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Text-based CAPTCHAs remains a popular scheme for distinguishing between a legitimate human user and an

automated program. This article presents a novel genetic text captcha solver based on the generative adversar-

ial network. As a departure from prior text captcha solvers that require a labor-intensive and time-consuming

process to construct, our scheme needs significantly fewer real captchas but yields better performance in solv-

ing captchas. Our approach works by first learning a synthesizer to automatically generate synthetic captchas

to construct a base solver. It then improves and fine-tunes the base solver using a small number of labeled real

captchas. As a result, our attack requires only a small set of manually labeled captchas, which reduces the cost

of launching an attack on a captcha scheme. We evaluate our scheme by applying it to 33 captcha schemes, of

which 11 are currently used by 32 of the top-50 popular websites. Experimental results demonstrate that our

scheme significantly outperforms four prior captcha solvers and can solve captcha schemes where others fail.

As a countermeasure, we propose to add imperceptible perturbations onto a captcha image. We demonstrate

that our countermeasure can greatly reduce the success rate of the attack.
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1 INTRODUCTION

The completely automated public Turing test, or CAPTCHA1 for short, is often used to distinguish
legitimate users from malicious bots [67]. Captchas exist in various forms, including texts [66, 67,
68], images [13], audio [55], video [56], and games [19]. Among these, text captcha is a popu-
lar scheme and remains being used by the majority of the top-50 popular websites ranked by
alexa.com, including Microsoft, Google, eBay, and many others.

Breaking a particular captcha scheme2 is rarely news today. This is a heavily studied area, and
many scheme-specific captcha solvers have been proposed in the past. The seminal work pre-
sented by Greg and Malik dated back to 2003 was among the first attempts to automatically solve
text captchas [28]. However, most of the prior attacks are specifically tuned for a few specific
captcha schemes and adapting them for a new scheme would require significant human interven-
tion for tuning the model and collecting training data—manually labeled captcha images. Just like
cryptography, text captchas are evolving and becoming more robust where many of the advanced
features make prior attacks no longer applicable [18].

By employing analytical models and algorithms, some of the more recent works have improved
the generalization ability of a captcha solver [8, 10, 18]. The idea behind such schemes is that
a captcha solver can be tuned to target a new scheme by changing and adapting the model pa-
rameters and algorithm thresholds. These schemes, however, are only effective in solving text
captchas with simple security features. Their success often relies on a good character segmenta-
tion method [12], but the recent development of text captchas has made character segmentation
more challenging by introducing advanced security features like more complex backgrounds as
well as distorted and overlapping characters.

In this article, we present a new approach for building text captcha solvers. Compared to prior
attacks, our approach requires significantly fewer numbers of manually labeled captchas but de-
livers better performance for solving a wider range of schemes. Our work is inspired and enabled
by the recently proposed generative adversarial network (GAN) [24] and its breakthrough effec-
tiveness in image translation tasks [35]. To construct a solver for a given captcha scheme, we first
automatically learn a GAN-based captcha synthesizer using a small set of labeled real captcha im-
ages. Next, we use the learned synthesizer to automatically generate a large number of training
samples without human involvement, from which we learn a base solver. We then apply transfer
learning [52] to fine-tune and improve the base solver. As a significant departure from prior at-
tacks, our approach greatly reduces the cost and human efforts in creating and tuning a captcha
solver as well as the underpinning analytical models and algorithms. Our approach is generally
applicable, because the process for building a solver is mostly automatic and is not coupled to a
specific scheme. We show that our approach can result in a highly effective solver for a large set
of currently used text captcha schemes, making our attack a severe threat to text captchas.

We evaluate the proposed scheme through extensive experiments. We apply our approach to 33
text captcha schemes, 11 of which were being used by 32 of the top-50 popular websites ranked
by alexa.com as of April 2019. We compare our approach to four prior captcha solvers [8, 10, 18,
20]. Experimental results show that our approach needs as few as 500 as opposed to millions [23]
labeled captcha images to learn a successful solver. Despite our approach uses a significantly fewer
number of real captchas, it gives a higher success rate. Experimental results show that our approach
can successfully crack all tested schemes, judged by the commonly used standard [10], and it can
solve a captcha in less than 50 milliseconds using a modest desktop GPU.

1To aid readability, we will use the acronym in lowercase thereafter.
2In this article, the term breaking captchas refers to automatically solve the captcha challenge using a computer program,

i.e., recognizing the characters of a text captcha image.
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As a countermeasure, we turn again to the GAN framework. We show that by inserting some
imperceptible perturbations or noise to the captcha images, one can significantly decrease the
effectiveness of our attack. This provides a new way to protect the popular text captcha schemes
against machine-learning-based attacks before a better alternative is adopted.

To sum up, this article makes the following technical contributions. It is the first to:

• employ the generative adversarial paradigm to build a successful solver for text captchas
based on a small number of real captcha images;

• apply transfer learning to fine-tune a captcha solver that learned from synthetic data;
• show how a generic learning-based approach can be applied to target a rich set of captcha

schemes, which not only requires less human efforts to construct but also leads to better
performance over prior attacks;

• propose a new countermeasure for text captchas based on the generative adversarial para-
digm.

2 BACKGROUND

In this section, we present the threat model and introduce the preliminaries of text captchas and
the GAN architecture.

2.1 Threat Model

Like many prior works, our attack employs supervised learning techniques to build a captcha
solver. The quality of a machine-learned model depends on the volume and quality of the training
data. In this work, we assume the adversary has access to a small number of manually labeled
captcha images for the target scheme. We refer these captchas as real captchas, because they are
generated by the target scheme. The real captchas can be labeled either by the attacker or paid
crowdsourcing workers. Specifically, our attack needs as few as 500 real captchas to build a suc-
cessful captcha solver. Prior attacks based on machine learning models often require thousands or
sometimes millions of examples to learn a good captcha solver [1, 22, 23]. For example, the work
presented in [23] requires millions of captcha images to learn an effective CNN model to solve
reCAPTCHA. Compared to these prior attacks, our approach incurs significantly less overhead and
cost for collecting and labeling the data.

We also assume the adversary has sufficient computing power to run machine learning algo-
rithms. In this article, we show that the learning can be performed on a typical GPU cloud server,
and the learned solver can run efficiently on a modest desktop GPU.

2.2 Security Features of Text Captchas

A text captcha image often consists of distorted characters, a noisy background or occluding lines,
which are coined as security features. Without loss of generality, to make our experiments man-
ageable, we restrict our scope to six widely used security features employed by the current text
captcha schemes. They are used by the top-50 popular websites ranked by alexa.com at the time
this work was conducted.

Figure 1 illustrates some of the security features targeted in this work. These include anti-
segmentation and anti-recognition features. The anti-segmentation feature, labeled as 1, 2, and
3 in Figure 1, aims to increase the difficulty of character segmentation. A anti-recognition feature,
however, makes it difficult for a computer program to recognize the characters. This is achieved
by using a variety of font styles and distorted characters, as depicted in Figure 1 with labels 4, 5,
and 6. Later, in Table 1, we summarize how these security features are used in different captcha
schemes.
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Fig. 1. Security features of current text-based captchas used in this work. Labels 1, 2, 3 show the anti-

segmentation features and labels 4, 5, 6 present the anti-recognition features.

