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Abstract— Contactless wireless sensing without attaching a
device to the target has achieved promising progress in recent
years. However, one severe limitation is the small sensing range.
This paper presents WIDESEE to realize wide-area sensing with
only one transceiver pair. WIDESEE utilizes the LoRa signal
to achieve a larger range of sensing and further incorporates
drone’s mobility to broaden the sensing area. WIDESEE presents
solutions across software and hardware to overcome two aspects
of challenges for wide-range contactless sensing: (i) the inter-
ference brought by device mobility and LoRa’s high sensitivity;
and (ii) the ambiguous target information such as location when
employing just a single pair of transceivers for sensing. We have
developed a working prototype of WIDESEE for human target
detection and localization that are especially useful in emergency
scenarios such as rescue search, and evaluated WIDESEE with
both controlled experiments and the field study in a high-rise
building. Extensive experiments demonstrate the great potential
of WIDESEE for wide-area contactless sensing with a single LoRa
transceiver pair hosted on a drone.

Index Terms— Wide-area, wireless sensing, LoRa, mobility.

I. INTRODUCTION

BESIDES traditional data communication functions,
in recent years, wireless signals have been employed for

sensing and have enabled diverse new applications including
indoor navigation [24], [60], [65], health monitoring [9], [43],
and human-computer interactions [16]. Wireless sensing relies
on analyzing the characteristics of the signal reflected from the
target to understand the contextual information of one’s inter-
est (e.g., localization). A wide range of wireless signals have
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been exploited for contactless sensing (i.e., without attaching
any device to the target objects), including ultrasound and
various types of radio frequency (RF) signals (e.g., WiFi and
RFID). The RF signals attract particular attention in real-world
sensing applications since they do not require to secure a Line-
of-Sight (LoS) between the device and targets as opposed to
conventional camera-based systems [41], and have stronger
penetration capability compared to acoustic signals [49], [59].

Although promising, one evident issue with existing
RF-based sensing is its limited sensing range, which hinders
its applications in wide-area sensing such as disaster rescue.
This is mainly because the signals reflected from the target,
which contain information related to the context of the target,
are much weaker than the direct-path signals between the
transmitter and receiver. The fact that wireless sensing captures
information from the reflected signals makes the sensing range
much smaller compared to when the signals are used for
communication purposes. For example, the current WiFi-based
systems are only capable of performing sensing in a room-level
range (i.e. approximately 3-6 m) [28], [60], whereas RFID or
mmWave-based systems show an even smaller sensing range
of 1-3 m [29], [54], [66].

Recently, efforts have been made to extend the contact sens-
ing range of RF signals [12], [26], [67], [68]. Ashutosh et al.
introduced an approach to employ multi-hop nodes to track
the sensor-attached targets that are located deep inside a
building structure [12]. In another example, Ma et al. leveraged
drones to relay sensing information, which extends the sensing
range from 5 m to 50 m [68]. Employing relay or multi-hop
transmission schemes can increase the sensing coverage range.
However, these approaches require deploying multiple devices
as transceiver, which limits their applications in wide-area
emergency rescue scenario for two reasons. On the one hand,
multiple devices need to cooperate with each other, if the
relay device or one inner node fails, the system will not able
to achieve wide-area sensing; on the other hand, deploying
multiple devices is time-consuming and therefore impractical
in emergency rescue scenarios.

In this paper, we present WIDESEE, a contactless wire-
less sensing system, based on the emerging LoRa tech-
nology with only a single transceiver pair. WIDESEE is
designed to push the boundary of wireless sensing. Our key
insight is that the low-power, long-range wireless communi-
cation capability of LoRa offers a long propagation distance
(i.e., several kilometers) and a strong penetration capability

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:48:21 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6630-0976
https://orcid.org/0000-0001-8253-2470
https://orcid.org/0000-0002-5396-4554
https://orcid.org/0000-0003-2623-0608
https://orcid.org/0000-0001-5935-125X
https://orcid.org/0000-0003-4885-2600
https://orcid.org/0000-0002-4333-2334
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0002-1180-6806


CHEN et al.: TOWARD WIDE-AREA CONTACTLESS WIRELESS SENSING 591

through obstacles, which in turn can be employed to signifi-
cantly increase the sensing range compared to other wireless
technologies. In this work, as a proof-of-concept, we explore
the opportunities and limitations of the LoRa technology
for non-contact human detection and localization in wide-
area scenarios. To further increase the sensing area coverage,
we leverage the mobility of a drone to carry the transceiver
and move around the target area to perform wireless sensing.
As we demonstrate later in this paper, we successfully realize
building-scale, through-wall sensing to detect and localize
human targets. We believe the proposed study is particularly
useful for human target sensing (detection and localization)
for applications in urban search and rescue missions.

