user started and finished entering
sensitive information). After locating the interesting data se-
quences, an algorithm is then applied to reconstruct the user’s
input from the data. 

Example. To illustrate how CSI can be used to un-
cover sensitive information, we have performed an experi-
ment where a user drawed three Android locking patterns
( Fig. 2 a) on a mobile device that is within 0.5 meters to two
WiFi endpoints. The Android locking patterns are chosen
according to the strategies mentioned in Uellenbeck et al.
(2013) and Ye et al. (2017) . In the experiment, we collected
the CSI values while the user was drawing each pattern.
For each pattern, we repeated the process five times. Fig. 2 b
shows the CSI amplitude for each pattern. As can be seen
from the diagram, each locking pattern corresponds to a
unique CSI structure which is relatively consistent across
multiple inputs of the same pattern. An attacker can in-
fer the user’s inputs by matching the CSI measurements
against a knowledge database of inputs to CSI mappings. 
3 The sender needs to ping the receiver at a high rate to the CSI 
values can be captured at a high resolution. 

 

 

 

 

3. Threat model 

In our threat model, we assume an adversary wants to ac-
cess some sensitive information (e.g. passwords, PINs, pat-
tern lock or keystrokes) when a user is using a mobile device.
We assume the adversary can identify when the user starts
and finishes entering sensitive information, which is already
achieved in Li et al. (2016) . To launch the attack, the adversary
needs to be able to place at least one (for IBI attacks) or two
(for OBI attacks) malicious wireless devices in a place where
a target is likely to remain relatively stationary and within e.g.
0.5 to 5 meters to the device. Fig. 1 illustrates some of the many
possible attacking scenarios in our day to day life. The attack
can take place in an indoor environment. To implement the
attack, the adversary can use any wireless device (e.g. wire-
less routers, laptops, or smartphones, which are universal in
public places but are not trusted, and can be seen as malicious
devices) that supports the ICMP protocol and can report CSI
readings. Nearly all wireless devices that can run Linux can be
used for this attack; so the setup of the attack is trivial. 

We consider scenarios where the attacker might leverage
more than two malicious public WiFi devices to launch the
attack. We also consider scenarios where the attacker can dy-
namically change the WiFi signal strength to confuse the pro-
tection scheme. However, we assume that the adversary does
not have physical access to the user’s mobile phone. Further-
more, we assume that the attacker can neither change the
hardware and software components of the target device, nor
install malicious software on the device. It is to note that to
protect against internal device tampering or other side chan-
nel attacks falls out of the scope of this work. 

4. Motivation 

Our key insight to protect against CSI -based attacks is that
the success of the CSI -based attack strongly depends on the
quality of the CSI measurements, but the quality of the mea-
surements decreases as the target device moves further away
from the malicious WiFi devices. 

Consider Fig. 3 a and 3 b, which show the resulted CSI mea-
surements for the three patterns presented in Fig. 2 a when
the target device is within 1 and 2.5 m, respectively from
the malicious WiFi devices. Note that we applied the method
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Fig. 2 – The working mechanism of CSI based attacks. In this example, the target device is within 0.5 m to a pair of WiFi 
endpoints used to collect CSI readings. Each of the three patterns (a) is drawn five times on a mobile device and the 
collected CSI measurements are shown in (b). It is observed that each pattern corresponds to a unique CSI amplitude 
structure which is consistent across multiple inputs. By matching the collected CSI values to a pattern, an attacker can 

reconstruct the user’s inputs. 

Fig. 3 – CSI measurements for the three patterns shown in Fig. 2 a when the distance from the target to the malicious 
devices is 1 m (a) and 2.5 m (b). The further away the target to the malicious devices, the more noisy the CSI measurements 
and the lower the success rate are (d). 
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resented in Zeng et al. (2016) to reduce the noise of the raw 

SI data. 
If we compare the CSI measurements taken when the tar- 

et device is within 0.5 m to the malicious devices ( Fig. 2 b) with
ig. 3 a and 3 b we can observe visually that the CSI measure- 
ents taken from a distance of 1 and 2.5 m tend to be more 

oisy and the CSI differences between patterns are increas- 
ngly insignificant as the target device moves further away 
rom the malicious WiFi devices. This is because the further 
way the user from the malicious devices is, the stronger neg- 
tive impact (i.e. noise) of the multipath (i.e. presence of many 
eflected paths from the surrounding objects) will have to the 
SI measurements. 

To quantify the noise of the CSI measurements, we calcu- 
ated the average signal to noise ratio ( SNR ) of pattern 1 under 
ifferent distances. The results are given in Fig. 3 c. This fig- 
re illustrates the SNR of four wireless modulation schemes,
amely BPSK, QPSK, 16QAM and 64QAM, drops as the distance 

rom the target device to the malicious device increases 4 .
t is observed that the noise of the CSI measurements sig- 
ificantly increases as the distance to the malicious device 

ncreases, leading to a drop in the SNR when the distance 
4 In this paper, we use the BPSK modulation scheme in evalua- 
ion because it shares many commonalities among four schemes. 

F
c
t

hanges from 0.5m to 2.5m. As can be seen from Fig. 3 d, the
ncreased noise of the CSI also reduces the efficiency of the 
ttack. When the distance is less than 0.5m, the attack can 

uccessfully recover all three patterns; however, it fails to in- 
er any of the patterns when the distance increases to 2.5m. 

This example shows that the user’s location has a signifi- 
ant impact on the success of CSI -based attacks. The attack 
s unlikely to succeed if the user stays in an area where the at-
acker cannot obtain good quality CSI measurements. Finding 
n appropriate safe zone is, however, non-trivial. On the one 
and, we do not want to move the user further away than nec-
ssary, as doing this might affect the normal wireless commu- 
ication quality and have a negative impact on the user expe- 
ience. On the other hand, we cannot put the user too close 
o the malicious WiFi devices, which will be risky. This means 
hat our approach needs to adapt to different physical envi- 
onments and attacking scenarios. In the rest of this paper,
e will describe how to build such an adaptive system based 

ensor-based location estimation. 

. Overview of our approach 

ig. 4 depicts our 4-step approach that gives the users some 
ountermeasures to protect the user against CSI -based at- 
acks. Our approach is simple to implement and it does not 
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Fig. 4 – Overview of our approach. Our system constantly evaluates the risk of CSI -based attacks based on the user’s 
current location. If the risk is assessed to be high, the system can give the user two countermeasures, and one is adding 
body noise, and another is finding a safe zone. If the risk assessment is still high after adding body noise, it uses mobile 
sensor information to estimate the user’s walking speedup and direction as well as to locate potential malicious devices. 
Using these estimations, the system will suggest the user to walk several steps to find a safe zone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 To launch the attack, the wireless devices must be used as ac- 
cess points. Our prototype treats all wireless devices as potential 
require any specialized hardware devices. This means that our
software system can be ported to most commercial mobile
systems. As we will show in Section 6 , this simple yet power-
ful technique can effectively protect users against CSI -based
attack. 