Fig. 2. Overview of our approach. ©1 We first use a small set of real captchas and the security features of

the target scheme to learn a captcha generation model. ©2 The captcha generation model is then applied to

automatically generate synthetic captchas (with and without confusing background patterns) to learn a pre-

processing model to remove security features, e.g., noisy backgrounds and occluding lines, from the input

captcha image. ©3 At the same time, the synthetic captchas (without security features) are used to train

a base solver. ©4 Finally, we use a few clean real captchas (that have been processed by the preprocessing

model) to fine-tune the base solver to build the final solver.

2.3 Generative Adversarial Networks

Our work is the first to apply the recently proposed GAN architecture [24] to learn a captcha solver.
A classical GAN consists of two modules. The first is a generative network for generating synthetic
data, and the second is a discriminator network to filter out the synthetic examples from the real
ones. To train the generative and discriminator networks, we use backpropagation [31], a well-
established training method for neural networks. During each training iteration, the generator
aims to produce better synthetic samples while the discriminator would become more skilled at
flagging synthetic samples. GANs have demonstrated promising results in natural language pro-
cessing [42, 76] and image generation [35, 77] tasks.

3 OVERVIEW OF OUR APPROACH

Figure 2 depicts the four steps of building a captcha solver using our approach. Each of the steps
is described as follows.

©1 Training data synthesis. To reduce the efforts for collecting and labeling real captchas and
at the same time provide sufficient training data to build an effective captcha solver, we seek
ways to generate synthetic training data. We do so by learning a captcha synthesizer for a tar-
get captcha scheme (Figure 2 ©1 ). Our captcha synthesizer is a neural network trained under the
generative adversarial paradigm. Our GAN consists of two components. The first is a captcha gen-
eration model that tries to produce captchas that are as similar as possible to the target captchas.
The second is a discriminator that tries to identify the synthetic captchas from the real ones. This
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Fig. 3. The training process of our GAN-based text captcha synthesizer.

generation-discrimination process terminates when the discriminator fails to identify a large por-
tion of the synthetic captchas. After training, we then use the learned captcha generation model to
automatically produce a large number of captchas together with their characters. This is described
in Section 4.1.

©2 Preprocessing. To assist the captcha solver, we build a preprocessing model (Figure 2 ©2 ) to
remove as much captcha security features as possible. The preprocessing model also tries to stan-
dardize the font style by e.g., filling hollow characters and standardizing spaces or gaps between
characters. We leverage a specific GAN called Pix2Pix [34] to build the pre-processor model. The
pre-processor model is trained by using solely synthetic captcha samples. Each training sample
contains two captcha images: one has security features, and the other does not. We learn a prepro-
cessing model for each captcha scheme and the training process is fully automatic. We describe
this process in more details at Section 4.2.

©3 Training the base solver. In this step, we use the preprocessed synthetic captcha images to-
gether with their corresponding character labels to learn a base solver (see Figure 2 ©3 ). Our
base solver is a standard Convolutional Neural Network (CNN). The trained solver takes in a pre-
processed captcha image and outputs the corresponding label. This is detailed in Section 4.3.

©4 Fine-tuning the base solver. In this final step, we apply transfer learning to further improve
the base solver (see Figure 2 ©4 ). Specifically, we use the set of manually labeled real captchas that
we used to train the captcha synthesizer to update the weights at some network layers of the base
solver. This is described with more details in Section 4.3.

4 IMPLEMENTATION DETAILS

This section provides details on how to build a captcha synthesizer to generate synthetic train-
ing data (Section 4.1), and how to learn a preprocessing model (Section 4.2) and a captcha solver
(Section 4.3) using synthetic captcha images.

4.1 Training Data Synthesis

Prior work shows that to learn an effective CNN-based solver for text captchas would require as
many as 2.3 million of labeled training samples [20]. Collecting and labeling such a large volume
of captchas would require intensive human efforts and incur significant cost. Our approach over-
comes this issue by using synthetic training data. To this end, we first learn a captcha synthesizer
and use the synthesizer to populate the training data with a large number of synthetic captchas
that are similar to the target captchas. This allows the training dataset to cover the problem space
far more finely than what could be achieved by exclusively using manually labeled real captchas.

As we have briefly described in Section 3, our GAN-based captcha synthesizer consists of a
captcha generation model and a discriminator. Figure 3 illustrates the process of training a captcha
synthesizer. The training process is largely automatic except that it needs 500 manually labeled

ACM Transactions on Privacy and Security, Vol. 23, No. 2, Article 7. Publication date: April 2020.
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Fig. 4. Example synthetic captchas for Baidu scheme. Our captcha synthesizer is trained using a set of real

captchas (a). The parameter setting (b) defines the security feature space. The trained captcha synthesizer

is used to produce synthetic captchas with (c) and without (d) the security features (i.e., noisy backgrounds

and occluding lines in this example) included.

Fig. 5. Overview of our captcha generation model. Our generator model includes an image synthesizer (©1 )

and a GAN-captcha-generator (©2 ). The image synthesizer takes in a word of characters and the security

feature setting to produce an initial captcha image. The GAN-captcha-generator then modifies the initial

captcha image at the pixel level, aiming to make the resultant captchas are similar to the ones of the target

scheme. Once the training process is completed, the captcha generator model can be used to automatically

generate the captcha images based on any given word of characters.

real captcha images of the target scheme and a set of user-defined security features. The security
feature definition is given by setting a set of pre-defined parameters. As an example, Figure 4 lists
all pre-defined parameters of the Baidu captcha scheme. For this example, the waving feature is
turned off as it is not used by the Baidu scheme. It is to note that these parameters can be easily
extended and adjusted to target other captcha schemes.

Captcha generation model. Figure 5 shows that our captcha generation model is comprised of
a captcha image synthesizer and a GAN captcha generator. The image synthesizer automatically
generates captcha images for a given parameter setting and a sequence of characters (i.e., a word),
while the GAN captcha generator modifies the synthetic captcha at the pixel level. The image syn-
thesizer takes in a security feature configuration and tries to find a set of parameter values so
that the synthetic captchas are as similar as possible to the ones from the target captcha scheme.
We use the grid search method presented in Reference [4] to find the optimal parameters for a
given captcha scheme. Like the image generator, the GAN captcha genertor learns how to modify
the generated images at the pixel level so that the resulting captcha contains security features
that are similar to the real ones of the target scheme. The similarity is measured by the ratio of
synthetic captchas that cannot be distinguished from the real ones by the discriminator. In other
words, the more synthetic captchas that can “fool” the discriminator, the higher quality the gener-
ated synthetic captchas will be. We also use the similarity score to update the parameter values of
the captcha image synthesizer during the grid search process. Specifically, if the similarity score
is above 0.65, the parameter values will be reduced according to a given attenuation coefficient,
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or vice verse. It is to note that once the captcha generation model is learned, it can automatically
generate a synthetic captcha image based on any given characters.