Translating our high-level idea into a functional system,
however, is nontrivial due to a number of challenges. First, the
larger sensing range of LoRa also means the interference range
is also larger due to the higher signal reception sensitivity.
Second, a transceiver pair equipped with a single antenna
does not provide us sufficient information regarding the target
location since the number of unknown variables is greater
than that of the constrained equations for localization. Third,
although employing a drone can increase the sensing coverage,
the vibration introduced by the drone during its operation
(i.e., flying) affects the resultant signals and accordingly the
target sensing performance.

To address the aforementioned challenges in wide-range
sensing, we introduce solutions across the software and hard-
ware stacks. To tackle the interference brought by LoRa’s high
sensitivity, we redesign the antenna system and the sensing
algorithm. Specifically, we employ a compact, reconfigurable
directional antenna at the receiver to narrow down the target
sensing region. Our system can quickly (i.e., within 10 ms)
switch the radiation pattern with a narrow beamwidth of 48◦.
Such a design allows WIDESEE to stay focus on the area
of interests and reduce the impact of interference. To further
eliminate the multipath effect within the sensing area, we take
a unique approach to first extract the direction-related infor-
mation from available time-series of amplitudes and then use
the information to isolate the target path from the interfering
multipath. As a departure from the commonly used angle-
of-arrival (AoA) or time-of-flight (ToF)-based methods, our
design avoids the pitfall of relying on accurate channel phase
information and large bandwidth, which are unfortunately not
available on LoRa.

To reduce the ambiguities in localization, we build analytic
models that can predict and determine target locations. This
is based on our key observations that the speed of the moving
target (e.g., humans) is relatively constant and the resulting
trajectory is smooth within a short period of time (e.g., < 1 s).
We model the signal characteristics of the (vibration) noise and
human target movements in frequency domain and filter out
the vibration artifacts on the received signals to improve the
sensing accuracy.

We integrate the proposed techniques to implement a work-
ing prototype and deploy it to detect and localize human
targets in three different real-world environments: an open
square, an underground parking garage, and a high-rise build-
ing structure with a size of 20× 42× 85 m3. Our experiment

results show that WIDESEE can effectively detect and localize
human targets using just one transceiver pair. For 90% of the
test cases, the localization error of WIDESEE is within 4.6 m.
Such accuracy would allow one to identify at which room
the human target locates in many typical building structures.
This is a promising result considering we use only a single
transceiver pair, and the target moves most of the time in a
large environment. We hope this study can encourage further
research in exploiting wide-area wireless sensing in detecting
and tracking human targets to enable applications like disaster
rescue search and security surveillance [55]. The main contri-
butions of this paper can be summarized as followings:

• We present a contactless system for sensing human targets
in a wide area using just one transceiver pair, by combin-
ing the agility of drone with the long-range propagation
characteristic of LoRa.

• We introduce new algorithms and design methodologies
across the software and hardware stacks to effectively
tackle a series of interference issues when applying
LoRa and a flying drone for wide-range sensing, and to
address the sensing ambiguity issue when only one single
transceiver pair is employed. The proposed techniques are
generally applicable, and can be applied to other wireless
sensing tasks.

• We demonstrate, for the first time, building-scale, contact-
less human sensing can be achieved with just one LoRa
transceiver pair together with a drone. We can detect
multiple targets simultaneously and localize one of them.