Our prototype system is implemented as a background ser-
vice running for the Android operating system. It automati-
cally detects specific events that are related to the input of
sensitive information, including touching the screen lock, en-
tering texts in a password box etc. Once a registered event is
detected, the system tries to guide the user to a safe location,
using the following four steps: 

1 ©Risk Assessment. The success of any CSI -based attack re-
quires having relatively stable WiFi signals. To assess the risk
of CSI -based attacks, our system works as follows. The sys-
tem constantly monitors the network traffics to detect poten-
tial CSI -based attacks. It then periodically checks the threat
level to suggest actions to be taken by the user. The evaluation
is based on the SNR , detailed in Section 6.1 . If the threat level
is high, our system will suggest the user to either add some
body noises or find a location where the attack is much less
likely to succeed by using data collected from mobile sensors
in the scene. 

2 ©Countermeasure Selection. There are two major counter-
measures to defeat CSI -based attack, and one is adding
body noise and another is finding a safe zone, described as
follows. 

Body Noise Addition. The user can add body noise to de-
feat the CSI -based attack, such as the user shakes the de-
vices when he/she inputs the sensitive information or the
user just turns around and enter one digit/character at a time
when facing different directions. If the risk assessment is still
high after adding body noise, then the system will suggest the
user to walk several steps to find a safe zone, described as
follows. 

Walking Pace and Direction Estimation. To help the user to
find a safe zone, we will need to locate the malicious devices
and identify the walking direction of the user. In this step, our
system collects the acceleration and orientation information
from the accelerometer and orientation sensors that are avail-
able on most mobile devices. It uses the accelerometer data to
estimate the user’s walking distance and pace, and uses the
orientation data to identify the user’s walking direction and
angle. This is described in Section 6.3.1 . 
3 ©Locating Malicious Devices. In addition to the user’s walk-
ing pace and direction, we also need to know the position of all
possible malicious WiFi devices 5 . This is essential for circum-
stances where the adversary deploys multiple malicious WiFi
devices, because the system needs to find a region that is safe
for all malicious devices. To locate the malicious devices, we
use the distance and angle information given by step 2. The
detailed implementation of this step is given at Section 6.3.2 . 

4 ©Safe Region Guidance. After locating the locations of all
possible malicious devices, our system then directs the user
to move to a safe location. Our system dynamically evaluates
the risk of the current location and suggests if the user needs
to move further and if so towards which direction. Our system
constantly assesses the risk and will repeat steps 2 to 4 if the
risk becomes high due to the change of situations, e.g. when
the adversary changes the antennae or signal of the wireless
devices. This step is discussed at Section 6.3.3 . 

6. Implementation details 

6.1. Risk assessment 

This work targets IBI attacks where an attacker leverages the
public wireless devices as transmitters to launch the attack.
Prior work of CSI -based attacks require the wireless devices
to exchange ICMP packets at a high data rate of around 2000
packets per second. The high frequent data exchange ensures
that the attacker can obtain the user’s input with a high res-
olution. Our work leverages this pattern to detect potential
CSI -based attacks by monitoring the number of ICMP pack-
ets sent within an observation window ( Zhang et al., 2017 ). 

Our software system works by firstly assessing how likely a
CSI -based attack can be successfully launched when a mobile
device is used in a public place. The system runs as an Android
background service. It automatically detects operating system
events that are registered with sensitive information inputs.
In our current implementation, we detect two types of events:
(1) mobile payment using pattern passwords, (2) mobile
malicious devices. 



278 c o m p u t e r s  &  s e c u r i t y  8 0  ( 2 0 1 9 )  2 7 3 – 2 9 0  

p
d
n  

F
t

h
m
m
t
t
t
l

S

w
w
i
t

e  

t
s
t
t
i  

H
s
w  

t
c
s

s
e
w
w
t
d
t
f
p
d
t

c
F
t
h
v
t

s
d

w
w

Fig. 5 – SNR values and the success rate. The success rate 
and SNR can be fitted using a regression model. 
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ayment using digital passwords 6 . If any of these events are 
etected, the risk assessment process will be triggered. It is to 
ote that the set of supported events can be easily extended.
urthermore, our system can also be manually launched by 
he user. 

Recall that the success of a CSI -based attack requires to 
ave stable wireless signals to collect clean CSI measure- 
ents ( Section 4 ). Intuitively, the noisier the wireless environ- 
ent is, the more unlikely the attack will succeed. To measure 

he quality of the wireless signal, we use SNR which measures 
he signal strength (signal to noise ratio) of the communica- 
ion link from the end-user’s perspective. The SNR is calcu- 
ated using the following formula: 

NR = 

csi m 

− csi c 
noise 

(1) 

here csi c is the CSI measurement prior to the user interacts 
ith the device, csi m 

is the averaged CSI reading during the 
nteractive window, and noise is the background noise due to 
he multipath of wireless signals. 

To calculate the SNR , our system takes a CSI reading ev- 
ry 100 ms; the latest CSI measurement ( csi c ) prior to the in-
eractive window is used as a clean reference of CSI mea- 
urement. The difference between csi m 

and csi c indicates how 

he CSI measurement is affected by the user’s finger or ges- 
ure motion. In other words, the difference indicates the qual- 
ty of the CSI measurement from the attacker’s perspective.
ere, the SNR given by Eq. (2) reflects how well does the mea- 
urement capture the subtle changes to the wireless signal 
hen the user is interacting with the target device. Therefore,

he stronger the SNR , the cleaner the CSI measurement can 

apture the user’s input and the more likely the attack can 

ucceed. 
To understand how does the SNR values correlate to the 

uccess rate of the CSI -based attack, we perform a set of 
xperiments to launch the attack where the target device is 
ithin a various range of distances to the malicious devices; 
e then record the SNR readings from the user’s device and 

he success rate. The experiments were evaluated using An- 
roid pattern lock in the scenario shown in Fig. 3 a. The dis- 
ance between the target and the malicious devices ranges 
rom 0.5 m to 5 m. To collect the data, we asked our partici- 
ants to repeatedly draw a screen lock five times. We repro- 
uced the attack presented at Li et al. (2016) to crack the pat- 
ern and record the success rate. 

