
Vectorization-Aware Loop Unrolling
with Seed Forwarding

Rodrigo C. O. Rocha
University of Edinburgh, UK

r.rocha@ed.ac.uk

Vasileios Porpodas
Intel Corporation, USA

vasileios.porpodas@intel.com

Pavlos Petoumenos
University of Manchester, UK

pavlos.petoumenos@manchester.ac.uk

Luís F. W. Góes
PUC Minas, Brazil

lfwgoes@pucminas.br

Zheng Wang
University of Leeds, UK
z.wang5@leeds.ac.uk

Murray Cole
University of Edinburgh, UK

mic@inf.ed.ac.uk

Hugh Leather
University of Edinburgh, UK

hleather@inf.ed.ac.uk

Abstract
Loop unrolling is a widely adopted loop transformation, com-
monly used for enabling subsequent optimizations. Straight-
line-code vectorization (SLP) is an optimization that ben-
efits from unrolling. SLP converts isomorphic instruction
sequences into vector code. Since unrolling generates re-
peatead isomorphic instruction sequences, it enables SLP to
vectorize more code. However, most production compilers
apply these optimizations independently and uncoordinated.
Unrolling is commonly tuned to avoid code bloat, not max-
imizing the potential for vectorization, leading to missed
vectorization opportunities.

We are proposing VALU, a novel loop unrolling heuristic
that takes vectorization into account when making unrolling
decisions. Our heuristic is powered by an analysis that es-
timates the potential benefit of SLP vectorization for the
unrolled version of the loop. Our heuristic then selects the
unrolling factor that maximizes the utilization of the vector
units. VALU also forwards the vectorizable code to SLP, al-
lowing it to bypass its greedy search for vectorizable seed
instructions, exposing more vectorization opportunities.

Our evaluation on a production compiler shows that VALU
uncovers many vectorization opportunities that were missed
by the default loop unroller and vectorizers. This results in
more vectorized code and significant performance speedups
for 17 of the kernels of the TSVC benchmarks suite, reaching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CC ’20, February 22–23, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7120-9/20/02. . . $15.00
https://doi.org/10.1145/3377555.3377890

up to 2× speedup over the already highly optimized -O3. Our
evaluation on full benchmarks from FreeBench and MiBench
shows that VALU results in a geo-mean speedup of 1.06×.

CCS Concepts • Software and its engineering→Com-
pilers.

Keywords SIMD, SLP, Auto-Vectorization, Loop Unrolling

ACM Reference Format:
Rodrigo C. O. Rocha, Vasileios Porpodas, Pavlos Petoumenos, Luís
F. W. Góes, Zheng Wang, Murray Cole, and Hugh Leather. 2020.
Vectorization-Aware Loop Unrolling with Seed Forwarding. In Pro-
ceedings of the 29th International Conference on Compiler Construc-
tion (CC ’20), February 22–23, 2020, San Diego, CA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3377555.3377890

1 Introduction
Modern high-performance processors include short SIMD
vector units to support higher computational throughput.
Making effective use of the vector units is critical for extract-
ing maximum performance from these processors.
There are two general classes of vectorizers. Traditional

loop-based vectorizers [2, 3] detect instructions that can
be vectorized across loop iterations. Superword-Level Paral-
lelism (SLP) [23, 43], on the other hand, are not limited by the
loop structure. They identify isomorphic groups of instruc-
tions that can be vectorized within any straight-line code
sequence, whether in a loop body or outside loops altogether.

Loop unrolling is commonly applied before the SLP vector-
ization pass. Unrolling the loop body generates straight-line
code with repeating computational and memory access pat-
terns. This makes finding vectorizable instructions much
more likely. The motivation for this work comes from the
realization that, in state-of-the-art compilers, unrolling and
SLP vectorization are completely independent and uncoor-
dinated. Unrolling is guided by its own heuristic, mainly
considering how unrolling affects code size. As a result, this

1

https://doi.org/10.1145/3377555.3377890
https://doi.org/10.1145/3377555.3377890
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3377555.3377890&domain=pdf&date_stamp=2020-02-24

CC ’20, February 22–23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

heuristic makes good unrolling decisions with regards to
vectorization only incidentally.

In this work, we propose Vectorization-Aware Loop Un-
rolling (VALU), a novel unrolling approach that offers a
strong coupling with SLP vectorization. Our approach is
two-fold. First, VALU uses a novel analysis, named Potential
SLP, that performs vectorization and profitability analyses
that would be performed by SLP as if the loop had been un-
rolled (without unrolling it yet). If vectorization is deemed
profitable, the loop is then actually unrolled by a factor that
maximizes utilization of the vector units on the target ar-
chitecture. Second, VALU has a seed forwarding mechanism
that keeps track of unrolled copies of vectorizable seed in-
structions identified in the original context and forwards
them directly to the SLP vectorizer. VALU knows by defi-
nition that unrolled instructions are isomorphic, while the
SLP vectorizer needs to discover which group of instructions
in the unrolled loop will lead to isomorphic use-def graphs,
without an expensive search. By forwarding this informa-
tion, we can bypass SLP’s greedy seed collection, improving
vectorization.

Our approach uncovers many vectorization opportunities
that were completely missed by LLVM’s loop unroller. Unlike
traditional unrolling, VALU only unrolls loops when enough
code will be vectorized away. Therefore, it can afford to make
aggressive unrolling decisions, when that is estimated to pay
off. When evaluated on the TSVC [6] benchmark suite, VALU
improves SLP vectorization by up to 6× and 30% on average,
enabling SLP to outperform the loop vectorizer for 26 kernels
of the TSVC suite. VALU also improves performance by up
to 2×, with a geometric mean of 5%, compared to the highest
optimization setting (-O3). We have also evaluated VALU
on two full benchmarks, FreeBench and MiBench, where it
achieves a geo-mean percentual speedup of 6%.

To summarize, our main contribution is providing a strong
coupling between loop unrolling and the SLP vectorizer, with
a two-way communication channel between the two passes.

• We enable much better vectorization by analyzing in-
structions in the rolled context.

• We choose better unroll factors by knowing how vec-
torization will be applied.

• We find better vectorization seeds before loop un-
rolling and forward them directly to the SLP vectorizer.

2 Background
2.1 Loop Unrolling
Loop unrolling creates multiple copies of the loop body, in
order to perform multiple iterations at once, adjusting the
loop control accordingly to preserve its original semantics.
The number of copies is called the unrolling factor [9, 16, 30].
The immediate benefit comes from reducing the loop control
overhead. By converting loops into straight-line code, loop
unrolling also enables or improves subsequent optimizations.

1. Collect seed instructions

Seeds empty?2.

Get seed
No

3.

Profitable?

Build SLP graph4.
5.

Code Generation6.
Yes

Done

Yes

No

Figure 1. Overview of Bottom-up SLP.

Excessive unrolling may impair performance, mainly due
to increased register pressure and instruction cachemisses [10,
46]. For this reason, most unrolling heuristics will not unroll
a loop above a certain factor, if the estimated size of the
unrolled loop body exceeds an empirically set threshold.

2.2 SLP Vectorization
Superword-Level Parallelism (SLP) is a straight-line-code
vectorizer that was first introduced by Larsen and Amaras-
inghe [23]. SLP tries to find isomorphic instruction sequences
and vectorize them if profitable. Some variants of this algo-
rithm have been implemented in production compilers, with
Bottom-Up SLP [43] being widely adopted due to its low
runtime overhead and its good coverage.
Figure 1 shows a diagram of the bottom-up SLP algo-

rithm [43]. It first identifies instructions, called seed instruc-
tions, that are likely to form vectorizable sequences, such
as stores instructions or reductions trees (step 1). Starting
from a group of seeds (step 3), the algorithm follows their
use-def chains towards their operands to grow the SLP graph
(step 4). Once this process encounters instructions that can-
not form a vectorizable group (e.g, due to non-matching
opcodes), it forms a non-vectorizable group and it stops fur-
ther exploring this path. Non-vectorizable groups indicate
that scalar-to-vector data movement is required.

Next, the algorithm estimates the profitability of vectoriz-
ing the instructions in the SLP graph (step 5). The total profit
is the one of converting groups of scalar instructions into
vectors minus the overhead of gathering the inputs of the
vector instructions. If profitable, SLP replaces each group of
scalar instructions in the graph with their equivalent vector
version (step 6). Otherwise, the code remains unmodified.
The process then continues with the next seed group until
all seeds have been explored (step 2).