II. BACKGROUND AND OVERVIEW

A. LoRa Technology

LoRa offers a long communication range for up to several
kilometers [51] with the ability to decode signals as weak
as −148 dBm. While the ability of decoding weak signals is
beneficial for long range communications, it makes LoRa more
likely to suffer interference from uninterested area in sensing.
Even using a directional antenna at the receiver, there still
exist strong multipath effects [31] within the detectable area
that greatly affect the sensing accuracy. Much effort has been
made to similar problems associated with multipath effects in
other RF signals (e.g., WiFi [56] or RFID [69]) or acoustic sig-
nals [49], which are based on AoA or ToF information of the
received signals. However, such information requires accurate
channel phase readings and clock synchronization between
the transmitter and receiver, both of which are unavailable on
LoRa.

In this work, instead of making efforts on obtaining AoA or
ToF to tackle the multipath effects, we consider an approach
to leverage the received (albeit susceptible) signal strength
(i.e., amplitude) for effectively addressing the inherent issue
of multipath effects. This is described in Section III-C.

B. Motivation and Problem Scope

As depicted in the conceptual illustration in Figure 1,
WIDESEE could be used to target emergency scenarios, such
as disaster rescue and terrorist search in high-rise building
structures. In these scenarios, identification of the presence of
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Fig. 1. Motivation example of WIDESEE: a building-scale human target
sensing scenario.

Fig. 2. Overview of WIDESEE. We use a drone to carry the LoRa transceiver
pair and its control system. The data are sent back to the remote data
processing platform to perform real-time target detection and localization.

human targets and their locations is of high importance, but
doing so is challenging because (a) the localization sensing
infrastructure (e.g., surveillance cameras) may not be readily
available or has been destroyed, and (b) visual inspection of
human targets is restricted if not impossible. WIDESEE is
designed to offer decision supports in such difficult settings.

In our application of human sensing, we aim to achieve
the following two goals. The first is to detect the existence
of human targets. The second is to identify the target’s
location if a presence is detected. We do not consider a
multiple-device or multi-hop transmission scheme, because
such a strategy requires a careful and complex setup process,
which is often infeasible in emergency situations. As a proof-
of-concept, WIDESEE is designed to be capable of detecting
the presence of multiple human targets located in different
rooms in the same building, but only localizing one target
at a time. We leave the simultaneous localization of multiple
targets as our future work.

C. Overview of WIDESEE

WIDESEE is a wide-range contactless human target sensing
system built upon a single LoRa transceiver pair. The trans-
ceiver pair (both the transmitter and receiver) is carried by
a drone so that WIDESEE can scan and sense a large area
by flying the drone. Having a small, lightweight design for
WIDESEE is essential to maintain a good endurance for the
battery-powered drone.

WIDESEE operates by first transmitting the LoRa signal,
and then capturing and analyzing the received resultant signal
from the direct signal path and reflections off the target and
surrounding objects. To detect the presence of a human target,
WIDESEE models how a human activity like breathing, waving

or ambulating affects the power spectral density (PSD) of
the received signal. WIDESEE then tries to locate a detected
human target by extracting and analyzing the target’s direction-
related information. As depicted in Figure 2, WIDESEE con-
sists of three innovative components:

• A compact, reconfigurable antenna system to reduce the
interference from uninterested areas. To prevent moving
targets from being missed, the antenna should be able
to adjust its direction and radiation pattern quickly. Our
design is detailed at Section III-A.

• A data collection and antenna control system, which
includes a LoRa transceiver pair, a data collection subsys-
tem, and a drone. The drone carries the LoRa transceiver
pair and the data collection subsystems to fly around the
target region. The collected LoRa signal data are sent
back to a laptop (through a LTE network) to be processed
on the ground. The antenna control system employs an
Arduino board carried by the drone to configure the
antenna radiation pattern accordingly. The details are
described in Section III-B.

• A target detection and localization system, which runs
on a data processing platform, i.e., a laptop in our case.
The system analyzes the collected data to detect and
localize the human target. This is discussed in detail in
Section III-C.

III. SYSTEM DESIGN OF WIDESEE

WIDESEE leverages LoRa’s long communication range and
high penetration capability for sensing targets that are within
a wide area or deep inside building structures. As discussed in
Section II-A, this advantage also brings in more interference
from uninterested objects due to the larger sensing range.
Overcoming this limitation requires novel design methodolo-
gies, analysis and processing algorithms.