Fig. 5 plots the correlation of SNR readings to the suc- 
ess rate of the attack, evaluated in the scenario shown in 

ig. 3 . This diagram shows that the success rate of the at- 
ack strongly correlates to the SNR . The stronger the SNR , the 
igher the success rate will be. This is because a stronger SNR 
alue gives a cleaner CSI measurement which helps the at- 
ack. 

To quantify the relation between the SNR values and the 
uccess rate of the attack, we use regression to fit a set of 
ata points collected in our experiments. Each pair of the data 
6 The principles for attacking digital- and pattern-based pass- 
ords are similar. In this paper, we use the pattern-based pass- 
ords as an example to demonstrate the feasibility of the system. 

s

b
a
e

oints consists of an SNR measurement and the success rate 
f the attack for a number of patterns. We evaluated a range 
f linear and non-linear regression models and use the root 
ean square error (RMSE) to evaluate the performance of each 

odel. We choose a piecewise regression model, which com- 
ines a linear regression and a univariate cubic model, be- 
ause it gives the best RMSE (0.0845 in our case). The resulted 

egression model is: 

 = (p 1 × SNR + p 2 ) / ((SNR ) 3 + q 1 ∗ (SNR ) 2 + q 2 ∗ SNR + q 3) (2)

here r is the success rate, and the coefficients, p 1 = 1081 ,
p 2 = 543 . 9 , q 1 = −1033 , q 2 = 4657 and q 3 = 2582 , are automat-
cally determined by the regression algorithm. It is to note that 
e also collected data from all other environmental settings 

hown in Fig. 3 . We found that Eq. (2) can accurately describe
he relation between SNR and the success rate r . 

.2. Body noise addition 

hen the threat level is considered to be high (i.e. greater than 

 threshold), our system will issue a warning for the user to 
ake appropriate countermeasures. Our goal is to allow users 
o continue interacting with the mobile devices if the interac- 
ion is safe. 

As we all know, the body movements of the user also have 
n effect on CSI measurements, especially when the sur- 
ounding environments are more complex , the negative ef- 
ect is more obvious. Therefore, adding body noises when the 
ser enters the PIN or Pattern Lock looks like possible to de- 
end against CSI -based attacks. In this section, we investigate 
he effect of body noises on the success rate of CSI -based at- 
acks. It is known that there are many methods for the user 
o add body noises, for example, the user can shake the de- 
ices or just turn around when entering one digit/character 
t a time with different movement directions. We carry out a 
urvey about the body noises addition countermeasures, how- 
ver, the results show that only 13% of the participants are 
illing to add body noises when they input sensitive informa- 

ion, and among the 13% participants, only 37% can correctly 
nput the sensitive information when they are requested to 
hake the mobile devices or add other body movements. 

Unfortunately, even the user would like to choose adding 
ody movements to make noises, maybe it cannot defend 

gainst CSI -based attacks. As can be seen from Fig. 6 that 
ven when the user adds some body noises when entering the 
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Fig. 6 – The CSI waveforms when add additional body 

noises. The user first enters two patterns and then turns 
around, and continues to enter the third pattern. . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Walkingpace and direction estimation. 

Input: 
T [] : Three axises acceleration data 
R [] : Orientation data 
�m : Magnitude threshold for estimating steps 
�t: Time threshold for estimating steps 

Output: 
S num 

: Walk steps during the user’s walk 
SL [] : Walk length for each step 

SD [] : Direction for each step 

1: for axises acceleration data T [] do 
2: S num 

= 0 ; L [] = [] ; D [] = [] ;
3: resultant acceleration r [] ← cal cul at ereac (T []) 
4: end for 
5: magnitude p[] ← f indpeaks (r []) 
6: time t[] ← getpeakstime (p[]) 
7: peaks’ number p num 

← getpeaksnumber (p[]) 
8: for i = 1 : p num 

do 
9: if checksteps (p[] , t[] , �m, �t) then 

10: S num 

+ + ← get st epsnum (S num 

) 
11: steps’ time st[] ← updatestepstime (t[]) 
12: end if
13: end for 
14: for j = 1 : S num 

do 
15: each step’s length SL [] ← cal cul at el engt h (st [] , r []) 
16: each step’s direction SD [] ← get direct ion (st [] , R []) 
17: end for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIN or lock pattern, the attackers sometimes can also crack
and steal these sensitive information. This is because the CSI
measurements of device shaking and significant body move-
ments are different from that of pattern locks and they have
their own unique characteristics. These characters make the
attackers easily remove the body noises added from the col-
lected hybrid measurements. Thus, only adding some simple
body noises sometimes doesn’t work and we should choose
other more effective methods. According to the prior survey
results of participants, about 87% of volunteers are willing to
choose to walk several steps to a safe region, obviously this
way of interacting will be more friendly and acceptable than
adding body movements in public. 

6.3. Safe region guidance 

In order to guide the user to enter a safe zone, firstly the sys-
tem should estimate the parameters such like steps and step
size when the user is walking. Secondly we can use these pa-
rameters to locate all potential malicious devices and calcu-
late the SNR values. Finally combing the relationship between
SNR values and success rate, the system will guide the user to
a safe zone. 

6.3.1. Walking pace and direction estimation 

To find where and decide which direction the user should
move, our system tries to locate all the potential malicious
WiFi devices. In this work, the collected data of mobile phone
sensors are used to estimate the walk length and directions,
furthermore the received signal strength ( RSS ) of the WiFi sig-
nal is used to locate potentially malicious WiFi devices. 

Considering the scenario depicted in Fig. 7 a as an exam-
ple, the system will automatically estimate the walk steps and
walk length of the user when potentially malicious WiFi de-
vices are detected. The details are shown in Algorithm 1 . 

We apply a weighted moving average method to remove
the high-frequency noise and the inherent power frequency
noise of the sensors. The high-frequency noise is introduced
by the unconscious vibration of hand muscles during walking.

Then the resultant acceleration is calculated as Eq. (3) to
estimate the walk steps. 

R = 

√ 

X ac 
2 + Y ac 

2 + Z ac 
2 (3)
Where X ac , Y ac and Z ac separately represent the noise-removed
acceleration sensor’s data of x -axis,y -axis and z -axis (line 3),
and the results are shown in Fig. 7 b. 

When using the resultant acceleration to estimate walk
steps, a “peak to peak” method can be utilized to detect the
steps ( Zeng et al., 2016 ). However, not all the detected peaks
will be useful for step estimation, magnitude threshold �m
and time threshold �t ( Li et al., 2012 ) are used to filter out
false peaks. When the magnitude difference between peaks
and neighbor valley is larger than �m and the duration time of
two neighbor valleys is larger than �t , the peaks can be stored
and used to estimate the walk steps. 