Captcha discriminator. Our discriminator model is also a CNN defined in Reference [59]. The last
layer of the CNN gives the probability of an input captcha being a synthetic one. We use batches of
captcha images to train the discriminator, where each mini-batch consists of randomly sampled
synthetic captchas, x , and real captchas, y, and the target labels are 1 for every xi and 0 for every
yj . The discriminator network updates its parameters by minimizing the following loss function:

LD = −
∑

i

logD (xi ) −
∑

j

log(1 − D (yj )), (1)

where D (·) is the probability of the input being a synthetic captcha, and 1 − D (·) is that of a
real one. In this work, we use the Jensen-Shannon divergence [15] to evaluate the difference of
the distribution between the synthetic and real captcha images when training the discriminator.
We have also considered the Wasserstein distance [2] during our initial experiment but found
that the Jensen-Shannon divergence works better in our problem setting. Specifically, we found
that the Jensen-Shannon divergence metric can be used to better distinguish between two real
and synthetic captures that are visually similar. This capability helps us to better optimize the
generation parameters to improve the performance of the captcha generation model.

Training. We use the minibatch stochastic gradient descent (SGD) and the Adam solver [38] with
a learning rate of 0.0002 to train our captcha synthesizer. The objective of our captcha synthesizer
can be expressed as

LcGAN = Ex,y∼pdat a (x,y )[loдD (x ,y)] + Ex∼pdat a (x ),z∼pz (z )[loд(1 − D (x ,G (x ,y)))], (2)

where x and y are a synthetic and a real captcha, respectively, and z is the noise.
Our overall training objective follows the general GAN approach [59], using the L1 norm with

the regularization term λ set to 0.0001. The training objective is defined as

G∗ = arg min
G

,max
D
LcGAN (G,D) + λLL1 (G ), (3)

where the generator, G, tries to minimize the difference between the generated captchas and the
real ones, while the discriminator, D, seeks to maximize it.

Here, the L1 loss function is defined as

LL1 (G ) = Ex,y∼pdat a (x,y ),z∼pz (z )[| |y −G (x , z) | |1]. (4)

During training, when updating the parameters of the synthesizer, we fix the parameters of
the discriminator; and when updating the discriminator, we fix the parameters of the synthe-
sizer. Training terminates when the discriminator fails to identify more than 5% of the synthetic
captchas. Once the synthesizer is trained, it can be used to quickly generate synthetic captchas. In
our case, it takes less than one hour to generate a million captcha images.

Working example. We use the Baidu captcha scheme as a working example to illustrate the pro-
cess for training a captcha sythesizer. The training process consists of multiple steps. In the initial
step, we provide some (i.e., 500) real captchas for the GAN learning engine. We also give the ini-
tial parameter values for the captcha image synthesizer. Similarly, the GAN captcha generator is
initialized with random weights. During each iteration of the GAN training process, the captcha
generation model (that consists of the captcha image synthesizer and the GAN captcha generator)
a batch of synthetic captchas that are examined by the captcha discriminator. If the discrimina-
tor can successfully distinguish a large number of synthetic captchas from the real ones, then the
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Fig. 6. The training process of our GAN-based pre-processing model. The generator tries to remove as much

noisy backgrounds and occluding lines from the input captchas, while the discriminator tries to identify

which of the input clean captchas are produced by the generator. All the captchas used in the training are

generated by our captcha generation model.

grid search method is employed to adjust the parameter values for synthesizing another batch of
captchas. This iteratively training process continues until the discriminator can distinguish less
than 5% of the synthetic captchas from the real ones (see Section 6.5). When the process is ter-
minated, the learning engine will output the optimal parameter values to be used by the captcha
image synthesizer and the GAN captcha generator for synthesizing captcha images with security
features. To generate captchas without security features, we simply turn off the feature option of
the captcha image synthesizer. For examples, Figure 4(a) shows real Baidu captchas and Figures 4(c)
and 4(d) are the synthetic captchas with and without background security features produced by
our captcha generation model. As can be seen from the figure, the security features of the synthetic
captchas are visually similar to the real captchas.

4.2 Captcha Preprocessing

Modern captcha schemes often integrate advanced security features like a noisy background (Fig-
ures 1(a), 1(b), and 1(c)) and distorted hollow fonts (Figures 1(d), 1(e), and 1(f)). These features
make prior pre-processing methods like [17, 73] invalid (see Section 6.4). In our work, we build a
GAN-based preprocessing model to remove these security features. Like the synthesizer, we train
a preprocessing model for each captcha scheme. In our initial experiment, we also tried to build a
general pre-processing model across different captcha schemes. However, we found that a scheme-
specific model performs better. Note that we use only synthetic captchas to train the preprocessing
model. Specifically, we adopt the Pix2Pix image-to-image translation framework [34], which was
originally developed to transform an image from one style to another. In our case, the images to
be translated are captcha images with background noise such as the Baidu captcha shown in Fig-
ure 1(b) or different font styles such as the Microsoft captcha shown in Figure 1(d). Note that our
model removes multiple security features (e.g., Figure 4(b)) at once.

Our GAN-based preprocessing model also consists of a generator and a discriminator. Figure 6 de-
picts the training process. The generator works at the pixel level, which tries to amend some pixels
of the input captcha images (e.g., removing noise from the background shown as Figure 6(b)). By
contrast, the discriminator tries to distinguish the preprocessed captchas from the clean captchas

that are produced by the captcha generation model described in Section 4.1.
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Fig. 7. Our CNN-based captcha solver. We first use synthetic captchas to train the based solver (a) which is

then refined using a small number (500 in this work) of real captchas (b).

Training. Before training, we first pre-train an initial generator and discriminator using some syn-
thetic captchas (Figure 6(a)). The captchas used in the pre-training process are organized as pairs
where each pair contains (1) a synthetic captcha image with the target security features and (2) a
corresponding image without these security features. Once the pre-training process is finished, we
continue to train them under the generative adversarial framework. The training process is simi-
lar to how we train our captcha synthesizer (Section 4.1). Over time, the generator would become
better in removing security features, and the discriminator would become better in recognizing
security features (even the changes are small). Training terminates when the discriminator fails to
identify more than 5% of the preprocessed images from the clean counterparts (Figure 6(c)). After
that, we use the trained generator to preprocess unseen captcha images of the target scheme.

4.3 Build and Fine-tune the Solver

To build a captcha solver, we follow a two-step approach. We first train a base solver from synthetic

captchas. We then fine-tune the base solver using the same set of real captchas used to build the
captcha synthesizer.

Network structure of our solver. Our captcha solver is built upon a classical CNN called LeNet-

5 [41], and it tries to identify the characters of the preprocessed captchas. Unlike LeNet-5, which
was initially designed to recognize single characters, we introduce some additional layers (2×
convolutional and 3× pooling layers) to extend its capability to recognize multiple characters.
Figure 7(a) shows the structure of our solver, which has five convolutional layers, five polling
layers followed by two fully connected layers. Each of the convolutional layers is followed by a
pooling layer. We use a 3 × 3 filter for the convolutional layer and a max-pooling filter for the
pooling layer. We use the default parameters of LeNet-5 for the rest of the network structures.