3 Motivating Example
In this section, we present an example to demonstrate that ex-
isting unrolling heuristics are ineffective in exposing vector-
ization opportunities for SLP. Instead, an ideal loop unroller
would be able to identify exactly which loops are profitable

2

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22–23, 2020, San Diego, CA, USA

1 float Af[N], Bf[N], Cf[N], Df[N], Ef[N];

2 double Ad[N], Bd[N], Cd[N], Dd[N], Ed[N];

3 for (int k = 0; k < N; k++) {

4 Af[k] = Bf[k]*Cf[k] + Df[k]*Ef[k];

5 Ad[k] = Bd[k]*Cd[k] + Dd[k]*Ed[k];

6 }

(a) Source code of a loop that is unrolled twice by the default loop
unroller.

1 for (int k = 0; k < SIZE; k+=2) {

2 Af[k:k+1] = Bf[k:k+1]*Cf[k:k+1] +

3 Df[k:k+1]*Ef[k:k+1];

4 Ad[k:k+1] = Bd[k:k+1]*Cd[k:k+1] +

5 Dd[k:k+1]*Ed[k:k+1];

6 }

(b) After unrolling the loop by a factor of 2, the SLP vectorizer
will generate this sub-optimal vectorized code, underutilizing the
vector units available in the target architecture.

1 for (int k = 0; k < SIZE; k+=8) {

2 Af[k:k+7] = Bf[k:k+7]*Cf[k:k+7] +

3 Df[k:k+7]*Ef[k:k+7];

4 Ad[k:k+3] = Bd[k:k+3]*Cd[k:k+3] +

5 Dd[k:k+3]*Ed[k:k+3];

6 Ad[k+4:k+7] = Bd[k+4:k+7]*Cd[k+4:k+7] +

7 Dd[k+4:k+7]*Ed[k+4:k+7];

8 }

(c) The loop could instead be unrolled by 8 times, resulting in a
SLP-vectorized code that is around 2× faster than when unrolling
only twice, by fully utilizing the vector units available.

Figure 2. Example where the default loop unroller uses a
sub-optimal unrolling factor.

to be vectorized by SLP after unrolling and what is the un-
rolling factor that uncovers enough code to maximize the
utilization of the target vector units.
Figure 2a shows a loop with a small loop body, just two

statements long. Loop unrolling uses its heuristics to de-
termine the unrolling factor, comparing the expected code
size increase against a threshold. In this particular example,
LLVM unrolls it only by a factor of two, because the cost
of unrolling it further exceeds the threshold. Although the
unrolled loop may be vectorized, as shown in Figure 2b, this
can result in poor utilization of the vector units.
A vectorization-aware technique should be able to antic-

ipate that the unrolled loop can be vectorized by SLP and
select an unroll factor that maximizes performance. In our
example of Figure 2a, we achieve this by unrolling as many
times as needed by the smallest data type to fill the vector
register. For a 256-bit vector length and a smallest data type
of 32 bits (array Ai), this leads to an unrolling factor of 8.
After unrolling and vectorizing with SLP, we get the code in
Figure 2c, which does better than that of Figure 2b.

Code with bigger data types will also be unrolled more
times than can fit in the vector registers. For example, the in-
structions operating on doubles will still be unrolled 8 times
instead of the just 4 times. This is not a concern, however,
because the vectorizer will generate more vector instructions
for them, twice as many in this case, as shown in Figure 2c.
For slightly bigger loops or slightly lower unroll thresh-

olds, the default loop unroller may completely bail-out on un-
rolling and prevent SLP from vectorizing the loop altogether.
Just changing the unroll threshold to improve vectorization
is not a reasonable strategy. Loops can be vectorizable re-
gardless of their sizes, then some vectorization opportunities
might be missed for any unrolling threshold. At the same
time, high thresholds would unroll scalar loops by very large
factors impacting performance. SLP vectorization cannot
rely on the default loop unroller, because its heuristics may
decide not to unroll profitable loops for vectorization.
The end result shown in Figure 2c also differs from that

produced by LLVM’s loop vectorizer. The loop vectorizer
selects a single vector length, based on the largest data type,
for the whole loop body, so that all instructions in the loop
can be vectorized with the same vector length. The ideal loop
unroller should choose the best unrolling factor to maximize
performance. Usually, the version with mixed vector lengths
tends to be faster as it better utilizes the vector units [40].

4 Vectorization-Aware Loop Unrolling
In this section, we describe our vectorization-aware loop
unrolling (VALU). The core idea is to perform an analysis
on the original loop that looks for code that could be vec-
torized by SLP once the loop gets unrolled. After unrolling,
VALU forwards to SLP the instructions that are profitable
for vectorization, bypassing SLP’s greedy seed collection.

4.1 Potential SLP Graph
In order to identify if loop unrolling would be beneficial for
vectorization, VALU performs an analysis inspired by the
SLP algorithm. Traditional SLP analysis builds an SLP graph
that represents the combined use-def graphs of the groups
of scalar instructions that are considered for vectorization1.
VALU uses a different data-structure, called Potential SLP
graph. This is built from one use-def graph of the scalar in-
structions in the rolled loop. However, Potential SLP graph
reproduces the state of an equivalent SLP graph that would
be built if the loop was unrolled by a specific unrolling fac-
tor. For example, Figure 3c shows the Potential SLP graph
obtained by VALU when applied to the loop from Figure 3a,
which contains the use-def graph shown in Figure 3b. The
Potential SLP graph is able to estimate the same profitability
cost as the one computed by the SLP graph in Figure 3e,

1Each node in the SLP graph contains the group of scalars that are consid-
ered for vectorization, and the edges represent the combined dependencies
among the groups of scalars.

3

CC ’20, February 22–23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

1 for (int i = 0; i < N; ++i) {

2 A[i] = B[i]*C[D[i]];

3 }
(a) Source code.

Non−Vectorizable +/−#CostVectorizable

A[i]
S

*

L
B[i]

L
C[D[i]]

(b) Use-def graph.

S

*

L L

A[i]

B[i]
{0,+,1}

{0,+,1}

-1

-1

-1 S

*

L L
C[D[i]]

Unknown SCEV

+2

Cost = -1
VF=2

(c) Potential SLP graph.

1 for (int i = 0; i < N; i+=2) {

2 A[i] = B[i] * C[D[i]];

3 A[i+1] = B[i+1] * C[D[i+1]];

4 }

(d) Loop unrolled by a factor of two.

L

A[i:i+1]

B[i:i+1]
-1

-1

-1 SS

**

LL L +2

Cost = -1
VF=2

C[D[i]]
C[D[i+1]]

(e) SLP graph built from the unrolled loop.

1 for (int i = 0; i < N; i+=2) {

2 int id0 = D[i];

3 int id1 = D[i+1];

4 CVec = { C[id0], C[id1] };

5 A[i:i+1] = B[i:i+1]*CVec;

6 }

(f) Partially vectorized loop by SLP after loop unrolling.

Figure 3. Example shows how the Potential SLP graph ob-
tained by VALU mirrors the SLP’s analysis in the unrolled
loop.

which is built from the already unrolled loop shown in Fig-
ure 3d. This is a key aspect of how VALU is able to precisely
unroll loops that are profitable for SLP vectorization.
Figure 4 shows a diagram of the algorithm for the VALU

heuristic. VALU starts by scanning the loop body and col-
lecting seed instructions. At the moment, we only consider
store instructions and reduction trees, but other instructions
can also be used as seeds. Contrary to SLP that only collects

1. Collect seeds from loop

Seeds empty?2.

Get seed
No

3.

Profitable?

Build Potential SLP graph

Get VF for Potential SLP4.

5.

6.

Add graph to Worklist7.
Yes

Find best VF for Worklist8.

Return best VF9.