After estimating the walk steps, the system will calculate
each step length using Weinberg’s approach ( Weinberg, 2002 )
and then use PDR algorithm ( Lachapelle et al., 2006 ) to calcu-
late the coordinates of each step according to the orientation
data and each step length. The coordinates of each step can
be regarded as known reference nodes in locating malicious
WiFi devices. 

6.3.2. Locating malicious devices 
Note that prior work has proposed that the success rate of
CSI -based attacks could be increased if the attacker use mul-
tiple WiFi devices ( Abdelnasser et al., 2015; Wang et al., 2015b;
Wang et al., 2014b ). So the system needs to consider an ex-
treme case that all surrounding WiFi devices may be evil al-
though it is unlikely to happen in practice. It is challenging
to find a safe zone in such complex situations. We suppose
that the user’s starting point is in an unsafe zone according
to the relationship between SNR values and success rate of
CSI -based attack, if the user just wants to input sensitive
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Fig. 7 – Walk pace and direction estimation. (a) gives an example in public scenarios. There are two users in the zone and 

other three users are entering the zone. (b) shows the results of resultant acceleration after noise removal. 

Fig. 8 – Target AP localization based on the movements of 
the user. The user first walks along a straight line and then 

make a turn. The initial position of the user is position A, 
B 1 is the user’s first step, B 2 is the user’s second step, and 

so on. There exists three malicious devices in the place and 

the positions of three malicious devices are separately T 1 , 
T 2 , and T 3 . 
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Algorithm 2 Locating malicious devices. 

Input: 
S num 

: Walk steps during the user’s walk 
SL [] : Walk length for each step 

SD [] : Direction for each step 

RSS [] : RSS values during the user’s walk 
st[] : Each step’s time 
N min and N max : Constraints of path-loss exponent 
search step : Search step of path-loss exponent 

Output: 
(X i , Y i , Z i ) : Positions of all possible malicious devices 

1: for i = 1 : S num 

do 
2: coordinates K C [] ← getcoordinate (S num 

, SL [] , SD []) 
3: each step’s RSS values rss [] ← get rss (S num 

, st [] , RSS []) 
4: conversion parameter P[] ← get paramet er (rss []) 
5: conversion matrix A [] ← get mat rix (P[] , K C []) 
6: conversion matrix B [] ← get mat rix (P[] , K C []) 
7: end for 
8: for j = 1 : S num 

− 1 do 
9: for n j = N min : search step : N max do 

10: first ratio1 r 1[] ← get rat io(P[] , n j ) 
11: targets’ coordinates C[] ← getcoordinate (A [] , B [] , n j ) 
12: end for 
13: end for 
14: second ratio r 2[] ← get rat io(K C [] , C []) 
15: if compare (r 1[] , r 2[]) then 

16: optimal path-loss exponent n opt ← f indopt iaml (r 1[] , r 2[]) 
17: return optimal positions P op [] ← f indopt imal (n opt , P[]) 
18: end if
19: if checkwrongdata (P[] , rss [] , KC[]) then 

20: Position P ∗[] ← cal cul at emean (P[]) 
21: else if
22: Position P 

′ 
[] ← del et ewrongdata (P[]) 

23: end if 

f
s
r  

a  

u

igital passwords to pay bills, then the system should quickly 
dvise the user to choose one direction to move to a safe zone.
o make some specific recommendations such like the user’s 
oving directions and steps, first the system should obtain 

he positions of malicious devices, then combines the calcu- 
ated SNR values and positions to estimate candidate direc- 
ions. In our system, the positions of possible malicious WiFi 
evices are mainly used to reduce the number of candidate di- 
ections, in other words, the system needs to get the most ap- 
ropriate moving direction to avoid pure trial-and-error pro- 
ess. Thus, locating the positions of malicious devices is very 
ssential. 
RSS propagation model is used to locate malicious WiFi de- 

ices without any prior knowledge of the places. Unlike tradi- 
ional localization methods using training process to obtain 

he unknown parameters, in this paper, inspired by Xu et al.
2014) , the user’s walk information can be used as reference 
odes to solve the unknown parameters problem. In detail,
s shown in Fig. 8 , the start coordinate of the user’s walk can
e seen as ( X 1 , 0, 0), the positions of the following steps can
e calculated using the method described in Section 6.3.1 .
he details of locating the malicious devices are shown in 

lgorithm 2 . 
As analyzed in Xu et al. (2014) , several known coordinates 
or reference nodes need to be obtained in advance. In our 
ystem, the positions during the user’s walk can be seen as 
eference nodes. Also taking the scenario in Fig. 7 a as an ex-
mple, the walking pace SL [], S num 

and the direction SD [] of the
ser first need to be mapped into reference nodes and their 
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positions can be calculated into the positions relative to the
start position of the user’s walk (line 2). As shown in Fig. 8 , the
user walks five steps and the first fourth steps are a straight
line. If we assume that the coordinates of the start point of the
walk is ( X 1 , 0, 0), then the coordinates of the following steps
are estimated using PDR algorithm ( Lachapelle et al., 2006 ).
Then the system will separate the RSS values RSS [] during the
user’s walk into the values rss [] for the reference nodes (line 3).

After obtaining the positions of reference nodes, the sys-
tem will use a ratio approach to eliminate the transmitting
power uncertainty, and then combines a search method for
path-loss exponent to determine the positions of malicious
WiFi devices. To be specific, in an anonymous environment,
when the RSS values of reference nodes are obtained, a ratio
can be calculated through the following equation: 

ˆ d 1 / ̂  d i = ( P i / P 1 ) 
1 /n j (4)

Where P i = 10 rss i / 10 , and rss i is the RSS values of each step, d i
is the distance between the i − th walk step (see i th reference
nodes in Fig. 8 ) and the malicious WiFi devices. 