A. Reconfigurable Antenna System

To reduce the interference, we look for innovations at the
antenna side. Our first intuition is to employ a directional
antenna at the receiver to narrow down the sensing region.
However, commonly used horn directional antennas such as
RFMAX [5] have a fixed radiation pattern and mechanically
rotating the antenna orientation to focus on a region is too
slow. Furthermore, the beamwidth offered by a horn antenna
is usually not narrow enough [5]. An alternative is to use a
phased-array antenna that can change the radiation pattern by
adjusting the amplitude and phase of each antenna element,
to achieve fast scanning with narrower beams [21], [27].
However, there is a problem for using a phased-array antenna
with LoRa. The LoRa signal has a wavelength of 33 cm and
to achieve a 25◦ beamwidth, the linear array will have a size
of approximately 2 m. The resulted antenna design is not only
expensive, but also too bulky to be fitted on a domestic drone.

We wonder if we could bring together the advantages of
horn antenna (small size and low cost) and phased array (high
resolution and scanning speed). In answer, we adopt a recon-
figurable antenna approach [14], which is capable of switching
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Fig. 3. The fabricated antenna system on the receiver side.

Fig. 4. Frequency and radiation properties of our reconfigurable antenna
system. Here (a–c), (d–f) and (g–i) respectively represent the frequency
property, radiation pattern and normalized radiation pattern of mode1-3.

the radiation pattern and frequency properties through adjust-
ing its internal current flow distribution to offer a narrow
beamwidth.

Specifically, we choose to use a parasitic-planar-patch
antenna [30] for our reconfigurable antenna design. Figure 3
shows our reconfigurable antenna implementation that is used
at the receiver side, which consists of a driven patch in the
center and two parasitic patches on both sides. Beam steering
is achieved by manipulating the status of the parasitic patches
to act either as reflectors (when shorted to ground) or directors
(when not shorted to ground). The radius of each patch is
78 mm. Two shorting pins are shorted to ground from each
parasitic patch, to ensure that the currents can flow from the
parasitic patches to the ground according to the RF switching
configuration. Two SMP1345 PIN diode switches are soldered
on the parasitic patch layer close to each of the shorting pins
and the RF/direct-current (DC) input. Each diode occupies a
small space of around 2×2 mm. The PIN diode is achieved by
using a resistance (1.5 Ω) and a capacitor (1.5 pF ) for ON and
OFF states, respectively. The resulting antenna system is small
(20× 50 cm) and has a comparable weight to a similar-sized
horn directional antenna (< 1 kg), but has the advantage of
quickly switching the radiation patterns. It costs us less than
300 USD to build the antenna and its control system, and we
expect the price to be significantly reduced during massive
production.

TABLE I

PROPERTIES OF OUR ANTENNA SYSTEM AND A SIMILAR-SIZED
RFMAX [5]—A POPULAR HORN DIRECTIONAL ANTENNA

Fig. 5. We use a DJI S1000 to carry the LoRa transceiver pair (a) and the
data collection/control subsystem (b).

Figure 4 shows the frequency and radiation properties of
our antenna system. Our current implementation supports three
different radiation modes. We use an Arduino board to switch
between the three modes in a round-robin fashion, where
switching occurs every 10 ms. We empirically determined
this switching frequency which is sufficient for sensing human
targets. This is based on the observation that the human body
movements often have a frequency less than 10 Hz [19].

Table I compares our antenna system (in three different
modes) against a similar-sized RFMAX [5] – a widely used
horn directional antenna. From the table, we see that the
frequency range and gain of our antenna system for the
three modes are comparable to those of RFMAX, but our
design has the advantages of offering quick radiation pattern
switching and a narrower beamwidth. These advantages make
our antenna system more suitable for target sensing with
LoRa. Note that, the total radiation angle range of our system
is twice RFMAX’s, and the radiation pattern switching is
much quicker ( i.e., 10 ms) than horn antenna which requires
mechanical rotation for direction change.

B. Data Collection and Antenna Control System

As depicted in Figure 2, we use a consumer drone to carry
the transceiver pair and its control and data collection modules.