It is to note that we have also considered other influential CNN structures including ResNet [30],
Inception [64] and VGG [60]. We found that there is little difference in solving text captchas among
these models. We choose LeNet-5 due to its simplicity, which gives the quickest inference (i.e.,
prediction) time and requires the least training samples for fine-tuning the base solver.
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Training the base solver. We train a base solver for a target captcha scheme. In case that the num-
ber of characters of a captcha image is not fixed for a scheme, we also train a base solver for each
possible number of characters. We use 200,000 synthetic captchas generated by our captcha gen-
eration model to train the base solver. Each training sample consists of a clean captcha (produced
by the preprocessing model) and an integer vector that stores the character IDs of the captcha.
Note that we assign a unique ID to each candidate character of the target captcha scheme. We use
a Bayesian-based parameter tuner [21] to automatically choose the hyperparameters for training
the base solver. Training a base solver takes around five hours using four NVIDIA P40 GPUs on a
cloud server (see Section 5.3). The trained base solver can then be applied to any unseen captcha
image of the target scheme.

Refining the base solver. To fine-tune the base solver, we apply transfer learning [75] to update
later layers (i.e., those that are closer to the output layer) of the base solver, by using the 500 labeled
real captchas that were previously used to train the synthesizer. The idea of transfer learning, in a
nutshell, is that in neural network classification, information learned at the early layers of neural
networks (i.e., closer to the input layer) will be useful for multiple classification tasks. The later
the network layers are, the more specialized the layers become [52]. We exploit this property to
calibrate the base solver to minimize any bias and over-fitting that may arise from the synthetic
training data.

Figure 7(b) illustrates the process of applying transfer learning to refine the base solver. Transfer
learning in our context is as simple as keeping the weights of the early layers and then update the
parameters of the later layers by applying the standard training process using the real captchas.
This process takes less than 5 minutes on our training platform.

5 EXPERIMENTAL SETUP

5.1 Captcha Schemes

Our evaluation targets 11 current text captcha schemes used by 32 of the top-50 popular websites
ranked by alexa.com.3 We note that some of the websites use the same captcha scheme, e.g.,
Youtube uses the Google scheme, and Live, Office and Bing use the Microsoft scheme. The
websites we examined cover a wide range of domains including e-commerce, social networks,
search, and information portals. Table 1 gives some examples of the captcha schemes tested in this
work. We note that many captcha schemes exclude some specific characters that are likely to cause
confusion after performing the character distortion, for improving the usability of the captchas.
Examples of such characters include “o” and “0,” “1,” and “l,” and so on (see Table 1).

In addition to the 11 current schemes, we also extend our evaluation to 22 other captcha schemes
(See Table 5) used in prior studies to provide a fair comparison with previous attacks. It is worth
mentioning that while we collected the captchas from the official websites, many of the captcha
schemes we tested are also used by third-party websites and applications as a security mechanism.

5.2 Collecting and Synthesizing Captchas

We use two sets of captchas in evaluation: one for training and the other for testing. Most of
training data are synthetic captchas generated by our captcha generation model. The testing data
are collected from the target website for training and testing our GAN-based synthesizer and the
fine-tuned solver.

Synthesizing training captchas. We first initialize the security feature parameters as de-
scribed in Section 4.1 and then use the initial parameters to generate the first batch of synthetic

3We have refreshed the captcha dataset used in our previous work [74] when conducting this evaluation.
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Table 1. Text-based Captcha Schemes Tested in Our Experiments

captchas—which are then used together with 500 real captchas to train our synthesizer. After we
have trained the synthesizer, we then use it to generate synthetic samples to learn the preprocess-
ing model and the base solver. Specifically, we use 20,000 and 200,000 synthetic captchas to train
the preprocessing model and the base solver, respectively.

Collecting testing captchas. The real captchas are automatically collected using a web crawler
written in Python. Each collected captcha is manually labeled by three paid participants (nine
participants in total) recruited from our institution. We use only captchas where a consensus has
been reached by all the three annotators. In total, we have used 1,500 real captchas for each target
scheme. We randomly divided the collected captchas into two sets, one set of 500 captchas for
training our synthesizer and the final solver, and the other set of 1,000 captchas for testing our
solver. It takes up to 30 minutes (less than 10 minutes for most schemes) to collect 500 captchas
and less than 2 hours to label them by one user. This suggests that the effort and cost for launching
our attack on a particular captcha scheme is low.

5.3 Implementation and Hardware Platforms

Our prototype system4 is implemented using Python. The preprocessing model is built upon the
Pix2Pix framework [34], implemented using Tensorflow v.1.12, and the captcha solver is coded

4Code and data are available at: https://goo.gl/92VxXC.
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Table 2. The Overall Success Rate and Solver Running Time

Scheme
Success rate Running Time per

Captcha (ms)Base Solver Fine-tuned Solver

Sohu 83% 92% 43.78
eBay 52% 86.6% 4.22
JD 60% 86% 43.18
Wikipedia 7% 78% 4.71
Microsoft 36.6% 69.6% 46.06
Alipay 23% 61% 3.75
Qihu 360 48.6% 56% 41.03
Sina 40.6% 52.6% 42.81
Weibo 4.7% 44% 3.41
Baidu 6% 34% 41.57
Google 0% 3% 4.02

using Keras v.2.1. We use two different hardware platforms. For training, we use a cloud server
with a 2.4 GHz Intel Xeon CPU, four NVIDIA Tesla P40 GPUs and 256 GB of RAM, running the
Centos 7 operating system with Linux kernel 3.10. The trained models are then run and tested on
a desktop PC with a 3.2 GHz Intel Xeon CPU, a NVIDIA Titan GPU and 64 GB of RAM, running
the Ubuntu 16.04 operating system with Linux kernel 4.10. All trained models run on the Titan
GPU for inference.

6 EXPERIMENTAL RESULTS

In this section, we first present the overall success rate of our approach for solving 11 current
captcha schemes. We then compare our approach against prior attacks on another 22 schemes.
Next, we analyze the working mechanism of our approach before discussing the impact of security
features on user experience and the generalization ability of our approach.

6.1 Evaluation on Current Captcha Schemes

Table 2 presents the success rate and the average running time in solving a captcha image for
11 current schemes. There is no difference in solving time between the base and the fine-tuned
solvers, because they use the same network structure. For each captcha scheme, we report the
average running time across 1,000 captchas. We observe little variation in the running time, less
than 0.5% across test runs. Note that in this evaluation, all captcha images of a scheme contain the
same number of characters. In Section 6.3, we show how our approach can be extended to target
a variable number of characters.

6.1.1 Overall Success Rate. Our base solver, built from synthetic data, is able to solve most of the
captcha schemes with a success rate of over 20%. This demonstrates the capability of CNN models in
performing image recognition. However, it gives a low success rate for some of the schemes such as
Weibo (4.7%) and Google (0%). The fine-tuned solver, refined using transfer learning, significantly
boosts the performance of the base solver. In particular, it improves the success rate for Wikipedia
from 7% to 78%, Weibo from 4.7% to 44%, Alipay from 23% to 61%, and Microsoft from 36.6% to
69.6%. This result shows that transfer learning in combination with captcha synthesis can reduce
the data collection efforts for building an effective text captcha solver.

The refined solver also improves the success rate for Google captcha from 0% to 3%. This rela-
tively low success rate is because of the strong security features like distorted, overlapping, waving
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Fig. 8. Examples of real Google captchas (a) and the synthetic versions (b).