If there are multiple reference nodes and the path-loss pa-
rameter is known, the position of malicious device can be ob-
tained using the following matrix: 

Aθ = B (5)

Where 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2( P 2 
2 
n x 2 − P 1 

2 
n x 1 ) 2( P 3 

2 
n x 3 − P 1 

2 
n x 1 ) 

. . . 2( P m 
2 
n x m − P 1 

2 
n x 1 ) 

2( P 2 
2 
n y 2 − P 1 

2 
n y 1 ) 2( P 3 

2 
n y 3 − P 1 

2 
n y 1 ) 

. . . 2( P m 
2 
n y m − P 1 

2 
n y 1 ) 

2( P 2 
2 
n z 2 − P 1 

2 
n z 1 ) 2( P 3 

2 
n z 3 − P 1 

2 
n z 1 ) 

. . . 2( P m 
2 
n z m − P 1 

2 
n z 1 ) 

P 1 
2 
n − P 2 

2 
n P 1 

2 
n − P 3 

2 
n 

. . . P 1 
2 
n − P m 

2 
n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

T 

B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

P 
2 
n 

2 ( x 2 2 + y 2 2 + z 2 2 ) − P 1 
2 
n ( x 1 2 + y 1 2 + z 1 2 ) 

P 3 
2 
n ( x 3 2 + y 3 2 + z 3 2 ) − P 1 

2 
n ( x 1 2 + y 1 2 + z 1 2 ) 

. . . 

P m 
2 
n ( x m 2 + y m 2 + z m 2 ) − P 1 

2 
n ( x 1 2 + y 1 2 + z 1 2 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

θ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

X 

Y 

Z 

S 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

and ( x i , y i , z i ) is the position of the i − th walk step, S =√ 

X 

2 + Y 2 + Z 2 , ( X, Y, Z ) is the position of malicious device. 
After obtaining the coordinates of reference nodes, the sys-

tem will calculate the conversion parameter P [] using the RSS
values rss [] for each reference node (line 4); calculate the con-
version matrix A [] and B [] using the conversion parameter P []
and known coordinates KC [] of reference nodes (line 5 and line
6). 

For a given path-loss exponent n j , we then calculate the
first ratio r 1[] using Eq. (4) (line 10) and the second ratio r 2[]
using the estimated positions C [] and known coordinates KC []
(line 14), and then will find an optimal path-loss exponent n opt

which the first ratio can best match the second ratio (line 16)
and the optimal path-loss exponent n opt will represent a op-
timal position P op [], which is the position of malicious device
(line 17). 
6.3.3. Safe region guidance 
Our system dynamically evaluates the risk of the current loca-
tion and gives the user guidance, and the details are shown in
Algorithm 3 . Our system constantly assesses the risk and will

Algorithm 3 Decision making and safe region guidance. 

Input: 
P[] : Positions of malicious devices 
M 1[] : Regression model of SNR values of gestures and suc-
cess rate 
R 1[] : Relationship between SNR values of gait and gestures 
CM [] : CSI measurements for gait 
P m 

: User’s current positions 
Output: 

D m 

: Towards direction 

L m 

: Walk Length 

1: SNR values of gait S g ← getSN R (C M []) 
2: SNR values of gestures S h ← getSNR (R 1[] , S g ) 
3: for S h do 
4: success rate ra [] ← get rat e (S h , M 1[]) 
5: if checkrate (ra []) then 

6: Decision Making struct DM 1[] ← d ecid e (ra []) 
7: number of malicious devices P num 

← getnumber (P[]) 
8: if P num 

== 1 then 

9: Direction D m 

← getoppsitedirection (P m 

, P[]) 
10: else if P num 

> 1 then 

11: Malicious direction D [] ← get direct ion (P m 

, P[]) 
12: Direction D m 

← getoppsitedirection (D []) 
13: end if
14: Length L m 

← get l engt h (S g , R 1[] , M 1[]) 
15: else if ! checkrate (ra []) then 

16: Decision Making struct DM 2[] ← d ecid e (ra []) 
17: Direction D m 

= 0 ; Length L m 

= 0 
18: end if
19: end for 
20: for D m 

do 
21: if checkdirection (D m 

, R []) then 

22: Direction D m 

← cont inuedirect ion (D m 

, P m 

, P[]) 
23: else if ! checkdirection (D m 

, R []) then 

24: Direction D m 

← upd ated irection (P m 

, P[]) 
25: end if
26: end for 

repeat steps 1 to 3 if the risk becomes high due to the change
of situations, e.g. when the adversary changes the antennae
directions or signal strength of the wireless devices. 

Prior works show that the multiple wireless devices can im-
prove the attack success rate ( Abdelnasser et al., 2015; Wang
et al., 2015b; Wang et al., 2014b ). Thus, when guiding the user
to a safe region, first the system needs to detect how many
malicious devices in the public places. Take Fig. 10 a for exam-
ple, there are two malicious WiFi devices and the user stands
in the position P , which is the risk region for malicious WiFi
device 1 and the safe region for malicious WiFi device 2. Thus,
the user needs to walk towards the common opposite direc-
tion of the two malicious WiFi devices, such as directions T 1
and T 6. 

Recall that the system decides whether the user is in a safe
zone according to the relationship between SNR values of ges-
tures and success rate. However, the SNR values of gestures
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Fig. 9 – Relationship between SNR values of human gaits 
and gestures. The experiments are done under different 
distances and record the SNR values of human gaits and 

gestures. The ratio is calculated using the SNR values of 
human gaits divided by the SNR values of human gestures. 
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an be obtained only when the user draws gestures, which 

s inconvenient for the user. Based on that, we do an exper- 
ment to measure the relationship between the human gaits 
nd gestures, Fig. 9 shows the results. We observe that the SNR 
atio of human gaits and gestures keeps around 1 in different 
istances. Thus, the system can leverage the SNR values of 
uman gaits to estimate the success rate to make a decision. 

Our system then guides the user to a safe zone using the re- 
ationship of SNR values between gaits and gestures, as shown 

n Fig. 9 . Note that the user just needs to walk several steps to
e in a safe zone, as shown in Fig. 10 b, the user just needs to
alk several steps towards P 1 or P 2 to a safe zone. 

In order to give the user a real-time guidance, the system 

ill monitor the SNR values of human gaits in real time. If 
he user does not follow the current guidance, the system will 
hange another guide line for the user. 
ig. 10 – Safe region guidance. In (a), there are two malicious dev
nly the directions T 1, T 2, T 5, T 6 will lead the user to a safe zone
one, and the system will give several alternative directions for t
. Experimental Setup 

cenarios We evaluate our approach in various indoor envi- 
onments, described as follows. The first scene is an entrance 
all of a building, where the multipath of WiFi signals is weak.
he second scene is an indoor classroom with a size of 9 m ×
2 m, where the multipath effects are more severe. The last 
cene is a typical indoor environment with a size of 3.5 m ×
 m, where has furniture and the strongest multipath effects.

