
2020 IEEE International Conference on Cluster Computing (CLUSTER)

Optimizing GPU Memory Transactions for
Convolution Operations

Gangzhao Lu
Computer Science and Technology

Harbin Institute of Technology
China

lugangzhao@hit.edu.cn

Weizhe Zhang
Computer Science and Technology

Harbin Institute of Technology
China

wzzhang@hit.edu.cn

Zheng Wang
School of Computing
University of Leeds

United Kingdom
z.wang5 @leeds.ac.uk

Abstract-Convolution computation is a common operation
in deep neural networks (DNNs) and is often responsible for
performance bottlenecks during training and inferencing. Ex
isting approaches for accelerating convolution operations aim
to reduce computational complexity. However, these strategies
often increase the memory footprint with extra memory accesses,
thereby leaving much room for performance improvement. This
paper presents a novel approach to optimize memory access
for convolution operations, specifically targeting GPU execution.
Our approach leverages two optimization techniques to reduce
the number of memory operations for convolution operations
performed on the width and height dimensions. For convolu
tion computations on the width dimension, we exploit shuffle
instructions to exchange the overlapped columns of the input for
reducing the number of memory transactions. For convolution
operations on the height dimension, we multiply each overlapped
row of the input with multiple rows of a filter to compute multiple
output elements to improve the data locality of row elements.

We apply our approach to 2D and multi-channel 2D con
volutions on an NVIDIA 2080Ti GPu. For 2D convolution,
our approach delivers over 2x faster performance than the
state-of-the-art image processing libraries. For multi-channel 2D
convolutions, we obtain up to 1.3x speedups over the quickest
algorithm of cuDNN.

Index Terms-Performance Optimization, Convolution, Mem
ory Optimization, GPUs

I. INTRODUCTION

Convolution is a fundamental building block for many
application tasks, including image and video processing and
machine learning models. However, convolution operations are
computation and memory intensive for representative image
and machine learning processing tasks. Therefore, there is a
critical need for accelerating convolution operations.

A wide range of techniques have been proposed to acceler
ate convolution operations [1], [2], [3], [4], [5], [6], [7], [8].
Among these methods, general matrix multiplication (GEMM)
[6], [7], fast fourier transform (FFT) [2] and winograd [3]
methods are the broadly adopted ones. However, these meth
ods can incur many GPU global memory transactions (or
memory accesses) during the transformation phase due to the
involvement of matrix multiplications and duplicate elements
of the transformed matrices.

In this work, we introduce two novel optimization tech
niques for operations performed on columns and rows to im-
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prove the memory performance of convolution operations. The
first technique exploits column reuse by utilizing shuffle in
structions (supported by both CUDA and OpenCL and hence is
applicable to mainstream GPUs) to exchange elements among
threads within the same GPU warp (or working group). In this
way, we can avoid reloading the same elements shared among
different threads. We further extend the shuffle instructions
to facilitate dynamic indexing. The second technique targets
row reuse by multiplying one input row with multiple rows of
a convolutional kernel (or filter) to compute multiple output
elements. This strategy improves the data locality of elements
within a row, reducing the number of memory transactions
compared with that of the existing convolution processing
pipeline.

We apply our optimization techniques to 2D and multi
channel 2D convolution operations and evaluate them on an
NVIDIA 2080Ti GPU. We compare our approach against
a range of highly optimized convolution libraries, including
cuDNN [9]. Experimental results show that our approach
delivers over 2x faster performance over the best-performing
competitive strategy.

This paper makes the following technical contributions:
• It presents a novel algorithm for column reuse (Sec

tion II-A), which has a better generalization ability over
prior work.

• It presents a novel row reuse algorithm to improve the
data locality and reduce the number of global memory
transactions when performing convolution in the row
direction (Section II-B).

• It describes a novel method for transforming dynamic
indices into static indices. Our approach enhances register
promotion, leading to better performance (Section IV).

II. OUR ApPROACH

In this section, we describe our two optimizations, column
reuse (Section II-A) and row reuse (Section II-B), for reducing
GPU memory transactions for convolution operations.