Table 3. Example Text-based Captchas that are Incorrectly Labeled by Our Fine-tuned Solver

characters and dynamic font styles employed by the scheme. These features make it difficult for
our captcha generation model to generate high-quality synthetic data. Figure 8 shows that our
synthetic captchas are not sufficiently similar to the real captchas (especially for the font styles).
We also observe that some security features like overlapping, rotated, distorted characters and dy-
namic font styles can provide stronger protection under our attack over features like noisy back-
ground and occluding lines. Nevertheless, 3% is still above the 1% threshold for which a captcha is
considered to be ineffective [10]. We stress that no prior attack before ours can successfully crack
the current Google captcha scheme under this criterion.

6.1.2 Incorrectly Labeled Captchas. Table 3 gives some example captchas that are incorrectly
labeled by our fine-tuned solver. For most of these captchas, our solver only incorrectly recognize
one character and the mis-identified character is similar to the ground truth. For example, for the
eBay captcha shown in Table 3, our solver incorrectly label character “3” to “9” due to character
overlapping. For the Google scheme, our solver often fails to label several characters in the mid-
dle due to excessive character distoration and overlapping. However, our annotators were also
struggling to recognize the characters for those captchas. To quantify the difficulty, we asked ten
annotators to label those captchas and count the number of attempts required to succeed. The
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Table 4. How Often a Common English Prefix and Suffix Appears at the 5,000

Captcha Images from Google and Wikipedia

Prefixes
Number

Suffixes
Number

Google Wikipedia Google Wikipedia

dis- 76 21 -ing 337 95
pre- 49 10 -est 166 105
mis- 44 9 -ion 129 26
anti- 15 3 -ness 77 6
semi- 7 2 -tion 63 12
fore- 3 2 -less 28 5
inter- 3 1 -ation 21 4
under- 1 0 -ative 8 2
trans- 0 1 -itive 3 0

last column of Table 3 gives the averaged number of attempts required by our annotators to suc-
cessfully recognize images of a captcha scheme. The results suggest that our annotators found it
difficult to recognize most of the captcha schemes in the first attempt. In particular, due to the
strong distorted and occulting lines of the Google captcha scheme, more than half of our annota-
tors failed to recognize a Google captcha image within ten attempts.

6.1.3 Exploiting Captcha Patterns to Improve the Success Rate. Some captcha schemes like
Google and Wikipedia have more than eight characters in a single captcha image. We call these
long-character captcha schemes. We notice that the characters of a long-character captcha image
tend to follow some patterns, where some English word prefixes or suffixes appear frequently.
We think this might be a feature for helping a human user to better recognize the characters. To
verify our hypothesis, we collected and manually labeled 5,000 captcha images in addition to the
1,000 testing captchas used for the Google and the Wikipedia schemes. We then count how often
a commonly used English word prefix and suffix appears in the 5,000 captchas for each of the two
schemes, by using the list of prefixes and suffixes suggested in [45].

Table 4 lists some of the frequently appeared prefixes and suffixes, containing at least three
characters. We see that a three-character prefix or suffix appears at least 9 times (up to 76) in
the 5,000 captcha images of a scheme. This is greater than the averaged frequency of 1.99 if those
characters are evenly and randomly distributed across the 26 English alphabet letters over the 5,000
captchas of a scheme. We also observe a similar pattern for prefixes or suffixes with four or more
characters, although they have less frequency of appearance over the three-character counterparts.

Heuristics. We wondered if one can exploit this observation to improve the success rate of a
captcha solver. In other words, can we build a context-sensitive captcha solver to correct some of
the characters after performing image recognition? To this end, we develop a heuristic to post-
process the characters given by the fine-tuned solver to target the English word prefixes and suf-
fixes listed in Table 4. Specifically, for a solved captcha word, we first identify whether the word
contains a candidate pattern. A candidate pattern is a sequence of characters that are similar to a
word prefix or suffix, but only with a few characters that are different from a standard word prefix
or suffix. For example, “trani” is a candidate pattern for word prefix “trans” as both words are only
different in the last character, “i.” A solved captcha word can also contain multiple. In this case,
we will use the prefixes and suffixes listed in Table 4 to search for the possible candidate patterns.
Using this strategy, our heuristic would correct the candidate pattern “seml” to “semi.” Doing so
gives a correct prediction for the Wikipedia captcha shown in Table 3. Applying this strategy to
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Fig. 9. Examples of the captcha schemes (left) tested in prior work, and the synthetic versions (right) gen-

erated by our captcha generation model. Our generation model is highly effectively in synthesizing captcha

images.

the 1,000 test captchas images for Google and Wikipedia, we improve the success rate for the
Google scheme from 3% to 5.1% and the Wikipedia scheme from 78% to 79.8%.

6.1.4 Training and Deployment Overhead. It took us around 2 days to train a captcha synthesizer
and the preprocessing model together on our training platform, and less than 50 milliseconds to
solve a captcha on our evaluation platform using a desktop GPU. For captcha schemes with a
confusing background or occluding lines (e.g., Baidu and Sina captchas in Table 2), our solver
can take 10× longer than others to solve process a captcha image. This overhead comes from the
preprocessing model. As we train a scheme-specific preprocessing model with different network
structures, the stronger the security features are, the more complex the preprocessing will be (and
hence longer running times). Nonetheless, our approach can solve all the testing schemes under
the commonly used criterion [10] with a quick running time.

6.2 Comparison to Prior Attacks

We now compare our approach with four state-of-the-art methods [8, 10, 18, 20] on 24 distinct
captcha schemes, including the eBay and Wikipedia schemes from Table 1 and other 22 schemes.
To provide a fair comparison, we try to use captchas that prior methods were tested on. When
possible, we use the same dataset or captchas from the original scheme on which the prior work
was evaluated. For those obsolete captcha schemes (21 out of 24 schemes), we collected the test
data from public datasets, or using captcha generation tools developed by independent researchers.
Specifically, we use (1) public datasets of previous captcha schemes, (2) online captcha generators,
such as captchas.net, which was used by some of the previous captcha schemes, and (3) open
source captcha generators used by prior work.

For each captcha scheme, we collected 1,500 samples—from which we use 500 for training and
1,000 for testing. Figure 9 gives some examples of the real captchas and the one produced by our
generation model. The figure suggests that our generation model can produce captchas that are
visually similar to real examples from the target scheme.

Table 5 compares our fine-tuned solver to previous attacks. Our approach outperforms all com-
parative schemes by delivering a significantly higher success rate. For many of the testing schemes,
our approach boosts the success rate by 40%. It can successfully solve all the captchas of Blizzard,
Megaupload and Authorize used in Reference [10]. Our approach achieves a success rate of 87.4%
and 90% for reCAPTCHA 2011 and 2013, respectively. This scheme was previously deemed to be
strong where the human accuracy is 87.4% [20]. That is to say, our solver matches the capability
of humans in solving reCAPTCHA. To achieve a comparable accuracy for reCAPTCHA, a CNN-based
captcha solver [23] would require 2.3 million unique real captcha images [20], but our approach
needs only 500. We note that unlike all the competitive approaches that require manually tuning
a character segmentation method, we forgo this process. Thus, our approach requires less expert
involvement but gives better performance.
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Table 5. Comparing Our Approach Against Four Prior Attacks [8, 10, 18, 20] on 24 Captcha

Schemes Where Prior Methods Were Tested

Here B-11 and B-14 represent the method of References [10] and [11], respectively.