ttack Setup. We implemented the attack described in Li et al.
2016) and Zhang et al. (2016) . We used two wireless devices: 
 laptop with Intel 5300 NIC and a TP-Link WR 1043ND WiFi 
outer. The laptop is used as a receiver to collect the CSI mea-
urements and the WiFi router is used as a transmitter. The 
ttack is evaluated in an 802.11 n wireless environment. The 
ireless devices are placed at 0.5 meter to 5 meters away from 

he user. To measure the CSI , the wireless receiver and trans- 
itter exchange ICMP packets at a data rate of 1000 packets 

er second. This data rate is used in prior work ( Wu et al.,
015 ). 

arget devices. Our target devices are Android smartphones.
e tested our approach on a Xiaomi MI4 phone and a Sam- 

ung Galaxy S7 phone. It is to note that our system makes use
f the acceleration sensor which is a standard configuration 

or modern smartphones. 

se cases. We evaluate our approach by applying it to pro- 
ect Android pattern locks and PINs. We used 15 graphical pat- 
erns, which are often used as login passwords of banking sys- 
em and payment passwords of Alipay or Wechat, as shown in 
ices in the public place, the user stands in the position P , 
. (b) gives a case of the guidance. The user first is in a risk 

he user. 
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Fig. 11 – The Android locking patterns used in the evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 . As mentioned in Uellenbeck et al. (2013) , there are sev-
eral typical strategies used by the participants, such as people
often picked the top left corner as a starting point and prefer
straight lines, the graphical patterns used in the experiments
are chosen according to the strategies and they were also used
in prior work ( Ye et al., 2017; Zhang et al., 2017 ). The structure
of these patterns ranges from simple to complex. We use the
Android 3 × 3 native pattern grid. We also test our approach
on PINs using a Xiaomi MI4 where the key number from 0 to
9 is separately pressed. 

Participants. We recruited four users to participate in our ex-
periments with the approval of the research ethics board (REB)
of the host institution. Each participant was given the op-
portunity to practice a pattern or password several times, so
that they could draw the pattern at their natural speed. On
average, this practice session took 10 trials per user per pat-
tern/password. When entering the information, some partici-
pants sat, while others stood, some hold the device by hands,
while others placed it on a table. Each case was evaluated on
two target devices for given distances. For each setting, we re-
played the attacking process five times and reported the aver-
age success rate. 

Prototype Countermeasure. Our prototype system is imple-
mented as an operating system background service for the
Android system. We test it on the latest Android 7.1 Nougat
operating system. Since our software does not rely on special-
ized hardware, it can be ported to other mobile operating sys-
tems including IOS and Windows 10 Mobile. 
8. Experimental results 

In this section, we first reproduce the CSI -based attack and
demonstrate the relationship between the success rate and
the SNR values. We then analyze the localization results
in different environments. Finally, we use a case study to
demonstrate the effectiveness of our approach in a real world
scenario. 

8.1. Impact of SNR values 

Result 1: The quality of the SNR strongly correlates to the success
rate of the CSI -based attack. 

In this experiment, we use the CSI measurements of pat-
terns and PIN-based passwords collected from four partici-
pants to calculate the SNR . This experiment is carried out in
three scenarios described in Section 7 . The attack uses the
method discussed in Li et al. (2016) to recover the passwords. 

Fig. 12 shows that the success rate becomes higher with the
increase of SNR values. This is expected high SNR values lead
to high quality CSI measurements, which demonstrates that
SNR is strongly correlated to the success rate. 

8.2. Evaluation of localization results in different 
environments 

Result 2: Our localization method is robust to different environ-
ments. 

In this experiment, we test three scenarios to demonstrate
the robustness of our localization method. Fig. 13 a shows the
results of three scenarios described in Section 7 . As can be
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Fig. 12 – The impact of SNR on success rate and user 
network experience. The experiments is done under 
different distances. 
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een from the diagram, the error increases as the mutipath ef- 
ect becomes stronger. In the environment with the strongest 

ultipath effect, the library, the error is less than 1 m. Af- 
er analyzing the localization results, we observe that multi- 
ath has a negative impact on the localization accuracy and 

tronger multipath will lead to higher localization error. Note 
hat the localization error is not significant in our problem, as 
he largest error is just only two steps for ordinary users, and 

he system can let the user walk two more steps while guiding 
o the safe zone. 

.3. Impact of multiple malicious devices on the 
ocalization results 

esult 3: The number of malicious WiFi devices has no impact on 
he localization accuracy. 

In this experiment, we investigate whether the number of 
alicious WiFi devices has a significant impact on the local- 

zation accuracy. To answer this question, we separately de- 
loy one, two, and three WiFi devices in different environ- 
ents to do localization. 
Fig. 13 b shows the localization results when an attacker de- 

loys multiple malicious devices. Similar to the localization 

esults when there is just one malicious device, our approach 

an also achieve a high accuracy for locating multiple mali- 
ious devices. After having a close look at Fig. 13 b, we found 
ig. 13 – Localization error for multiple malicious devices in diffe
he hall, classroom and library. In (b), there are separately one, tw
hat the number of malicious devices has little impact on the 
ocalization error. This is because the RSS values are mea- 
ured in parallel across wireless devices without interference.

.4. Detecting changing power 

esult 4: The attacker may dynamically change the WiFi signal 
trength to confuse the protection scheme but our approach can de- 
ect over 90% of the changing power when the attacker changes the 
ireless power of the malicious devices. 

Recall that the success rate requires high-quality CSI mea- 
urements, the attacker may dynamically change the power 
f malicious devices to confuse the protection scheme. There- 
ore, we will need to detect the change of power. However, the 
ser cannot obtain the malicious devices’ power directly. In- 
tead, we use RSS values to detect the changing power. In this 
xperiment, RSS values were recorded on both 2.4 GHz and 

GHz under different power conditions. The experiments are 
one using TL-WDR7500 router from various distances. 

Fig. 14 a shows that when the attacker changes the power,
here will appear a sharp rise or fall for RSS values, and then
he value will settle down. When someone walks by, the RSS 
alues will fluctuate in a range. Thus, RSS values can be used 

o detect the changing power. 
Fig. 14 b shows the detection results of changing power 

n 2.4 GHz and 5 GHz. For the scenario where the power is
hanged to a lower value, we can detect 90% of the cases for
.4 Ghz and 83.3% of the cases for 5 Ghz. For the scenario
here the power is boosted to a higher value, we can detect 

0% of the cases for 2.4 Ghz and 100% of the cases for 5 Ghz.
fter guiding the user to a safe region, the system will detect 

he RSS values in real-time and when power changing is de- 
ected, the risk will be reassessed. 

.5. Safety after taking countermeasures 

esult 5: The CSI -based attack is unlikely to succeed after taking 
rotection countermeasures. 