A. Column Reuse Optimization
1) Standard convolution: Figure la shows a standard 2D

convolution operation, operating on a single-channel input.
Here, each thread loads the first corresponding input elements
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(a) Direct convolution: Each thread loads 5 input (b) Optimized convolution: each thread retrieves (c) Our approach: each thread retrieves its second
elements from global memory. its third element from the corresponding thread. and fourth elements from corresponding threads.

Fig. 1. Illustration of direct and optimized convolution. We use a 5 x 5 filter and each thread calculates the convolution for one output element. This example
shows how a thread processes the first 5 corresponding input elements.

from the GPU global memory. Given that the indices of these
elements are contiguous, i.e., 0, 1, 2, and 3 in this example,
concurrent access to these elements will be coalesced to form a
single memory transaction. After completing step 5, each pair
of adjacent threads will have four duplicate input elements.

2) An optimized version: To eliminate the redundant loads,
we could use the shuffle instructions to exchange input el
ements among different threads. Figure 1b depicts such an
optimization. Specifically, in steps 1 and 2 of Figure Ib, each
thread loads the corresponding first and fifth input elements
from the global memory. In step 3, each thread utilizes the
shuffle instruction to retrieve the third element from another
thread.

Since the indices and the access pattern to iTemp are not
available at compile-time, the compiler cannot decide which
of the elements in iTemp will be frequently accessed and has
to place iTemp in the local memory which would still incur
an access latency of around 500 cycles. If we can promote
register allocation for iTemp, we can then further improve
the performance of convolution.

3) Our approach: Our column reuse approach (Figure lc)
is described in Algorithm 1. Here, we first load the correspond
ing first and fifth input elements into iTemp before passing it
to Algorithm 1. Then, we pack two 32-bit elements into a 64
bit variable exchange, where iTemp[4] and iTemp[O] are the
high and low 32 bits, respectively (Line 2). As threads to and
t 1 will provide the fifth element of the data they load, which
are the high 32 bits of exchange, we right shift exchange for
both threads by an offset of 32 to place iTemp[4] in the low
32 bits. Next, we unpack exchange into iTemp[2] (high 32
bits) and iTemp[l] (low 32 bits) (Line 5). By doing so, we
can retrieve the element a thread needs to supply from a fixed
location, iTemp[I]. Finally, we use the shuffle instruction to
exchange the elements among the threads (Line 6).

B. Row Reuse Optimization

1) Standard convolution: Assume we use one thread to
calculate one column of output elements. For the working
example given in Figure 2, the convolution will be computed
as follows:
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Algorithm 1: RetrieveThirdElement
II iTemp: Buffer for storing input elements

loaded from memory or generated through
shuffle instructions.

Input: iTemp
Output: iTemp

1 tid t- threadIdx.x;
2 mov exchange, {iTemp[O], iTemp[4]};
3 shift t- ((tid + 2)&2) << 4;
4 exchange t- exchange» shift;
5 mov {iTemp[l], iTemp[2]} , exchange;
6 iTemp[2] t- shfCxor(iTemp[l], 2);

rowiO DDO-i thread 0

Towil ~D-DD': rowjVDDD .. -,
II II auto ~ _ ~

Towi2 ~o-Ddi rowflDDD .. -,
II II

out] ~_~II -------~
rowi3 !DDD rowj2DDD .. -,

out2~_~
rowi4 iDDD

Input Pilter Output

Fig. 2. A 3 x 3 filter is used to slide over the input image along height
dimension, which produces a column of output elements.

outo = TOWiO . TOWfO + TOWil . TOWfl + TOWi2 . TOWf2

outl = TOWil . TOWfO + TOWi2 . TOWfl + TOWi3 . TOWf2

out2 = TOWi2 . TOWfO + TOWi3 . TOWfl + TOWi4 . TOWf2

The above equations suggest that TOWil and TOWi3 are
loaded twice, and TOWi2 is loaded three times; nine rows
should be loaded in total. The redundant loads to the same
read-only row thus incur extra memory transactions and addi
tional overhead.