Yes

No

Figure 4. The high-level algorithm for the VALU heuristic.

vectorizable store instructions, VALU collects all store in-
structions, as detailed in Section 4.7. After collecting these
seed instructions, we calculate the best vectorization factor
(VF) based on the data type of the seed instructions. This
factor is required for building the Potential SLP graph. VALU
selects a vectorization factor that maximizes the utilization
of vector units in the target architecture. This can be com-
puted based on the bit-size of the instruction’s data type
and the maximum size of vectors supported by the target
architecture. For example, a 64-bit store on a 256-bit vector
architecture corresponds to a vectorization factor of 4. Please,
note that the vectorization factor selected particularly for
a Potential SLP graph corresponds to the desired unrolling
factor of the enclosing loop. Consequently, VALU’s unrolling
factor is bounded by the target-vector length.
Next, given the seed instructions and their correspond-

ing vectorization factors, VALU builds a Potential SLP graph
for each one of them. This is done by following the use-def
chain, towards the definitions, inserting the instructions to
the Potential SLP graph. Once the algorithm encounters in-
structions that cannot possibly form a vectorizable group by
the SLP pass after unrolling, it forms a final non-vectorizable
node. The green nodes represent all vectorizable nodes. The
red node for C[D[i]] in Figure 3c is an example of a non-
vectorizable node, due to its indirect memory addressing.
This process repeats until we have reached non-vectorizable
nodes or load instructions. This completes the Potential SLP
graph.
While finding isomorphic code is an expensive task for

SLP, VALU does not suffer from this same problem since
the unrolled copies of the loop will inevitably contain iso-
morphic code. For this reason, most nodes in the Potential
SLP graph are trivially vectorizable, such as those formed
by arithmetic, logical, or casting instructions. Memory oper-
ations and function calls, on the other hand, require some
special treatment. In particular, VALU needs to analyze if

4

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22–23, 2020, San Diego, CA, USA

the memory instructions can be widened, i.e., whether or
not their unrolled copies will form groups with vectorizable
access patterns. Section 4.3 describes this analysis in more de-
tail. Function calls are vectorizable if their callees are known
vectorizable intrinsics.

Since each Potential SLP graph has its own vectorization
factor, we may end up with many profitable Potential SLP
graphs in the same loop, each with a different vectorization
factor. This introduces a conflict, as the vectorization factor
corresponds to the desired unrolling factor of the enclosing
loop. We need a way for choosing a single unrolling factor
from multiple vectorization factors. The solution is simple:
we select the least common multiple among the vectorizaton
factors, since this is the only way to ensure that all of them
will get vectorized in the future by SLP, while also fully
utilizing the vector units of the target architecture. Because
all vectorization factors are powers of two, this means that,
in practice, we can simply select the maximum among them
for the unrolling factor.

4.2 Profitability of Potential SLP Graph
As it was mentioned in Section 4.1, a necessary step is de-
ciding whether the Potential SLP graph is profitable, i.e.,
whether the unrolled scalar code will be considered prof-
itable by the SLP vectorizer. This is done with the help of the
compiler’s target-specific cost model. The cost of each node
is calculated as the differenceVectorCost −ScalarCost , with
negative cost values implying that the vector code performs
better than the equivalent scalar code. The ScalarCost of a
node in the Potential SLP graph is the cost of its scalar in-
struction multiplied by the number of copies that will be pro-
duced after the loop is unrolled by VF times. TheVectorCost
is estimated assuming that all unrolled copies of the scalar
instruction will be packed into a VF-wide vector. We also ac-
count for any additional costs related to inserting/extracting
data to/from the potential vector instructions. For example,
a vectorizable instruction in our Potential SLP graph may
have uses outside the graph. In this case we would have to
extract the data from the vector (possibly with the help of
some additional instructions) and feed it to its uses.

4.3 Widening Memory Instructions
While arithmetic, logical, and casting instructions are triv-
ially vectorizable by simply widening the data type, memory
instructions are more challenging. The best performing vec-
tor memory instructions are the ones accessing consecutive
memory addresses. Therefore, we consider a memory in-
struction in the Potential SLP graph as vectorizable, only if
its unrolled copies point to consecutive memory addresses. If
the addresses are not consecutive but instead follow a strided
pattern with small constant strides, these memory instruc-
tions may also be vectorized, but this is not currently handled

well by the SLP pass, so we are considering them as non-
vectorizable. Modern processors do provide support for non-
consecutive memory access patterns, but these are usually
more costly than their consecutive counterparts, therefore
we need to account for this when widening [4].

This memory access analysis is performed symbolically
using chains of recurrences [5, 13], implemented by LLVM’s
scalar evolution framework (SCEV). Chains of recurrences
(CR) is a formalism used to represent closed-form functions
at regular intervals [52]. In compilers, it is largely used to
represent induction variables and memory access patterns,
allowing the compiler to reason about loops and memory
operations in a systematic way. We are using LLVM’s SCEV
analysis to perform the memory access analysis, which de-
termines which of the memory instructions in the Potential
SLP graph will be vectorized or not.

4.4 Dependence Analysis
The SLP pass relies on dependence analysis to check that the
code semantics are not violated by vectorization. LLVM’s
SLP implements this as part of a scheduling step, which tests
whether the groups of instructions to be vectorized, can be
moved to a single point in the code, without violating any
dependencies. During the construction of the SLP graph, SLP
tests whether the instructions are schedulable, and will only
form a vectorizable group if they are. If not, the group node
is labeled as non-vectorizable.

Before actually unrolling the loop, VALU needs to perform
a similar analysis to check whether the unrolled code will
have data dependencies that prevent vectorization. Some of
the tooling for this analysis is also common to the loop vector-
izer, which we adapted for VALU. While the loop vectorizer
analyzes the whole loop at the same time, VALU analyzes
the data dependency of individual instructions. During the
construction of the Potential SLP graph, VALU can analyze if
the unrolled replicas of the instructions will be schedulable,
preserving all dependencies.

4.5 Partial Vectorization
VALU handles partial vectorization seamlessly. The Potential
SLP graph grows until a load instruction or non-vectorizable
node is found. As long as the cost model estimates that it
is profitable to vectorize a Potential SLP graph, it will be
considered for vectorization, regardless if the Potential SLP
graph is fully vectorizable or not. Figure 3 shows such an
example where both VALU and SLP coordinate to partially
vectorize a loop that contains indirect memory accesses. As
we show in Section 5, this is an important advantage over
the loop vectorizer.

4.6 Code Size Concerns
Although VALUwill temporarily increase the size of the code
and potentially increase the register pressure after unrolling,
we rely on the SLP vectorization to bring the code of the

5

CC ’20, February 22–23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

Partially
Vectorizable

Loop

Unrolled and
Vectorized

LoopUnrolled Loop

After Loop
Distribution

Unrolled Loop

Unrolled and
Vectorized

Loop

Partial Vectorization
after Loop DistributionPartial Vectorization

Non-Vectorizable Independent Code Non-Vectorizable Input Code
Vectorizable Code Vectorized Code

Figure 5. An illustrative example of a partially vectorizable
loop that shows how the non-vectorizable part of the loop is
also replicated. If some of this code is independent from the
vectorizable part of the loop, then loop distribution could
reduce unnecessary replication.

unrolled loops close to their initial sizes. However, we cannot
always avoid code size increase.

First, partially unrolling a loop may create extra code for
maintaining the program’s semantics. For example, if the
trip count is not divisible by the unrolling factor or the trip
count is not statically known, we need to create a cloned
loop to perform the remainder iterations after the unrolled
loop [44].

Significant code size increase can also result from partially
vectorizable loops. When a fully vectorizable loop is unrolled,
all unrolled copies will be grouped together in a vector form,
canceling out the effects in code size. However, when an
unrolled loop is only partially vectorizable, all copies of the
non-vectorizable code will remain scalar. This is illustrated
in Figure 5. After the loop gets unrolled and vectorized, the
resulting loop will still contain multiple copies of the non-
vectorizable code.

There is a way to mitigate this code increase if part of
the non-vectorizable code is completely independent of the
vectorizable code in the loop. We can perform loop distribu-
tion and only unroll the loop that contains the vectorizable
code, as shown in Figure 5. This loop may still contain non-
vectorizable code that interacts directly with the vectorizable
part of the loop, but the impact on code size increase will be
smaller. When this is not possible, we provide a threshold
that specifies the minimum proportion of vectorizable code
in a loop to consider unrolling it. Loops with little vectoriz-
able code are ignored.