For the body noise addition countermeasures, the CSI 
aveforms after taking the countermeasures are shown in 

ig. 15 . We can see from Fig. 15 a that the CSI -based attack
rent environment. In (a), there are one malicious device in 

o, three malicious devices in hall, classroom and library. 
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Fig. 14 – Detection on sudden power change. (a) shows the difference of RSS values between the user’s walk and power 
change, (b) shows the accuracy of power change detection under different frequency channels. 

Fig. 15 – The comparison of the CSI measurements when adding additional body noises. In the experiments, the user 
enters three patterns. In (a), the CSI -based attack succeeds when adding body noises. In (b), the attack fails when adding 
body noises. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

can still succeed after adding body noise, and that is be-
cause although the CSI waveforms of body noise can con-
fuse the attacker, however, when the positions and direc-
tions before and after adding body noise don’t change too
much, an experienced attacker can still distinguish the CSI
waveforms of body noise from CSI waveforms of patterns
because of the difference between them. On the contrary,
when they change too much, the CSI waveforms of pat-
terns will be completely different from the attacker’s prior
measurements, and the attacker will not decode the pat-
tern successfully using the CSI measurements, as shown in
Fig. 15 b. Thus, adding body noise countermeasures sometimes
doesn’t work. Fig. 16 a shows the results of success times af-
ter adding body noise. The results show sometimes, even
when the user adds body noise, the CSI -based attack can still
succeed. 

For safe region guidance, because the safe region is the
place where CSI measurements are noisy. In order to demon-
strate the safety in a safe zone, we asked our participants to
input 15 graphical unlock patterns on Android smart phones
in the safe region, and each pattern is drawn five times and we
collect the CSI measurements to recover the patterns. Fig. 16 b
shows the results of the success times of CSI -based attack in
safe region. We can observe that the success times of 15 un-
lock patterns are all 0, thus, the system can protect the user’s
sensitive information effectively. 
8.6. Impact on the user’s network experience 

Result 6: Our protection methodology has little impact on the user’s
network experience. 

We know that the further distance will lead to bad net-
work experience. In this experiment, we would like to know
whether the safe region will have a negative impact on the
user network experience. To do so, we evaluate our approach
in different distances. We record the packet loss rate and de-
lay, which are two important factors that can affect the quality
of wireless communication. 

Fig. 17 shows that the packet loss rate is below 1% and the
delay is less than 5 ms when the distance between the user
and the wireless device is from 0.5 m to 5 m. According to ex-
perience, when the packet loss rate is less than 8% and the
delay is less than 200 ms, the wireless communication quality
will not affect the user’s network experience. Thus, the user’s
network experience will not be affected in safe region. 

8.7. Case Studies 

Result 7: The case studies for different participants in different sce-
narios confirm the effectiveness of our system. 

In this experiment, we asked our participants to draw 15
unlock patterns five times separately in a risk region and a
safe region in four scenarios, described in Section 7 . 
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Fig. 16 – The comparison of success times of CSI -based attack after taking different countermeasures. (a) shows the success 
times of CSI -based attack when adding body noises and (b) shows the success times when the user is in a safe zone. Each 

kind of experiment is done five times. 

Fig. 17 – User network experience. 

i
s
m
t

t
n
m
t
r
a

t
s
t
3
c
S
i  

H
d
m
e
t
a

f

s
a
t
t
i
t
S

w
t
a
q
u
t
m

s
s
m
u
t
f
c
s
o
m
c
t
t
w
n
s

g
w  

T
t
b  

s
a
l
w
the user. 
To simulate the real-world attack scenarios, the participant 
s not required to sit at the certain positions or input the sen- 
itive information at the certain time. Instead, we collect CSI 
easurements when the user takes out the device to input 

he sensitive information. 
Fig. 20 a shows the successful times of recovering the pat- 

erns in the risk region for four participants in the first sce- 
ario. We observe that the maximum is five while the mini- 
um is 2. This suggests that the attacker can successfully ob- 

ain the user’s sensitive information when the user is in the 
isk region. Fig. 18 shows the metrics of precision, recall and 

ccuracy when the four participants are in the risk zone. 
Fig. 20 b shows the successful times of recovering the pat- 

erns in the safe region in four scenarios. We observe that the 
uccessful times in four scenarios are almost 0, expect the pat- 
ern 4 and pattern 10 in scenario 1, and pattern 14 in scenario 
. That is because the attack may occur during the sudden 

hange of SNR values. Before the sensitive input window, the 
NR values are detected to be low because of the surround- 

ng noise and the user will input the sensitive information.
owever, at the start of the input window, the SNR values sud- 
enly increase and the attacker launches the attack at this 
oment. That may lead to the success of the attack. How- 

ver, in actual scenarios, it is hard for the attacker to grasp 

he moment. Fig. 19 shows the metrics of precision, recall and 

ccuracy when the four participants are in the safe zone. 
Fig. 20 c how often a CSI -based attack can be success- 

ully launched when the attacker uses multiple APs. We ob- 
erve that almost all the patterns can be recognized by the 
ttacker as multiple APs can improve the accuracy. When 

he attack uses multiple APs to launch the CSI -based at- 
ack, there may not exist a nearby safe zone. In such scenar- 
os, our system would suggest the user not to enter sensi- 
ive information in the public place. This is also discussed in 

ection 10 . 
In this experiment, we also investigate the success rate 

ith noisy CSI measurements. We try to answer the ques- 
ion: Will the object movements in surrounding environments 
ffect the success rate of CSI -based attacks. To answer this 
uestion, we ask another participant to walk near the target 
ser when the victim starts entering the sensitive informa- 
ion. In this experiment, the user is 0.5m far away from the 

alicious WiFi device. 
Fig. 21 a shows the results of clean and noisy CSI mea- 

urements collected during the time the user enters the sen- 
itive information. We observe that the clean CSI measure- 
ents only contain the CSI information that comes from the 

ser’s finger motions; but the noisy CSI measurements con- 
ain not only the finger’s information, but also the CSI in- 
ormation that comes from the surrounding objects. We dis- 
over that the impact of moving surroundings on CSI mea- 
urements is greater than that of the finger motions. An- 
ther obvious difference between the clean and noisy CSI 
easurements is the CSI amplitude, which is used to re- 

over the sensitive information. However, it is difficult for 
he attacker to extract the CSI measurements of finger mo- 
ions from noisy CSI measurements. Therefore, the attacker 
ill be unable to recover the sensitive information using the 
oisy CSI measurements and the CSI -based attack will not 
ucceed. 