6.3 Targeting Schemes with a Variable Number of Characters

One potential criticism of our approach described so far is that it only targets captcha schemes
with a fixed number of characters. However, our approach can be extended to target schemes with
a variable number of characters. One way for doing that is to have a model to predict how many
characters a preprocessed image may contain, and then use a captcha solver that is specifically
built for that number of characters.
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Fig. 10. The success rate of our prediction model when targeting captchas with variable number of

characters.

To test this strategy, we use a CNN to build a character number predictor. Our model consists
of four convolutional layers, four pooling layers and a fully connected layer, and a max-pooling
layer follows each of the convolutional layers. The filter size in each convolutional layer is 5 × 5,
and other parameters are the same as our base captcha solver.

We evaluated our predictor using Google and Wikipedia captchas, both use a variable number
(8, 9, or 10) of characters. For each scheme, we use 100,000 synthetic captchas (around 33,333
captchas per character length) for training the predictor and 3,000 (1,000 per character length) real
captchas for testing. Figure 10 shows the accuracy for predicting the number of characters in a
captcha image. Our predictor gives an accuracy of 90.9% and 80.8% for Wikipedia and Google
schemes, respectively.

When combining the predictor with our fine-tuned solver (but not using the context-aware
heuristic described in Section 6.1.3), we see a slight drop in the accuracy. This is expected as our
character-number predictor is not perfect. The combination gives a success rate of 70.9% and 2%
for Wikipedia and Google schemes, respectively. The resulting success rates are still higher than
the 1% threshold for which a captcha scheme is seen to be ineffective [10].

6.4 Preprocessing Security Features

Recall that the second step of our attacking pipeline is to remove the security features and stan-
dardize the font style of an input captcha. In this experiment, we compare our preprocessing model
against prior preprocessing methods on removing noisy backgrounds [8, 10, 36], and standardizing
font styles [12, 17] and character gaps [18].

Removing security features. The classical methods used in prior attacks for preprocessing
captchas is filtering [8, 10, 36]. The idea is to apply a fix-sized window, or filter kernel, through-
out the image to remove the occluding lines and noise while keeping edges of the characters. As
can be seen from Figure 11, finding the right filter kernel size is difficult. This is because the filter
either fails to eliminate the background and occluding lines or it overdoes it by eroding edges of
the characters (Figure 11(b)). While filtering was effective for prior text-based captchas, the latest
captcha schemes have introduced more sophisticated security features, which make it no longer
feasible. In contrast to filtering, our preprocessing model can successfully eliminate nearly all the
background noise and occluding lines from the input image, leading to a much cleaner captcha
image while keeping the character edges, as depicted in Figure 11(c).
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Fig. 11. For the input images (a), a filter-based method fails to remove security features (b) while our ap-

proach can (c).

Fig. 12. Comparing font style standardization between a state-of-the-art hollow captcha solver [17] and our

preprocessing model. Our preprocessing model is able to fill the hollow parts more effectively.

Filling hollow characters. Figure 12 compares our preprocessing model against a state-of-the-art
hollow captcha solver [17]. The task in this experiment is to fill the hollow parts of the characters.
Here, we apply both schemes to the testing hollow captchas from Sina and Microsoft schemes.
Figure 12(a) gives some of the examples from these two schemes, while Figures 12(b) and 12(c)
present the corresponding results given by the hollow filling method in Reference [17] and our
approach, respectively. As can be seen from the diagrams, our preprocessing model is able to fill
most of the hollow strokes, but the state-of-the-art method leaves some hollow strokes unfilled.
Therefore, our approach is more effective in standardizing the font style. We also note that unlike
prior attacks, which require manually designing and tuning an individual method to process each
security feature, our approach automatically learns how to process all features at one go. Therefore,
our approach requires less effort for implementing a holistic preprocessing model.

Standardizing character gaps. Prior work has reported that the robustness of a text captcha
scheme largely dependents on the difficulty of character segmentation rather than character recog-
nition [12]. Many modern text captchas are designed to make it harder for a computer program
to segment the characters. The examples given in Figure 13 show that our preprocessing model
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Fig. 13. Character segmentation produced by our preprocessing model. For each scheme, the left image is

the input captcha, and the right image is the output of our preprocessing model.

Fig. 14. Using our character segmentation approach can help to improve the success rate of prior work [18].

is effectively in standardizing the gap between characters. To evaluate the effectiveness of our
preprocessing model for character segmentation, we use the same network structure to train a
model solely for character segmentation. We then use the preprocessing model to replace the na-
tive character segmentation model used in Reference [18] but keep the remaining parts unchanged.
Figure 14 shows that our preprocess along can help to greatly improve the success rate of a previ-
ous solver.

6.5 Synthesizer Training Termination Criteria

Our captcha synthesizer is trained under the GAN framework, and training terminates when the
discriminator fails to classify a certain ratio of synthetic captchas (Section 4.2). Figure 15 reports
how the termination criterion affects the quality of the synthetic captchas. The x-axis shows the
ratio (from 0.8 to 0.97) of synthetic captchas that are misclassified as a real captcha by the discrim-
inator when training terminates. The y-axis shows the success rate achieved by the fine-tuned
solver for five current captcha schemes, where the base solver is trained on the resulting synthetic
captchas using different termination criteria but the fine-tuned solver is trained on the same set
of real captchas.

In general, the more synthetic captchas that the discriminator fails on, the higher the quality
the generated synthetic captchas will be, which in turns leads to a more effective captcha solver.
However, the increase in the success rate reaches a plateau at 0.95. Further increasing the similarity
of the synthetic captchas to real ones does not improve the success rate due to overfitting. Based
on this observation, we choose to terminate synthesizer training when the GAN discriminator can
successfully distinguish less than 5% (i.e., fail on 95% or more) of the synthetic captchas. We found
that this threshold works well for all captcha schemes tested in this work.
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Fig. 15. How the synthesizer training termination criterion affects the solver performance. Training termi-

nates when the discriminator fails to classify a certain ratio of synthetic captchas.

Fig. 16. How the beginning layer for transfer learning affects the resulting performance of the fine-tuned

solver.

6.6 Transfer Learning

Recall that we only use 500 real captchas to refine the base solver by employing transfer learning
(Section 4.3). Our strategy for transfer learning is to only retrain some of the latter neural network
layers of the base solver (see Figure 7). In this experiment, we investigate how the choice of transfer
learning layers affects the performance of the fine-tuned solver. To that end, we apply transfer
learning to different levels of the base solver, by changing the starting point of transfer learning
from the 2nd convolutional layer (CL) all the way down to the first fully connected layer (FC).

6.6.1 Identify the Best Beginning Layers. We apply transfer learning to different levels of the
base solver. This is achieved by changing the starting point of transfer learning from the 2nd
convolutional layer (CL) all the way down to the first fully connected layer (FC). To determine
the best starting layer for transfer learning, we apply cross-validation to the real captcha training
dataset. Specially, we divide the 500 real captchas into two parts, the first part of 450 captchas is
used to refine the base solver, and the rest 50 captchas are used to validate the refined solver. We
vary the beginning layer for transfer learning and then test the refined base solver on the validation
set to find out which beginning layer leads to the best performance. Figure 16 reports performance
of the resulting fine-tuned solvers trained under different transfer learning configurations for the
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Fig. 17. The achieved success rates when the fine-tuned solver is trained using different number of real

captchas.