4.7 Forwarding Seeds to SLP
Straight-line code vectorization is a graph isomorphism prob-
lem and as such, an optimal solution has exponential time
complexity. SLP Vectorizers [43] in production compilers
are designed around heuristic-based algorithms that limit
the exploration to instructions that have a good chance of

success. They collect seed instructions (e.g., stores to consec-
utive memory addresses) and perform a localized exploration
on the use-def chains rooted at these seeds. The collection
of seed instructions, however, is both computationally ex-
pensive and is itself guided by heuristics whenever multiple
grouping alternatives are available. This can lead to missed
vectorization opportunities if the seed collection does not
form a seed group with the instructions generated by un-
rolling. VALU can help by forwarding the seed instructions
that drive its unrolling decision to SLP, effectively bypassing
SLP’s seed collection for these instructions, and increasing
the probability of success.
VALU collects the seeds during its Potential SLP graph

formation. The Potential SLP graph is built from a single seed
instruction. The unrolled copies of this single seed instruc-
tion will then become the seed instructions to form the first
group node of an SLP graph. Instead of expecting SLP’s seed
collection to find these same instructions and group them
correctly, VALU can assist the SLP vectorizer. To achieve that,
VALU keeps track of the unrolled copies of the profitable
seed instructions while performing the unrolling and shares
them with the SLP vectorizer. This guarantees that SLP will
be applied on unrolled copies of instructions that are trivially
isomorphic and profitable for vectorization. This is preferred
to relying on SLP’s greedy seed collection, which may miss
these vectorization opportunities in the unrolled code.

There are two cases where seed forwarding is extra helpful:
non-vectorizable stores and reduction computations.

1 for (int i = 0; i < LEN; i++) {

2 a[ip[i]] = b[i] + c[i] * d[i];

3 }

(a) Kernel S491 with an example of a non-vectorizable store in-
struction that leads to a partially vectorizable SLP graph.

+

L *

L L

b[i]
{0,+,1}

-1

-1

+2

+

L

Cost = -3
VF=2

*

c[i]
{0,+,1}

-1 L

d[i]
{0,+,1}

-1 L

-1

a[ip[i]]
S

Unknown SCEV

scatter

(b) Potential SLP graph.

Figure 6. VALU partial vectorization with non-vectorizable
store instructions as seeds.

6

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22–23, 2020, San Diego, CA, USA

4.7.1 Non-Vectorizable Stores
Figure 6 shows a loop with a store instruction which is
non-vectorizable, due to its indirect addressing, but its value
operand is part of a profitable SLP graph for vectorization.
Since unrolling generates copies of the loop body, VALU is
aware that although the store is non-vectorizable, it is possi-
ble that the unrolled copies of its value operand will result
in isomorphic use-def graphs that are profitable for SLP vec-
torization. For this reason, if the store is non-vectorizable,
VALU builds the Potential SLP graph starting from its value
operand, as shown in Figure 6b. If this Potential SLP graph
is profitable for vectorization, VALU forwards these as seed
instructions for SLP.

Without seed forwarding from VALU, SLP performs seed
collection in the already unrolled loop. LLVM’s SLP does
not track these non-vectorizable store instructions, for com-
plexity reasons. As such it fails to collect its predecessors as
seeds and will not vectorize it. The loop vectorizer cannot
handle this loop either as it requires partial vectorization.

4.7.2 Reduction Computations
VALU seed forwarding can also improve SLP vectorization
of reductions. Figure 7b shows the use-def graph for the
reduction from the loop shown in Figure 7a.

Currently, the SLP seed collection is performed by follow-
ing the use-def chains, starting from the ϕ-node, grouping
the first set of nodes that differ from the reduction operator.
SLP considers all instructions with the same opcode of the
reduction operator as part of the reduction computation. In
the example shown in Figure 7, the SLP vectorizer collects
all multiplication instructions as seeds and proceeds to form
the SLP graph. A major problem arises with loop unrolling
(Figure 7c), which generates copies of the loop body and
makes it harder to identify the reduction and its immediate
operands. SLP may greedily select a group of additions as
seeds, which may be a non-profitable group. However, it is
trivial for VALU to identify the seeds highlighted in Figure 7c
and forward them to the SLP vectorizer.

5 Experimental Results
5.1 Experimental Setup
Our evaluation platform is a Linux 4.4.27, glibc-2.22 based
system with an Intel®Core i7-4770 CPU and 16 GiB of RAM.
We implemented VALU as a standalone pass in LLVM 8 and
was placed just before the SLP vectorizer in the compilation
pipeline. We compiled all benchmarks using clangwith the
following flags: -O3 -ffast-math -march=native
-mtune=native -mllvm -slp-vectorize-hor.
These options enable the default loop unroller (DU) as well
as both SLP and the Loop Vectorization (LV).

1 int sum = 0;

2 for (int i = 0; i<SIZE; i++) {

3 sum += ((DAG#1)*(DAG#2)) + ((DAG#3)*(DAG#4))

4 }

(a) Reduction loop before unrolling. The DAGs represent sub-
expressions that may be different from one another.

+

o +
Seed

0

DA
G

#1

* *

DAG
#2

DAG

#3
DAG#4

(b) Use-def graph with re-
duction before unrolling.

DAG
#1

*

*
D
A
G#
2

DAG#3

+

o

DA
G

#1

+

*

D
A
G

#
4

0

+

+
Seeds

*

DAG
#2

DAG

#3
DAG#4

(c) Use-def graph with reduction
after unrolling by a factor of 2.

Figure 7. Horizontal reduction before and after unrolling.
We highlight the seeds for isomorphic graphs.

We evaluate our approach on three benchmark suites2:
TSVC [6], FreeBench [18], and MiBench [15]. First, we pro-
vide a detailed analysis on several of the TSVC kernels, which
were specifically designed for evaluating vectorizing compil-
ers. Then, we provide performance results on both FreeBench
and MiBench, which include full benchmark programs from
a wide range of application domains.

SLP, being a straight-line-code vectorizer, is not expected
to find many opportunities for vectorization in the TSVC
kernels, which is exactly what makes it a great suite for
evaluating the effectiveness of VALU. Since the TSVC suite
contains a large number of kernels (151), we only show the
kernels with a performance difference of at least 2% or more
compared to the baseline. In total, 52 kernels are hidden from
the plots. Regardless, geometric means and averages refer
to all 151 TSVC kernels. For our performance results we ran
each workload 25 times and we show the arithmetic average
of the speedup across all runs, as well as the 95% confidence
interval of the speedup as a min-max bar.

5.2 Overall Performance
The performance speedup of enabling VALU over -O3 is
shown in Figure 8a. VALU significantly improves the LLVM
baseline with a speedup of up to 2×, and a geometric mean
of 1.05× (5% improvement) across the whole benchmark
suite. This is a promising result, given the heavily optimized
baseline and that for most kernels there is little room for
improvement when applying SLP.
As we dicuss later in Section 5.3, many of the significant

speedups shown in Figure 8a are due to partial vectorization
enabled by VALU, such as the kernel S255. However, the few
2These benchmarks can also be found in the LLVM benchmark suite.

7

CC ’20, February 22–23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

S
2
5
8

S
2
9
2

S
3
1
8

S
1
7
2

S
3
1
5

S
0
0
0

S
3
1
3

vd
o
tr

S
1
1
1
5

S
2
5
2

S
2
7
1
1

S
2
7
1
2

vp
vt
v

vt
vt
v

vp
vp

v
S
4
1
2
1

S
4
4
2

S
4
2
1

S
2
7
1

S
1
2
7

S
1
2
5
1

S
1
2
8
1

S
3
1
9

S
2
4
3

S
2
5
1

S
1
1
9

S
1
2
7
9

S
2
7
2

S
1
3
5
1

S
1
5
2

S
4
5
2

S
4
5
1

S
2
2
3
3

S
2
5
4

S
2
7
1
0

S
2
7
4

S
2
7
6

S
4
3
1

vb
o
r

S
1
7
1

vi
f

S
3
5
1

vt
v

vp
v

S
3
2
5
1

S
4
7
1

S
1
7
4

S
1
7
5

vp
vt
s

S
1
7
3

S
4
5
3

S
2
7
3

S
1
2
2
1

S
1
1
1
9

S
1
2
4

S
1
3
1

S
1
6
2

S
3
1
7

S
1
2
5

S
3
5
3

S
1
5
1

S
3
5
2

S
2
2
4
4

S
1
2
1

S
1
1
6
1

S
1
1
1
2

S
2
7
8

S
2
7
9

S
1
1
6

S
1
7
6

S
2
5
3

S
1
3
1
1
0

S
3
1
1
3

S
1
4
2
1

S
4
4
1

S
3
1
1

S
3
1
2

S
2
1
1
1

S
3
1
6

S
3
1
4

vs
u
m
r

S
4
4
3

S
4
1
1
2

S
1
1
5

S
1
3
2

S
3
1
1
1
1

S
2
4
4

S
2
9
1

S
1
2
1
3

S
2
1
1

S
4
1
1
4

S
1
2
4
4

S
4
1
1
7

S
2
2
5
1

S
2
1
2

S
2
6
1

S
1
1
2

S
2
5
5

S
2
4
1

G
M
e
a
n0.0

0.5

1.0

1.5

2.0

S
p
e
e
d
u
p

1
.0
5

...