1) Transceiver Pair: Our LoRa transceiver pair is shown
in Figure 5 (a). We use an off-the-shelf device, Semtech
SX1276 [6], with an omnidirectional antenna as the LoRa sig-
nal transmitter. The transmitter sends signals in a continuous
mode at 890 MHz frequency – the best working frequency
of our reconfigurable antenna system. At the receiver end,
we use LimeSDR-mini (a software-defined radio board [4])
as the LoRa gateway to collect signal at a sampling rate of
250 KHz through running the GNU radio software develop-
ment toolkit [2]. We connect the board to our reconfigurable
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antenna (see Section III-A) through one of its RF connectors,
and to an Android smartphone (with 8G of RAM and 128G
of storage) via a USB 3.0 port.

The receiver end works as follows. After initializing the
LimeSDR-mini board, the antenna control software running
on the Arduino board continuously switches among the three
radiation modes of the antenna, at a frequency of 10 ms. The
detection area was roughly divided into three-part and each
part matches a radiation pattern of the reconfigurable antenna.
When the host computer changes the radiation pattern, the
system will clear the sampling buffer and re-sample the signal
in the current radiation pattern. The collected samples are read
by the smartphone to be transferred (labeled with the radiation
modes) to a laptop via LTE connection for data processing.
In this way, WIDESEE can detect and localize targets within
an interested area covered by each radiation mode. Note that it
is possible for our target detection and localization algorithms
to run on the smartphone or an embedded device to remove
the need of data transfer, and we leave this as our future work.

2) Drone System: We use a DJI S1000 drone [7] to
increase the area a single transceiver pair can effectively cover.
As illustrated in Figure 5 (b), the LimeSDR-mini, smartphone,
Arduino board are put on top of the drone and are powered
by a 5200 mAh portable power bank with a 2.4 A output.
We employ the collision avoidance system provided by DIJ to
avoid drone collision with obstacles. The drone is controlled
by software running on a laptop, programmed through the
DJI software development kits. One limitation of the drone
system is that it can not operate for a long time when loaded
with the devices and one battery charge can support around
15 minutes of flight. Our future implementation will look into
reducing the drone’s load by running the data collection and
antenna control software on a single computing device (e.g.,
the Arduino board), which can be powered directly by the
drone’s battery. Multiple drones can be utilized to alleviate
this power-hungry issue.

C. Target Detection and Localization System

We develop a set of algorithms to process the collected
LoRa signal data to detect and localize human targets. The
process of detection and localization works as follows. We first
pre-process the received signal to remove the noises caused
by the drone’s vibration artifacts. We then exploit the power
spectrum density (PSD) of the processed signal to detect the
presence of human targets. The PSD is calculated as the Fast
Fourier Transform (FFT) of signal amplitudes’ self-correlation.
Note that our detection mechanism can detect the presence
of target no matter one or multiple targets are present in the
sensing area. After detecting the presence of a moving target,
we apply the localization algorithm to estimate the location
of the target whose reflection is strongest at that time. Note
that during the localization stage, we let the drone hover in
place. With the device mobility, we can detect and locate
multiple targets successively. As we have previously discussed,
WIDESEE needs to effectively handle the multipath effects
and location ambiguities brought in by using only one LoRa
transceiver pair.

Fig. 6. Comparison of the PSD of the received signal when there exists no
human target (a) and a moving target (b). The PSD patterns in two scenarios
differ significantly. WIDESEE exploits this observation to detect the presence
of human targets.

1) Vibration Noise Elimination: Vibrations of a flying
drone inevitably introduce noise to the received LoRa signals.
To remove the introduced noise, we exploit the observation
that the motion artifacts brought by a drone are within a
frequency range between 60 Hz and 150 Hz, which is
different from the lower frequency range of a human body
movement (< 10 Hz). Therefore, we first use a low-pass
filter (i.e., second-order Butterworth low pass filter with a
cutoff frequency of 10 Hz) to remove the high-frequency
motion artifacts in the frequency domain and then convert the
filtered signal back to the time domain to be processed in the
next stage. Our evaluation in Section IV shows that this is a
simple yet effective strategy.