Our prototype system can be implemented as a back- 
round service for Android operating system, and it can run 

ith Alipay Pay and Wechat Pay, as shown in Fig. 21 b and 21 c.
he system monitors specific system events to detect sensi- 

ive inputs. When a sensitive event is detected, the system will 
e called to give the user a warning and guide the user to a
afe region. The system will give the user a direction to walk 
nd detect whether the user is walking according to guidance 
ines, when the user does not follow the guidance, the system 

ill give the user a reminder and choose another direction for 
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Fig. 18 – The metrics of CSI -based attack in a risk zone. (a) shows precision for four participants in risk zone in three 
scenarios, (b) shows recall for four participants in risk zone in three scenarios and (c) shows accuracy for four participants 
in risk zone in three scenarios. 

Fig. 19 – The metrics of CSI -based attack in a safe zone.(a) shows precision for four participants in safe zone in three 
scenarios, (b) shows recall for four participants in safe zone in three scenarios and (c) shows accuracy for four participants 
in safe zone in three scenarios. 

Fig. 20 – The successful times of CSI -based attack for four participants in a risk zone and a safe zone in the first scenario.(a) 
shows the successful times of the attack when four participants is in a risk zone, (b) shows the successful times of the 
attack when four participants is in a safe zone, (c) shows accuracy for four participants in risk zone using multiple APs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.8. User’s acceptability study 

We would like to evaluate whether users are willing to use
our system and whether users feel comfortable while using
our system to protect sensitive information. We recruited 20
participants in this study. All the participants were asked to
participate and none was compensated for the experiments. 

The study is conducted as follows: we first show the partic-
ipants detailed information about CSI -based attacks and our
system: 

1. What CSI -based attack does and how the wireless sig-
nals recognize the users’ sensitive information. 
2. What the channel state information looks like and how
it is collected and stored. 

3. What our system does and how it can defeat CSI -based
attacks. 

Then the participants were asked two questions. First, we
asked them whether they are willing to use the system to
protect their sensitive information and most of the partici-
pants give a positive answer. We also asked the participants
to choose one countermeasure to protect sensitive informa-
tion, a safe zone or adding body noise. All of the participants
choose the safe zone. The above results indicate that the sys-
tem has a high acceptance. 
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Fig. 21 – Case studies. (a) shows the case of the CSI measurements when there exists moving surroundings or not, and 

different lines show the CSI measurements across stable environments and noisy environments. (b) and (c) gives two cases 
of system interaction, and the systems can run across sensitive information-related applications. 
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. Related work 

ur work lies at the intersection between gesture recognition 

sing wireless signals and the indoor localization using AP 
nd mobile smart devices. 
CSI -based Gesture Recovery. Wang et al. (2017) study how 

SI can be leverage to detect fall. Xi et al. (2014) and Yang et al.
2013) demonstrate the capability of CSI to detect the person’s 
umber and positions. Melgarejo et al. (2014) leverage direc- 
ional antenna to recognize the fine-grained gestures. Inspired 

y that, Ali et al. (2015) achieve keystroke detection and Wang 
t al. (2014a) achieve lip-reading. Li et al. (2016) crack the dig- 
tal passwords of Alipay if the user connects to the attacker’s 

alicious WiFi devices, and Zhang et al. (2016) demon- 
trate graphical unlock passwords of smart devices can be ob- 
ained even the user does not connect to any malicious WiFi 
evices. 
RSS -based indoor localization. Rai et al. (2012) demon- 

trate that RSS -localization based on fingerprints needs to be 
rained for every new space and each time when there is a 
ignificant change in a given place, thus, the method is not 
roper in this paper. Based on that, Goswami et al. (2011) pro- 
ose a calibration method, however, the method need to con- 
rol over the APs and have prior knowledge of their locations.
hintalapudi et al. (2010) improve the calibration method for 
F modeling using AP and inertial sensors of smart devices 
ith some known positions. In this paper, we seek for a local- 

zation method that doesn’t need any prior knowledge about 
he place and can locate the malicious WiFi devices accurately.
CSI -related attacks. Jiang et al. (2013) leverage the unique 

haracteristics of CSI to verify the authenticity of MFs, and 

ropose a WiFi management frame source authentication sys- 
em. Wang et al. (2018) propose a novel Sybil attack detection 

ased on CSI , and the detection algorithm can tell whether 
he static devices are Sybil attackers. Tung et al. (2014) eval- 
ate sniffing attack (enables concurrently transmitting mali- 
ious clients to eavesdrop other ongoing transmissions) and 

ower attack (enables malicious clients to enhance their own 

apacity at the expense of others’) and they propose a novel 
SI feedback system to prevent CSI forging without requiring 
ny modification at the client side. 
r

0. Discussion 

aturally there is room for further work and improvements.
e discuss a few points here. 

idden WiFi hotspots An attacker may use hidden WiFi 
otspots (i.e., the SSIDs of the wireless devices are not pub- 

ic available) to launch the attack. Our current implementa- 
ion does not detect hidden WiFi hotspots. However, they can 

e discovered using the the method described in Fazal et al.
2010) . Once these hidden WiFi hotspots are detected, our ap- 
roach remains applicable. 

ultiple malicious WiFi devices An attacker can also increase 
he chance for successfully launching the attack by using mul- 
iple malicious devices. In this scenario, it is possible that 
here exists no safe region in an indoor environment. If this 
appens, our system will suggest the user to use body move- 
ents to introduce some artificial noises or not to enter sen- 

itive information at all. 

ther identity verification mechanism Our goal is provide 
ountermeasures for CSI -based attacks, which is useful to 
btain the sensitive information when the target user en- 
ers graphical passwords or digital passwords. That is because 
he success of CSI -based attack lies in the fact that the mo-
ile user’s finger movements or gestures will affect the CSI 
easurements of the wireless signal, an attacker can recover 

he user’s input with a high success rate by analyzing the 
ffected CSI measurements. For other identity verification 

echanisms, such as face recognition and fingerprints, the 
SI -based attack does not work. 

1. Conclusion 

his paper has presented a novel countermeasure for CSI - 
ased attacks. We exploit the observation that the success of 
he attack requires having a clean CSI measurement. We de- 
ne a signal to noise metric to measure the quality of the CSI
eadings from the attacker’s perspective, and use this met- 
ic to quantify how likely a CSI -based can be successfully 
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launched. Given the user’s current location and the surround-
ing environment, our scheme evaluates the risk of CSI -based
attacks. If the risk is considered to be high, it then directs the
user to move to a safe location. We evaluate our approach
by applying it to protect Android pattern lock and keystrokes.
Our evaluation is conducted in various typical indoor environ-
ments. Experimental results show that the proposed counter-
measure can successfully protect users against CSI -based at-
tacks in public places. 
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