(a) Speedup of O3+VALU over O3

S
2
5
8

S
2
9
2

S
3
1
8

S
1
7
2

S
3
1
5

S
0
0
0

S
3
1
3

vd
o
tr

S
1
1
1
5

S
2
5
2

S
2
7
1
1

S
2
7
1
2

vp
vt
v

vt
vt
v

vp
vp

v
S
4
1
2
1

S
4
4
2

S
4
2
1

S
2
7
1

S
1
2
7

S
1
2
5
1

S
1
2
8
1

S
3
1
9

S
2
4
3

S
2
5
1

S
1
1
9

S
1
2
7
9

S
2
7
2

S
1
3
5
1

S
1
5
2

S
4
5
2

S
4
5
1

S
2
2
3
3

S
2
5
4

S
2
7
1
0

S
2
7
4

S
2
7
6

S
4
3
1

vb
o
r

S
1
7
1

vi
f

S
3
5
1

vt
v

vp
v

S
3
2
5
1

S
4
7
1

S
1
7
4

S
1
7
5

vp
vt
s

S
1
7
3

S
4
5
3

S
2
7
3

S
1
2
2
1

S
1
1
1
9

S
1
2
4

S
1
3
1

S
1
6
2

S
3
1
7

S
1
2
5

S
3
5
3

S
1
5
1

S
3
5
2

S
2
2
4
4

S
1
2
1

S
1
1
6
1

S
1
1
1
2

S
2
7
8

S
2
7
9

S
1
1
6

S
1
7
6

S
2
5
3

S
1
3
1
1
0

S
3
1
1
3

S
1
4
2
1

S
4
4
1

S
3
1
1

S
3
1
2

S
2
1
1
1

S
3
1
6

S
3
1
4

vs
u
m
r

S
4
4
3

S
4
1
1
2

S
1
1
5

S
1
3
2

S
3
1
1
1
1

S
2
4
4

S
2
9
1

S
1
2
1
3

S
2
1
1

S
4
1
1
4

S
1
2
4
4

S
4
1
1
7

S
2
2
5
1

S
2
1
2

S
2
6
1

S
1
1
2

S
2
5
5

S
2
4
1

G
M
e
a
n0

2

4

6

S
p
e
e
d
u
p

1
.2
9

...

(b) Speedup of VALU+SLP over DU+SLP

S
2
5
8

S
2
9
2

S
3
1
8

S
1
7
2

S
3
1
5

S
0
0
0

S
3
1
3

vd
o
tr

S
1
1
1
5

S
2
5
2

S
2
7
1
1

S
2
7
1
2

vp
vt
v

vt
vt
v

vp
vp

v
S
4
1
2
1

S
4
4
2

S
4
2
1

S
2
7
1

S
1
2
7

S
1
2
5
1

S
1
2
8
1

S
3
1
9

S
2
4
3

S
2
5
1

S
1
1
9

S
1
2
7
9

S
2
7
2

S
1
3
5
1

S
1
5
2

S
4
5
2

S
4
5
1

S
2
2
3
3

S
2
5
4

S
2
7
1
0

S
2
7
4

S
2
7
6

S
4
3
1

vb
o
r

S
1
7
1

vi
f

S
3
5
1

vt
v

vp
v

S
3
2
5
1

S
4
7
1

S
1
7
4

S
1
7
5

vp
vt
s

S
1
7
3

S
4
5
3

S
2
7
3

S
1
2
2
1

S
1
1
1
9

S
1
2
4

S
1
3
1

S
1
6
2

S
3
1
7

S
1
2
5

S
3
5
3

S
1
5
1

S
3
5
2

S
2
2
4
4

S
1
2
1

S
1
1
6
1

S
1
1
1
2

S
2
7
8

S
2
7
9

S
1
1
6

S
1
7
6

S
2
5
3

S
1
3
1
1
0

S
3
1
1
3

S
1
4
2
1

S
4
4
1

S
3
1
1

S
3
1
2

S
2
1
1
1

S
3
1
6

S
3
1
4

vs
u
m
r

S
4
4
3

S
4
1
1
2

S
1
1
5

S
1
3
2

S
3
1
1
1
1

S
2
4
4

S
2
9
1

S
1
2
1
3

S
2
1
1

S
4
1
1
4

S
1
2
4
4

S
4
1
1
7

S
2
2
5
1

S
2
1
2

S
2
6
1

S
1
1
2

S
2
5
5

S
2
4
1

G
M
e
a
n0

1

2

3

4

5

S
p
e
e
d
u
p

0.
91

0.
7

VALU+SLP

DU+SLP

...

(c) Speedup of VALU+SLP and DU+SLP over the loop vectorizer (LV)

Figure 8. Evaluation of the effect of VALU when applied on top of the baseline O3 or on top of the standalone SLP. To simplify
presentation, we only show kernels that have a speedup or a slowdown of more than 2% in any of the plots. Geometric means
include all kernels, whether shown or not.

regressions observed, more specifically the kernels S258 and
S292, also represent two loops that get unrolled by VALU
and later partially vectorized by SLP. Both VALU and the SLP
vectorizer rely on the compiler’s built-in cost model when
checking for profitability, which can cause performance re-
gressions when the cost model contains inaccuracies. The
rest of the results show the expected behavior: better costs
lead to better performance.
Figure 8b isolates the effect of more intelligent unrolling

on SLP vectorization. It shows the speedup of VALU over
LLVM’s default loop unroller with SLP vectorization en-
abled but loop vectorization disabled. In other words, the
baseline is using the additional -fno-vectorize and
-fslp-vectorize flags, and we show the speedup due

to enabling VALU over this setting. Since VALU is well co-
ordinated with the requirements of SLP, it is expected that
more code will get vectorized compared to the default loop
unroller. This figure supports our argument that the default
loop unrolling heuristics are inappropriate for preparing
code for the SLP vectorizer. VALU uncovers vectorization
opportunities that result in speedups of up to 6× compared
to the default loop unroller, with a geometric mean of 1.29×
(29% improvement) across all 151 kernels in the TSVC bench-
marks.
Figure 8c compares SLP against loop vectorization. The

baseline is -O3 with loop vectorization but without SLP
(-fno-slp-vectorize). The figure shows the speedup
over this baseline with the loop vectorizer disabled, SLP
enabled, and either the default loop unroller or VALU enabled.

8

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22–23, 2020, San Diego, CA, USA

The figure highlights two key points that were motivated
in Section 3: (i) VALU enables SLP to handle loops where
the loop vectorizer fails, and (ii) VALU helps to close the
performance gap between SLP and the loop vectorizer. A
good coordination between the loop unroller and the SLP
vectorizer is essential for SLP to reach, or even exceed, the
performance of the loop vectorizer.
Although SLP combined with VALU can cover many of

the same loops covered by the loop vectorizer, there are still
multiple cases where the loop vectorizer generates faster
code than SLP even when combined with the VALU unroller.
In most of them, it is due to some missing features in LLVM’s
specific implementation of SLP and a better SLP implemen-
tation would be able to vectorize the code. This means that
the best configuration should still include both vectorizers,
in addition to our new VALU loop unroller that provides
significant speedup on top of -O3, as shown in Figure 8a.
In the following sections, we discuss key strengths of VALU
and also how to improve the LLVM’s SLP implementation
in more details. Finally, we report the compilation overhead
of our approach.