11 current captcha schemes given in Table 1. Overall, applying transfer learning to the second
or third CL onward leads to the best performance. Furthermore, this refining process only takes
several minutes as it uses just 500 captchas.

6.6.2 Finding Suitable Training Data Size. In this experiment, we evaluate how the number of
real captchas used in transfer learning affects the success rate of the fine-tuned solver. Figure 17
shows the success rates of the fine-tuned solver when using different numbers of real captchas
in transfer learning. When the number of training examples is 500, our approach reaches a high
success rate. For most captcha schemes, the success rate drops significantly when the number of
training examples less than 400. Nevertheless, our approach can achieve a high success rate when
the number of training examples is 500. Such a number allows an attacker to collect from the target
website easily.

6.7 Captcha Usability Study

Our evaluation also includes a user study to quantify the impact of security features on user ex-
perience (i.e., captcha usability) and the success rate of our solver. Specifically, we have conducted
an online survey by recruiting 20 participants to fill in an anonymous questionnaire. Our partici-
pants are at the age group of under 30s and are familiar with text captchas. In the questionnaire, we
present 100 synthetic captchas with different security strength. We divide the synthetic captchas
into six categories based on the number of characters and the security parameters used for gen-
erating the captcha. In the survey, we give each participant one minute to label a captcha and ask
each participant to rate the usability of five captchas from each category on a 5-point Likert-scale,
where 1 = very poor and 5 = excellent usability.

Table 6 gives the criteria used to determine the captcha difficulties and an example captcha
for each category. For each category, we also give the averaged success rates achieved by our
participants and our solver, as well as the averaged rating given by the participants.

We see that using more security features increases the difficulty for a computer program to solve
a captcha challenge, but it also decreases user experience. This can be illustrated that the averaged
human success rate for the captchas in category 6 of Table 6 is below 70%, meaning that nearly
one-third of the time a user will enter a wrong answer for captchas in this category. Therefore,
captchas in this category were given the lowest usability score of 2.1 is not surprising. We also
observe that various security features have a different impact on the effectiveness of our captcha
solver. For example, our solver can better handle captchas with noisy backgrounds in categories
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Table 6. Example Captchas Used in Our User Study, the Success Rates of Humans

and Our Approach, and the Usability Rating

3 and 4 than that with distorted characters in categories 5 and 6. As a result, although a captcha
image with a noisy background may have equally poor usability as another one with distorted or
overlapping characters, the two captcha images could have different degrees of robustness under
our attack. Moreover, as we expect, the success rate of a computer solver drops as the difficulty of
the captcha increases.

We also find that noisy backgrounds have a negative impact on the user experience, because our
participants gave an averaged usability score of less than 3 for captchas in categories 3 and 4 of
Table 6. However, background confusion has little contribution to the security strength of captchas
under our attack. This can be confirmed from the similar, or even better-solving performance
given by our solver when compared to human participants for captchas in the two categories.
This finding suggests that complex background confusion perhaps should be abandoned in future
text captcha schemes. Overall, this user study shows that a GAN-based captcha solver can achieve
comparable performance for solving text captchas when compared to humans, but balancing the
security and usability of a text captcha scheme is not trivial.

6.8 Generalization Ability

Given the scope of this work, we cannot test our approach on all current captcha schemes. To
evaluate our approach’s generalization ability for character recognition, we apply it to the MNIST
dataset. This dataset contains a large number of handwritten digits of different forms.

We follow the same methodology as we have used throughout the evaluation to build a MNIST
solver, i.e., by first building a synthesizer, then a base solver and a fine-tuned solver. We train
the synthesizer using up to 500 real MNIST images. Next, we build the base solve using 100,000
synthetic images before fine-tuning the base solver using the same set of real MNIST images. We
compare our solver with the recently proposed RCN [20], which was shown to be effective by using
a small number of training samples. We test both approaches on images that are not seen in the
training phase.

As can be seen from Table 7, our approach gives a marginally lower accuracy when using 20
real MNIST images per digit, but it outperforms the RCN when using 40 or more real images per
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Table 7. Success Rate of Comparing to RCN [20]

for Classifying the MNIST Dataset

# of per digit 20 40 60 80 100
RCN 96.5% 97.3% 97.6% 97.8% 98%
Our fine-tuned solver 96.2% 98.3% 98.9% 99.2% 99.8%

digit. In other words, our approach is effective on another image classification dataset, indicating
that our approach has a good generalization ability.

Extend to other captcha schemes. We believe our approach is generally applicable and can be
naturally extended for video and image captchas by adapting the network architecture to recognize
objects from the inputs; and favorably, the process of synthetic data generation, model training
and tuning still is unchanged. This flexibility allows one to attack various types of captchas, not
just text-based ones. For example, to target NuCAPTCHA [56], a motion-based captcha scheme,
we need to replace our CNN solver with a model similar to the Mask R-CNN [29]. The idea is to
first segment the video frames into images and then recognize characters from individual images.
After replacing the solver structure, we also need to extend our GAN-based captcha synthesizer
to generate a sequence of synthetic images (as recognition is performed at the image level). For
motion-based captchas, the key is to maintain the temporal relationships among images, for which
a temporal CNN can be useful [40].

7 POTENTIAL COUNTERMEASURES

7.1 Security Enhance Through Adversarial Example Generation

Recent works have shown that adversarial examples generated by inserting some perturbations
onto a target image can confuse a machine-learned image classifier [65]. Recent work has exploited
this observation to improve the security of captcha images [51, 58]. However, the perturbations
or noise generated by prior methods [51, 58] are often noticeable by a human eye and as a result,
our preprocessing model is effective in removing these perturbations. Hence, a better approach is
to make the perturbations imperceptible, so that it has less impact on the user experience while
increases the difficulty for training a successful preprocessing model.

However, one of the challenges for generating imperceptible perturbations is that the generation
scheme is tightly coupled to both the captcha image and the captcha solver. This raises a practical
issue, because the captcha designer often does not have a copy of the solver implementation. To
demonstrate this point, we use synthetic Baidu captchas to train five captcha solvers (in addition
to our LeNet-5-based model), based on five established CNN models: MaxoutNet [26], NetInNet [44],
GoogleNet [63], VGG [60], ResNet18 [30]. We then apply each trained solver to a captcha image
with different imperceptible perturbations. Table 8 shows the original captcha image and its adver-
sarial versions, and the prediction given by different solvers. To aid readability, we mark the per-
turbations, which are imperceptible to the participants in our user study, using a black box. As can
be seen from the table, a perturbation scheme tuned for a particular network cannot invalid others.

One approach for improving the generalization ability of the perturbation scheme is to find ways
to generate perturbations that can invalidate the commonly used image classification models. To
this end, we implement a prototyping adversarial generator to target the CNN-based models listed
in Table 8.