2) Our optimization: To remove redundant loads to the
same row, we redesign the execution flow of the convolution.
Specifically, after loading a row from the input, we compute
the number of output elements that depend on the loaded row.
Our approach translates the execution flow of the working
example presented in Figure 2 to:
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Algorithm 2: RowReuse
Input: row, index, filter, Out
Output: Out

1 if index<FH - 1 then
2 I for it-O to index + 1 do
3 I Out[i] t- Out[i] + row . filter[index - i];
4 end
5 end
6 else if index 2: FH - 1 and index<IH - FH + 1 then
7 for it-O to FH do
8 I Oindex t- index - FH + 1 + i;
9 Out[Oindex] t- Out[Oindex] + row· filter[FH -1- i];

10 end
11 end
12 else
13 for i t- FH - 1 to 0 do
14 I Oindex t- IH - FH + 1;
15 OUt[Oindex] t- OUt[Oindex] + row . filter[FH - i];
16 end
17 end

load rowiO : outo = rowiO . rowfO

load rOWi1 : outo = outo + rOWi1 . rOWf1

out1 = rowi1 . rowfO

load rowi2 : outo = outo + rowi2 . rowf2

out1 = out1 + rowi2 . rowf1

out2 = rowi2 . rowfO

load rOWi3 : out1 = out1 + rOWi3 . rOWf2

out2 = out2 + rowi3 . rowf1

load rowi4 : out2 = out2 + rowi4 . rowf2

In this new implementation, we would only issue loads
to five rows to calculate the output elements. We note that
although the number of accesses to the output column out
is increased, the overhead is negligible because out is much
smaller than multiple rows and hence can be stored in registers.

We describe a general solution for row reuse in Algorithm
2, where row denotes the row loaded from the input, index
denotes the index of row, filter denotes the vector of filter
rows and filter[i] means the ith row of the filter. Pseudo code
at Lines 1-5 process the first PH - 1 rows (rowio and rOWi1
in Figure 2) that are needed by less than PH output elements.
Code at lines 6-11 process the rows needed by exact PH output
elements (e.g., rOWi2 in Figure 2). Finally, code at Lines 12
17 process the last PH - 1 rows, which are needed by less
than PH output elements (e.g., rOWi3 and rOWi4 in Figure 2).

III. EXPERIMENTAL SETUP

We evaluate our approach on an NVIDIA RTX 2080Ti
GPU, which integrates 4350 CUDA cores for floating point
computation and 4350 CUDA cores for integer operations. We
use CUDA Toolkit version 10.2.

We compare our approach against the following state-of-the
art image and convolution libraries: (1) cuDNN version 7.6.4.
cuDNN is a state-of-the-art convolution implementation that
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TABLE I
LAYER CONFIGURATIONS USED FOR MULTI-CHANNEL 2D

CONVOLUTIONSt.

IN Ie = Fe IH x Iw FN FH X Fw

CONVI 128 1,3 28 x 28 128 3 x 3
CONV2 128 1,3 56 x 56 64 3 x 3
CONV3 128 1,3 12 x 12 64 5 x 5
CONV4 128 1,3 14 x 14 16 5 x 5
CONVS 128 1,3 24 x 24 256 5 x 5
CONV6 128 1,3 24 x 24 64 5 x 5
CONV7 128 1,3 28 x 28 16 5 x 5
CONV8 128 1,3 28 x 28 512 3 x 3
CONV9 128 1,3 56 x 56 256 3 x 3
CONVIO 128 1,3 112 x 112 128 3 x 3
CONVll 128 1,3 224 x 224 64 3 x 3

t We use I, F, and 0 to represent the input, the filter, and the output
respectively, N, C, H, and W to denote the batch size, the channel,
the height, and the width, respectively.

supports 2D and multi-channel 2D convolutions on GPU. (2)
ArrayFire [10], version 3.6.4. ArrayFire is a popular image and
signal processing library. (3) NVIDIA Performance Primitives
(NPP). This is an image and signal processing library. (4)
GEMM-im2col. We extract the implementation of the GEMM
im2col from Caffe [11]. We apply our approach to 2D and
multi-channel 2D convolutions.