5.3 Overall Analysis of the Performance Results
As expected, the loop vectorizer performs very well on this
loop-only benchmark suite. However, there are two classes
of loops where VALU+SLP outperforms the loop vectorizer:
(1) loops that contain loop-independent dependences; and (2)
loops that can only be partially vectorized. Because SLP
operates on groups of use-def graphs separately, it is able
to handle loop-independent dependences out of the box,
leaving the problem of placing the vectorized instructions to
the scheduler (see Section 4.4). Similarly, because SLP grows
its graph until the point where it is no longer vectorizable,
partial vectorization is intrinsic to it. As long as the SLP
graph is considered profitable, it will be vectorized.
We can also assign the loops where VALU+SLP misses

performance opportunities in two classes: (1) reductions
computations; and (2) loops with control flows that require
predication. Overall, LLVM’s loop vectorizer supports more
idioms than its SLP implementation, resulting in missed
opportunities for VALU+SLP. We discuss in detail all these
cases in the subsequent subsection.

5.3.1 Loop-Independent Dependences
Loop-independent dependences are between different in-
structions within the same iteration of a loop. This adds
complexity to the code and frequently inhibits vectorization
by the LLVM’s loop vectorizer, especially as this requires
instruction reordering to allow vectorization. The two main
examples are kernels S241 and S112, where VALU+SLP gets
more than 2× speedup on top of -O3. Other significant ex-
amples are the kernels S1213, S1244, S211, and S212.

For the kernel S241 shown in Figure 9, while the loop vec-
torizer fails, VALU+SLP can successfully vectorize this loop.

1 for (int i = 0; i < LEN-1; i++) {

2 a[i] = b[i] * c[i] * d[i];

3 b[i] = a[i] * a[i+1] * d[i];

4 }

Figure 9. Kernel S241 with complex data dependences
that require instruction reordering before vectorization.
VALU+SLP vectorized version results in gains higher than
2× over -O3.

1 for (int i = n1-1; i < LEN; i++) {

2 k = ip[i];

3 a[i] = b[i] + c[LEN-k+1-2] * d[i];

4 k += 5;

5 }

Figure 10. Kernel S4114 with indirect addressing.
VALU+SLP version achieves about 1.5× speedup over -O3.

SLP only needs to make sure that it loads a[i+1:i+8]
before updating a[i:i+7]. Because each statement in this
loop is handled separately, by analyzing their use-def chains,
after VALU unrolls it, SLP is able to schedule the vectorizable
instructions and preserve data dependencies. The vectorized
code results in a speedup higher than 2× over -O3.

5.3.2 Partially Vectorizable Loops
One benefit of VALU+SLP over LLVM’s LV is that it can par-
tially vectorize loops containing non-vectorizable code. The
loop in Figure 10, taken from the kernel S4114, is such a case.
It contains an indirect memory access c[LEN-k+1-2] that
cannot be vectorized. While the loop vectorizer bails out
completely, VALU+SLP vectorizes it partially, improving the
performance of this loop by about 50%.
Specifically, if VALU unrolls the loop, SLP can partially

vectorize the code and leave the indirect memory access.
This means that the scalar loads c[LEN-k+1-2] must be
inserted into a vector, but this overhead is taken into account
by our Potential SLP analysis and is found to be profitable.
Other kernels that also include indirect addressing are

S4112 and S4117, which also result in significant speedups.
In addition to indirect memory accesses, there are many
other loops that are partially vectorized by VALU+SLP that
LV is unable to handle, such as S2251, S244, S255, and S291.

5.3.3 Seed Forwarding
VALU’s seed forwarding mechanism is an effective way of
overcoming major limitations in existing vectorizers. Fig-
ure 11 shows a loop that is poorly vectorized by SLP without
the assistance of VALU’s seed forwarding, as the computa-
tion being stored in adjacent addresses is not fully isomor-
phic. However, VALU groups the interleaved stores that are
fully isomorphic, resulting in a vectorized code with a per-
formance equivalent to that produced by the loop vectorizer.

9

CC ’20, February 22–23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

1 j = -1;

2 for (int i = 0; i < LEN/2; i++) {

3 j++;

4 a[j] = b[i] + c[i] * d[i];

5 j++;

6 a[j] = b[i] + d[i] * e[i];

7 }

Figure 11. Kernel S127. Loop shows an induction variable
with multiple increments. Example where forwarding seeds
makes life easier for the SLP vectorizer.

Benchmarks S1111 and S491 (Figure 6) are loops that neither
one of the vectorizers were able to handle because of the
access pattern used by the store instruction. However, VALU
also collects store instructions that cannot be widened, using
its value operand as the seed for a Potential SLP graph.

5.3.4 Reduction Computations
The loop vectorizer in LLVM is able to generate efficient
code for reductions. This accounts for all exceptionally well
performing cases of LV. Although VALU is able to identify
reductions, especially because max- or min-reductions are
lowered into select-based reductions, LLVM’s SLP implemen-
tation has a limited support for reductions. The two most
serious limitations are that it cannot handle product-based
reductions and it reduces the vector lanes inside the loop
instead of outside the loop. The former makes it impossible
to vectorize cases that the loop vectorizer does, the latter
reduces the benefits of vectorization.
The list of kernels with reduction in Figure 8c includes:

S13110, S31111, S311, S312, S313, S314, S316, S317, S319,
S3113, S352, vdotr, and vsumr. Because the kernels S31111
and S352 are a reduction where the inner loop has already
been unrolled, the loop vectorizer is unable to handle it. For
the other kernels with reduction, however, the loop vector-
izer is able to generate very efficient code.

5.3.5 Predicated Vectorization
The loop vectorizer is also able to effectively handle loops
that contain conditional branches, such as the loop in Fig-
ure 12, taken from the kernel S272. In these cases, it generates
a vectorized code that uses masks to predicate the execution
for particular vector lanes.

Similar cases of predication, with varied levels of complex-
ity, can be found in the kernels: S1161, S124, S1279, S253,
S271, S2710, S2711, S2712, S272, S273, S274, S441, S443, and
vif. For all of them, we are limited by the implementation
of SLP in LLVM which does not support predicted SLP vec-
torization, despite proposed techniques to achieve this [45].
On such cases, our unrolling technique has any effect, so we
only consider single-block loops in our heuristic.

1 for (int i = 0; i < LEN; i++) {

2 if (e[i] >= t) {

3 a[i] += c[i] * d[i];

4 b[i] += c[i] * c[i];

5 }

6 }

Figure 12. S272. This loop has a conditional branch. LLVM’s
loop vectorizer is able to vectorize this loop using predication,
which is not yet supported by the SLP implementation.

M
B
/j
p
e
g

M
B
/b
it
co
u
n
t

F
B
/p
if
ft

M
B
/g
sm

F
B
/p
co
m
p
re
ss
2

M
B
/d
ij
k
st
ra

M
B
/p
a
tr
ic
ia

F
B
/m

a
so
n

F
B
/d
is
tr
a
y

M
B
/l
a
m
e

F
B
/a
n
a
ly
ze
r

F
B
/f
o
u
ri
n
a
ro
w

M
B
/t
yp

e
se
t

M
B
/C
R
C
3
2

M
B
/a
d
p
cm

M
B
/s
u
sa
n

M
B
/r
ij
n
d
a
e
l

F
B
/n
e
u
ra
l

M
B
/s
h
a

M
B
/i
sp
e
ll

M
B
/b
lo
w
fi
sh

M
B
/s
tr
in
g
se
a
rc
h

G
M
e
a
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
p
e
e
d
u
p 1
.0
6

Figure 13. Speedup of O3+VALU over O3 on full bench-
marks.

5.4 Compilation Time
Wemeasured the wall clock time for compiling the full TSVC
benchmark suite using O3+VALU and normalizing it to O3.
Enabling VALU leads to a modest overall compilation over-
head of 16% over O3, considering the whole compilation
pipeline. Most of this overhead is due to the fact that after
loop unrolling, subsequent optimizations, including the SLP
vectorizer, and the backend will have more code to process.

Interestingly, if we compare VALU+SLP with the loop vec-
torizer (LV), VALU+SLP results in about 8% faster compila-
tion. This shows that the compilation overhead of VALU+SLP
is within acceptable bounds. The difference in compilation
time comes from different sources, which includes the time
spent during the vectorization itself, but also because loop
unrolling can still be applied after the loop vectorizer.

5.5 Performance on Full Benchmarks
The kind of code accelerated by VALU is not found only in
benchmarks suites designed to test vectorizers. We tested
VALU on the benchmarks of the FreeBench and MiBench
suites, on top of the baseline -O3 which already includes
both vectorizers and the default loop unrolling. Shown in
Figure 13, VALU achieves a significant speedup on five of
these benchmarks, with stringsearch getting 45% faster, and
an overall geometric mean speedup of 1.06.