7.1.1 Countermeasure Prototype. Our prototype has three components: a feature location mod-
ule, a perturbation generation model, and an adversarial solver, described as follows.
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Table 8. Examples of Original Captcha (No. 1) and the Corresponding Adversarial

Captchas with Different Perturbations (Nos. 2–6)

The feature location module finds which areas of the captcha image are most important for
successful recognition of a given captcha image across network architectures. To do so, we first
apply sliding windows to divide a captcha image into a number of areas from the direction of top
to bottom, left to right. We then add random noise into each area to observe whether the CNN
model can misclassify the captcha image and the areas that can confuse the CNN model will be
selected as the critical locations. Once these critical areas are located, the perturbation generation
module (built upon Reference [43]) will generate the adversarial captcha image by inserting the
perturbations into each of these areas. Note that the perturbation generator may produce different
perturbations for different areas. We run the perturbed images through a set of pre-trained captcha
solvers (built upon different network architectures) to check if the perturbed images can confuse
all the solvers. If not, then we ask the perturbation generator to create a new set of perturbations
until this success criterion is met or the generation time has exceeded a threshold (set to three
seconds in our case). To enhance the transferability of the synthetic adversarial captchas, we are
inspired by Xie et al. [69] and apply random multiscale transformations to each critical areas at
each iteration. In the latter case, we choose the image that can confuse the largest number of
targeting solvers.

7.1.2 Evaluation of Countermeasure. We evaluate our captcha generator using the 1,000 real
Sohu captchas that were used in the evaluation reported in Section 6. We choose this scheme,
because our solver is highly effective in solving it by giving the highest success rate. The results
for using and without using our perturbation scheme are shown in Figure 18. Our perturbation
scheme significantly reduces the success rate for solving the Sohu scheme when using a CNN-based
solver.

7.1.3 Limitations of Countermeasure. We acknowledge that our countermeasure does not
eliminate the vulnerability of text captchas under deep-learning-based attacks, as an attacker
can still use a network that is different from the ones targeting by our perturbation generator.
However, we find that changing the number of layers or neurons, or the size of the convolutional
layers of a solver has little impact on our perturbation scheme. We also find that using a deeper
network does not significantly improve the success rate for solving perturbed captcha images,
because most of the captcha images are of small sizes and hence a deeper network does not offer
additional benefits. Nonetheless, we want to stress that while our countermeasure can help to
improve the security strength of current text captcha schemes, they will become inevitably less
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Fig. 18. The success rates when targeting the original Sohu captchas and the adversarial versions generated

by our scheme.

secure when more advanced deep neural network architectures are proposed. Therefore, the
community should revisit the use of text captchas.

7.2 Other Alternative Countermeasures

Some alternatives have been proposed to replace text captchas. These include video-based cap-
tachas like NuCAPTCHA [56] and game-based CAPTCHAs [49]. The former was shown to be
vulnerable [7, 71]. The latter seemingly offers some promises, but the recent breakthrough of deep
reinforcement learning in game playing may pose a threat to such schemes [48]. To have a robust
countermeasure, one probably need to combine multiple mechanisms similar to the multi-factor
authentication protocol [37, 57]. Nonetheless, how to balance the security strength and usability
of a scheme is still an outstanding problem.

8 RELATED WORK

The work presented by Mori et al. [28] was among the first text captcha solvers. Their approach
employs a set of analytical models and heuristics to attack Gimpy and EZ-Gimpy, two early simple
text-based captcha schemes. Since then, a large body of work arose for exploring ways to improve
the security of text captchas, building upon attacks on existing captcha schemes. Due to these
successful attacks, text captchas are going through an iterative development process, which are
still preferred by many users, primarily for the familiarity and a sense of security and control [39].

Segmentation-based attacks. This type of attacks first segments characters of a captcha image
and then identifies each segmented character using machine-learning algorithms. Yan et al. show a
simple character segmentation method [72], which counts the number of pixels of individual char-
acters, can break most of the captchas from Captchaservices.org. Later, they show an improved
segmentation method can be used to attack the early captcha schemes used by Yahoo!, Microsoft,
and Google [73]. Unlike our approach, all the aforementioned attacks are tightly coupled to the
captcha scheme and hard to generalize. This means to target a new scheme, they would require
human involvement to revise the existing heuristics and possibly to design new heuristics.

Deep-learning-based attacks. Decaptcha [8] employs machine-learning-based classifiers to
develop a generic attack for text-based captchas. It can break 13 captcha schemes but achieves
zero success on more difficult schemes including reCAPTCHA and Google scheme. By contrast,
our approach not only gives a higher accuracy on the schemes where Decpatcha succeeds but
also delivers a success rate of 87.4% on reCAPTCHA for which Decaptcha has a success rate of
zero (see Table 5). Recently, George et al. presents Recursive Cortical Network (RCN) for image
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recognition [20]. The RCN is effective in recognizing individual characters but are less effective
for solving text-based captchas when compared to our approach. In particular, on the PayPal
dataset, our approach boosts the success rate from 57.1% to 92.4%. Stark et al. [62] show that active
learning can be used to reduce the number of captchas required to learn a solver. However, this
approach requires having access to a captcha generator of the target scheme, which is often not
available to the adversary. However, active learning is complementary to our approach as it allows
the learning engine to use a fewer number of training samples to speed up the training process.

Other attacks. The work presented by Gao et al. targets captchas of hollow characters [16]. Their
approach first fills the hollow character strokes, and then searches for the possible combinations of
adjacent character strokes to recognize individual characters. While effective on hollow characters,
this approach is ineffective on captcha images with overlapping and distorted characters. Their
more recent work [18] uses the Log-Gabor filter to first extract character components from the
captcha image; it then uses the k-Nearest Neighbor algorithm to recognize individual characters
using the extracted information. Due to the limitation of the Log-Gabor filter, their method is
ineffective for captcha images with noisy backgrounds, e.g. Baidu captcha shown in Figure 1(b).

Alternative captcha schemes. It is worth mentioning that there are also other captcha schemes
built around images [3, 14, 27, 50, 54], audio data [6, 55], or recently adversarial captchas [58].
Many of these were proposed to replace text captchas. However, these alternative schemes are
less popular than text captchas and were shown to be vulnerable too [9, 19, 46, 49, 61, 66]. In
particular, a significant weakness of an image-based scheme is that the number of images used by
the scheme is typically limited. As a result, an adversary may exploit side channels to obtain and
label a large portion of the images used by a scheme [32].

Adversarial machine learning. As a final remark, we point out that our work builds upon the
foundations of adversarial machine learning [24, 33]. This technique is shown to be useful in con-
structing adversarial applications to bypass malware detection [53, 70], escape from spam mail
filtering [5], or confuse machine learning classifiers [25, 47]. However, no work to date has em-
ployed the technique to construct a generic solver for text captchas, and our work is the first to
do so.

9 CONCLUSION

This article has presented the first GAN-based generic solver for text captcha. Our solver is built
by first learning a captcha synthesizer to automatically generate synthetic training examples to
build a base solver, and then refining the base solver using transfer learning. This feature allows
our approach relies on fewer real captchas to construct the solver, and can target a wide range of
schemes. As a result, our approach needs less human involvement compared to prior methods.

Our approach was evaluated on 33 text captcha schemes, including 11 schemes that were being
used by 32 of the top 50 popular websites at the time this study was conducted. Experimental
results show that our approach outperforms four start-of-the arts by successfully solving more
captchas. We show that our approach is robust and generally applicable, which can break many
advanced security features used by modern text captchas. Our results suggest that these advanced
features only make it difficult for a legitimate user but would fail to stop automated programs. As a
countermeasure, we show that by inserting some imperceptible perturbations on a captcha image,
one can enhance the security strength of text captchas under deep-learning-based attacks.
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