IV. EXPERIMENTAL RESULTS

A. 2D Convolution

1) Setup: In this experiment, we compare our approach
against the 2D convolution implementations from cuDNN,
GEMM-im2col, ArrayFire, and NPP. As cuDNN provides
multiple implementations, we empirically choose the fastest
version, denoted as cuDNN-fastest, for evaluation. We apply
each method to images with sizes ranging from 256 x 256 to
4K x 4K.

2) Overall results: Figure 3 reports the speedups of
cuDNN, ArrayFire, NPP and our approach over GEMM
im2col. While cuDNN has been heavily optimized for
NVIDIA GPUs, it does not show a notable performance
advantage. When using a 3 x 3 filter, our approach gives the
best overall speedup of 5.4x (up to 9.7x for the largest input),
which translates to an improvement of more than 30% over
the second-best method, NPP. We note that our approach is
based on the standard 2D direct convolution by applying the
column and row reuse algorithms. Therefore, the performance
gain is mainly attributed to the reduction of the number of
memory transactions. When using a 5 x 5 filter, our approach
achieves a better overall speedup of 7.7 x .

B. Multi-channel 2D Convolution

1) Setup: In this experiment, we compare our approach
against the multi-channel 2D convolution implementations in
cuDNN and use GEMM-im2col as the baseline. Since our
work focuses on optimizing memory transactions of convo
lutions but not operations on input channels, we apply our
approach to convolutions with one and three input channels,
which are typically used in the first layer of a CNN. We use the
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Fig. 3. Speedups of 2D convolutions of four implementations over GEMM-im2col when using a 3 x 3 (a) and a 5 x 5 filter (b).
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Fig. 4. Speedups of our approach and cuDNN over GEMM-im2col for one (left) and three (right) input channels.

layer configurations from four popular CNN models, namely,
AlexNet [12], VGG [13], ResNet [14] and GoogleLeNet [15].
We use 3 x 3 and 5 x 5 filters with a batch size of 128. Table
I lists the layer configurations used in this experiment.

2) Overall results: Figure 4 shows that our implementa
tion achieves an average speedup of 19.5x and 25.6x over
GEMM-im2col for one and three input channels, respectively.
This translates to an improvement of 1.3 x and 1.1 x over the
fastest algorithm in cuDNN, for one and three input channels,
respectively. Since our approach does not optimize for input
channels, it does not give performance improvement for layer
configurations that have a large number of channels. This
can be improved by careful optimizations on input channels.
Nonetheless, our approach improves the performance of con
volution layers with a small number of channels.

V. RELATED WORK

Numerous efforts have been dedicated to optimizing con
volution operations. As previously mentioned, GEMM-, FFT
and Winograd-based convolutions are broadly adopted convo
lution algorithms. Chellapilla et al. [7] developed an unrolling
convolution algorithm. Mathieu et al. [16] proposed an FFT
based convolution to compute convolutions as pointwise prod
ucts in the Fourier domain. Lavin et al. [3] used Winograd's
minimal filtering algorithm to accelerate the convolution on
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GPu. This algorithm can reduce the arithmetic complexity
of convolution by up to four times compared with direct
convolution.

Recent studies have looked into minimizing the memory
overhead of the transformation phases. Cho et al. [4] reduced
the memory overhead of GEMM-based convolutions using a
compact lowering scheme to reduce the redundancy in the
lowered matrix and then performed multiple small matrix
multiplications in parallel. Iandola et al. [1] reduced mem
ory communication of 2D convolutions on GPU. They also
prefetched the image regions to the registers.

VI. CONCLUSION

Our approach improves the data locality for convolutional
operations performed on the row and column directions to
reduce the memory access. We evaluate our approach by
applying it to 2D and multi-channel 2D convolutions and
evaluate it on an NVIDIA RTX 2080Ti GPU platform. We
compare our approach against a wide range of heavily opti
mized convolution algorithms. Experimental results show that
our approach consistently outperforms the competing methods
by delivering the best overall performance for the convolution
tasks.
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