10

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22–23, 2020, San Diego, CA, USA

6 Related Work
6.1 Loop Unrolling
Loop unrolling is a well-studied code transformation tech-
nique, implemented in most compilers. There is a wide range
of studies on loop unrolling [9, 30]. Traditionally, this was
applied only to FOR-loops at the source level [1]. Later, more
general techniques have been proposed to perform loop un-
rolling [16, 44], including nested and remainder loops.
Unroll-and-jam is a loop unrolling technique for outer

loops, unrelated to vectorization. With unroll-and-jam, the
compiler unrolls outer loops and then fuses the unrolled
copies of the inner loops [7, 8, 34]. Similarly, Ferrer et al. [14]
shows how to unroll loops that already contain OpenMP
task parallelism, fusing the tasks after unrolling to reduce
unnecessary multi-threading overheads.
VALU is the first loop-unrolling technique, to the best of

our knowledge, that provides a strong coupling between loop
unrolling and SLP vectorization. Unlike prior unrolling work
that aims at balancing code size increase with improving
the applicability of generic optimizations, VALU is able to
identify loops that are valid and profitable to be vectorized.
There has also been a significant amount of work on

iterative optimization or other approaches for tuning the
unrolling factor [20, 21, 24, 46]. However, even if these ap-
proaches manage to find the best unrolling factor to uncover
SLP vectorization, which is usually infeasible on a per loop
basis, they are still insufficient to vectorize those loops that
require VALU’s seed forwarding. As described in Section 4.7,
there are cases where SLP can be unable to properly identify
the seed instructions in order to vectorize the unrolled loop.

6.2 Loop and Function Auto-Vectorization
Auto-vectorization techniques have traditionally focused on
vectorizing loops [49]. The basic implementation conceptu-
ally strip-mines the loop by the vector factor and widens
each scalar instruction in the body to work on multiple data
elements. The effectiveness of loop vectorizing compilers
has been studied by Maleki et al. [26]. Many fundamental
problems of loop vectorization have been addressed by early
work on the Parallel Fortran Converter [2, 3, 11, 22, 48].
Since then, numerous improvements to the basic algorithm
have been proposed in the literature and production com-
pilers [4, 12, 31, 32, 42]. For example, Stock et al. [47] uses
machine learning to train a profitability model for the loop
vectorizer.

Whole function vectorization has been proposed by Kar-
renber et al. [19, 41]. This is particularly important for map-
ping programming models like OpenCL onto vector units. A
different approach is presented by Masten et al. [27] which
discusses how function/kernel vectorization could be pre-
sented as a loop-vectorization problem. Finally,Moll et al. [29]
present a novel control-flow linearization algorithm, for use
in function/kernel vectorizers.

6.3 SLP Auto-Vectorization
A complementary technique to the loop vectorizer has been
introduced by Larsen and Amarasinghe [23], the SLP vector-
izer, which focuses on straight-line code. Since its original
work, several improvements have been proposed for the
straight-line-code (SLP-style) vectorization [17, 25, 28, 33,
45].

The bottom-up SLP algorithm has recently been improved
in several ways. [37] introduces padding the code with re-
dundant instructions to generate isomorphism and improve
vectorization. In [36] the SLP region is pruned to scalarize
groups of instructions that harm the vectorization cost, while
in [35] a larger unified SLP region is used, to overcome limi-
tations caused by the region formation. In [50] vectorization
is enabled for SIMD widths that are not supported by the
target hardware. Finally, extensions to SLP that focus on
commutative operations are presented in [38, 39].

Combining loop-vectorization with SLP was proposed in
loop-aware SLP [43] and implemented in GCC. This work
combines SLP-style parallelism with the loop vectorizer,
which allows it to vectorize both across iterations and within
a single iteration. Zhou et al. [51] improve this technique
by extending the exploration performed by the algorithm,
improving the effectiveness of the mixed inter and intra-loop
vectorization. Both approaches rely on SLP-style parallelism
that must already be exposed in the loop body, which means
that VALU would be complementary to them. This is differ-
ent from our work.

7 Conclusion
This paper presented Vectorization-Aware Loop Unrolling
(VALU), a novel compiler heuristic for identifying loop un-
rolling opportunities to enable the straight-line-code vector-
ization. VALU does so by identifying if loop unrolling will
be profitable for the SLP vectorizer and what loop unroll
factor can maximize the utilization of the target architec-
ture’s vector units. VALU determines the unroll factor by
employing Potential SLP, a novel vectorization and profitabil-
ity analysis on the original rolled loop as if it was unrolled.
We implemented VALU in LLVM. and evaluated it on the
TSVC vectorization testing suite. Our experimental results
show a great SLP vectorization improvement compared to
the LLVM’s default loop unrolling heuristic, and very signif-
icant performance improvements over O3.

Acknowledgment
This work has been supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) under grants
EP/L01503X/1 (CDT in Pervasive Parallelism), EP/P003915/1
(SUMMER), and EP/M01567X/1 (SANDeRs). This work was
supported by the Royal Academy of Engineering under the
Research Fellowship scheme.

11

CC ’20, February 22–23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

References
[1] FE Allen and J Cocke. 1971. A catalogue of optimizing transformations.

IBM Research Center, Thomas J. Watson.
[2] John R Allen and Ken Kennedy. 1982. PFC: A program to convert Fortran

to parallel form. Technical Report 82-6. Department of Mathematical
Sciences, Rice University.

[3] John Randy Allen and Ken Kennedy. 1987. Automatic Translation
of Fortran Programs to Vector Form. Tranactions on Programming
Languages and Systems (TOPLAS) 9, 4 (1987).

[4] Andrew Anderson, Avinash Malik, and David Gregg. 2015. Automatic
Vectorization of Interleaved Data Revisited. ACM Trans. Archit. Code
Optim. 12, 4 (Dec. 2015), 50:1–50:25.

[5] Diego Andrade, Manuel Arenaz, Basilio B. Fraguela, Juan Touriño, and
Ramón Doallo. 2007. Automated and accurate cache behavior analysis
for codes with irregular access patterns. Concurrency and Computation:
Practice and Experience 19, 18 (2007), 2407–2423.

[6] David Callahan, Jack Dongarra, and David Levine. 1988. Vectoriz-
ing compilers: A test suite and results. In Supercomputing’88.[Vol. 1].,
Proceedings. IEEE, 98–105.

[7] Steve Carr and Yiping Guan. 1997. Unroll-and-jam Using Uniformly
Generated Sets. In Proceedings of the 30th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture (MICRO 30). IEEE Computer
Society, Washington, DC, USA, 349–357.

[8] Steve Carr and Ken Kennedy. 1994. Improving the Ratio of Mem-
ory Operations to Floating-point Operations in Loops. ACM Trans.
Program. Lang. Syst. 16, 6 (Nov. 1994), 1768–1810.

[9] Keith Cooper and Linda Torczon. 2003. Engineering a Compiler: In-
ternational Student Edition. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[10] JackW. Davidson and Sanjay Jinturkar. 1996. Aggressive loop unrolling
in a retargetable, optimizing compiler. In Compiler Construction, Tibor
Gyimóthy (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 59–73.

[11] James Davies, Christopher Huson, Thomas Macke, Bruce Leasure, and
Michael Wolfe. 1986. The KAP/S-1- An advanced source-to-source
vectorizer for the S-1 Mark IIa supercomputer. In Proceedings of the
International Conference on Parallel Processing.

[12] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. 2004. Vec-
torization for SIMD Architectures with Alignment Constraints. In
Proceedings of the Conference on Programming Language Design and
Implementation (PLDI).

[13] Robert van Engelen. 2001. Efficient Symbolic Analysis for Optimizing
Compilers. In Proceedings of the 10th International Conference on Com-
piler Construction (CC ’01). Springer-Verlag, London, UK, UK, 118–132.

[14] Roger Ferrer, Alejandro Duran, Xavier Martorell, and Eduard Ayguadé.
2010. Unrolling Loops Containing Task Parallelism. In Proceedings
of the 22Nd International Conference on Languages and Compilers for
Parallel Computing (LCPC’09). Springer-Verlag, Berlin, Heidelberg,
416–423.

[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. 2001. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization.

[16] J. C. Huang and T. Leng. 1999. Generalized loop-unrolling: a method for
program speedup. In Proceedings 1999 IEEE Symposium on Application-
Specific Systems and Software Engineering and Technology. ASSET’99
(Cat. No.PR00122). 244–248.

[17] Joonmoo Huh and James Tuck. 2017. Improving the Effectiveness of
Searching for Isomorphic Chains in Superword Level Parallelism. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-50 ’17). ACM, New York, NY, USA, 718–729.

[18] J. Hwang, S. Zeng, F. y. Wu, and T. Wood. 2013. A component-based
performance comparison of four hypervisors. In 2013 IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM 2013).
269–276.

[19] Ralf Karrenberg and Sebastian Hack. 2011. Whole-function vectoriza-
tion. In Proceedings of the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization. IEEE Computer Society,
141–150.

[20] Toru Kisuki, Peter M. W. Knijnenburg, Mike F. P. O’Boyle, François
Bodin, and Harry A. G. Wijshoff. 1999. A feasibility study in itera-
tive compilation. In High Performance Computing, Constantine Poly-
chronopoulos, Kazuki Joe Akira Fukuda, and Shinji Tomita (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 121–132.

[21] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle. 2002. Iterative
Compilation. Springer Berlin Heidelberg, Berlin, Heidelberg, 171–187.

[22] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. 1981.
Dependence Graphs and Compiler Optimizations. In Proceedings of
the Symposium on Principles of Programming Languages.

[23] S. Larsen and S. Amarasinghe. 2000. Exploiting Superword Level Par-
allelism with Multimedia Instruction Sets. In Proceedings of the Con-
ference on Programming Language Design and Implementation (PLDI).

[24] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. 2009. Automatic
Feature Generation for Machine Learning Based Optimizing Compila-
tion. In Proceedings of the 7th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO ’09). IEEE Computer
Society, Washington, DC, USA, 81–91.

[25] J. Liu, Y. Zhang, O. Jang, W. Ding, and M. Kandemir. 2012. A compiler
framework for extracting superword level parallelism. In Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI).

[26] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and
David A. Padua. 2011. An Evaluation of Vectorizing Compilers. In
Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT).

[27] Matt Masten, Evgeniy Tyurin, Konstantina Mitropoulou, Hideki Saito,
and Eric Garcia. 2018. Function/Kernel Vectorization via Loop Vector-
izer. Proceedings of the 5th Workshop on The LLVM Compiler Infrsatruc-
ture in HPC (LLV-HPC) (2018).

[28] Charith Mendis and Saman Amarasinghe. 2018. GoSLP: Globally Opti-
mized Superword Level Parallelism Framework. Proc. ACM Program.
Lang. 2, OOPSLA (Oct. 2018), 28.

[29] Simon Moll and Sebastian Hack. 2018. Partial control-flow lineariza-
tion. In Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. ACM, 543–556.

[30] Steven S. Muchnick. 1997. Advanced compiler design and implementa-
tion. Morgan Kaufmann Publishers, San Fransisco, California, USA.

[31] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization
of Interleaved Data for SIMD. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI). ACM, 132–
143.

[32] Dorit Nuzman and Ayal Zaks. 2008. Outer-loop vectorization: revisited
for short SIMD architectures. In Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques (PACT).

[33] Y. Park, S. Seo, H. Park, H.K. Cho, and S. Mahlke. 2012. SIMD Defrag-
menter: Efficient ILP Realization on Data-parallel Architectures. In
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[34] D. Petkov, R. Harr, and S. Amarasinghe. 2002. Efficient pipelining
of nested loops: unroll-and-squash. In Proceedings 16th International
Parallel and Distributed Processing Symposium. 6 pp–.

[35] Vasileios Porpodas. 2017. SuperGraph-SLP Auto-Vectorization. In
2017 International Conference on Parallel Architecture and Compilation
(PACT). IEEE, 330–342.

[36] Vasileios Porpodas and Timothy M Jones. 2015. Throttling automatic
vectorization: When less is more. In 2015 International Conference on
Parallel Architecture and Compilation (PACT). IEEE, 432–444.

[37] Vasileios Porpodas, Alberto Magni, and Timothy M. Jones. 2015. PSLP:
Padded SLP Automatic Vectorization. In Proceedings of the International

12

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22–23, 2020, San Diego, CA, USA

Symposium on Code Generation and Optimization (CGO).
[38] Vasileios Porpodas, Rodrigo C. O. Rocha, Evgueni Brevnov, Luís F. W.

Góes, and Timothy Mattson. 2019. Super-Node SLP: Optimized Vector-
ization for Code Sequences Containing Operators and Their Inverse
Elements. In Proceedings of the 2019 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO 2019). IEEE Press,
Piscataway, NJ, USA, 206–216.

[39] Vasileios Porpodas, Rodrigo C. O. Rocha, and Luís F. W. Góes. 2018.
Look-ahead SLP: Auto-vectorization in the Presence of Commutative
Operations. In Proceedings of the 2018 International Symposium on Code
Generation and Optimization (CGO 2018). ACM, New York, NY, USA,
163–174.

[40] Vasileios Porpodas, Rodrigo C. O. Rocha, and Luís F. W. Góes. 2018.
VW-SLP: Auto-vectorization with Adaptive Vector Width. In Proceed-
ings of the 27th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’18). ACM, New York, NY, USA, 12:1–
12:15.

[41] R. Karrenberg and S. Hack. 2012. Improving performance of OpenCL on
CPUs. In International Conference on Compiler Construction. Springer,
1–20.

[42] Gang Ren, Peng Wu, and David Padua. 2006. Optimizing Data Permu-
tations for SIMD Devices. In Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI).

[43] I. Rosen, D. Nuzman, and A. Zaks. 2007. Loop-aware SLP in GCC. In
GCC DevelopersâĂŹ Summit.

[44] Vivek Sarkar. 2000. Optimized Unrolling of Nested Loops. In Proceed-
ings of the 14th International Conference on Supercomputing (ICS ’00).

ACM, New York, NY, USA, 153–166.
[45] J. Shin, M. Hall, and J. Chame. 2005. Superword-level parallelism in the

presence of control flow. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO).

[46] Mark Stephenson and Saman Amarasinghe. 2005. Predicting Unroll
Factors Using Supervised Classification. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization (CGO ’05).
IEEE Computer Society, Washington, DC, USA, 123–134.

[47] Kevin Stock, Louis-Noël Pouchet, and P. Sadayappan. 2012. Using
Machine Learning to Improve Automatic Vectorization. ACM Trans.
Archit. Code Optim. 8, 4, Article 50 (Jan. 2012), 23 pages.

[48] Michael Wolfe. 1988. Vector optimization vs. vectorization. In Super-
computing. Springer.

[49] Michael Joseph Wolfe. 1995. High Performance Compilers for Parallel
Computing. Addison-Wesley.

[50] Hao Zhou and Jingling Xue. 2016. A compiler approach for exploiting
partial SIMD parallelism. ACM Transactions on Architecture and Code
Optimization (TACO) (2016).

[51] Hao Zhou and Jingling Xue. 2016. Exploiting mixed SIMD parallelism
by reducing data reorganization overhead. In Proceedings of the 2016
International Symposium on Code Generation and Optimization. ACM,
59–69.

[52] Eugene V. Zima. 1995. Simplification and Optimization Transforma-
tions of Chains of Recurrences. In Proceedings of the 1995 International
Symposium on Symbolic and Algebraic Computation (ISSAC ’95). ACM,
New York, NY, USA, 42–50.

13

	Abstract
	1 Introduction
	2 Background
	2.1 Loop Unrolling
	2.2 SLP Vectorization

	3 Motivating Example
	4 Vectorization-Aware Loop Unrolling
	4.1 Potential SLP Graph
	4.2 Profitability of Potential SLP Graph
	4.3 Widening Memory Instructions
	4.4 Dependence Analysis
	4.5 Partial Vectorization
	4.6 Code Size Concerns
	4.7 Forwarding Seeds to SLP

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Overall Analysis of the Performance Results
	5.4 Compilation Time
	5.5 Performance on Full Benchmarks

	6 Related Work
	6.1 Loop Unrolling
	6.2 Loop and Function Auto-Vectorization
	6.3 SLP Auto-Vectorization

	7 Conclusion
	References