2) Human Target Detection: Human activities like hand
waving and walking will alter the wireless propagation paths
and lead to the change of signal amplitude at the receiver [11].
Prior work shows that when no human target is present, the
received signal can be approximated as the superposition of
constant signals and the white Gaussian noise, yielding an
invariant PSD with time [45]. By contrast, the PSD of the
received signal resulted from a moving human target, will lead
to fluctuations on the measured signal. As an example, con-
sider Figure 6 drawn from our own experiments. It illustrates
the difference in the PSD with and without a moving human
target. When no human target is present (Figure 6 (a)), the
PSD of the received signal remains stable with time and close
to 0 Hz, while when a moving target presents (Figure 6 (b)),
the PSD fluctuates at low frequencies (0− 10 Hz). Our work
exploits this signal characteristic to detect the presence of a
human target – if the measured PSD frequency and its variance
are both below a threshold (empirically set to 0.1 Hz in
our case), we consider there is no human target; otherwise,
we conclude that someone (with movements) is in the sensing
area.

In this work, we focus on detecting human targets with large
movements: ambulating or waving in-place. We are also able
to detect a stationary breathing target when there is no obstacle
between the transceiver pair and the target, or the obstacle is
thin (see Section IV-B.3). Figure 7 illustrates the normalized
PSD of the reflected signals of these three states (ambulating,
waving and stationary) from a human target in a controlled
environment. The diagram shows that different states exhibit
different characteristics in the frequency domain, which can
be used to identify and differentiate these states. In particular,
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Fig. 7. Frequency distribution of signal changes caused by three states of a
human target. Different states lead to different signal frequency distributions.

human breath and waving present strong, dense PSD with
a frequency range of 0.1-0.6 Hz and 1-4 Hz, respectively.
By contrast, the PSD distribution of an ambulating human
target is more spread apart, mainly due to the human target’s
randomized ambulatory trajectory pattern and uncorrelated
movements of multiple body parts.

Multi-target identification. In Section 3.3.2, we showed
how to detect the human target presence. Then a natural
question is: how many targets are there inside the sensing
area? Since only one antenna is used for both transmitter and
receiver, the observation angle is limited, the reflected signals
from multiple targets may not all reach the receiver. Also
there exits mutual interference between different targets. These
factors make it difficult for us to identify the number of targets
according to the number of PSD peaks. Fortunately, the human
target motion is continuous across a short period of time, thus
we propose to combine the time domain amplitude change and
frequency domain PSD pattern during multiple time segments
to identify the number of human targets. We input both the
time and frequency domain features to the support vector
machine (SVM) to obtain the number of targets.

3) Ambulating Target Localization: Once the ambulating
human target is detected, we focus on identifying the location
of the target. One of the technical challenges in LoRa-based
target localization is that the multipath in LoRa is more severe
than that in other signals (e.g., WiFi). Even though we utilize
the narrower beam antenna at the receiver, the multipath
within the sensing area can be still substantially strong, which
negatively impacts target localization. To address the multipath
issue for localization, previous work has investigated various
techniques, such as analyzing the AoA information [61],
frequency hopping based on accurate channel phase mea-
surement [39], [44], and comparing ToF that requires large
bandwidth and tight transceiver synchronization [34]. Unfor-
tunately, these techniques are not applicable to our system
because the maximum bandwidth of LoRa is only 500 KHz,
and the asynchronism between LoRa node (Tx) and gate-
way (Rx) makes it difficult to extract stable phase readings
from the received signal. Also, it is particularly difficult to
achieve synchronization between LoRa node and gateway
due to the cheap oscillator adopted. Because of the chirp
modulation scheme adopted, LoRa can tolerate high frequency
offset for communication so high-accuracy oscillator is not
needed.

In this work, we propose an amplitude-based anti-multipath
method to localize a moving target. The foundation of our

Fig. 8. (a) shows the setup of moving target localization. Similar to the
linear virtual array constructed by moving receiver. The moving target also
can emulate a linear array. (b) presents the superposition signal of multiple
paths.

method is to extract direction-related information from signal
amplitudes, inspired by the recent work [32], [46]. By using
the direction-related information for localization, we have the
opportunity to remove the multipath effect that however is not
addressed well in [32] and [46]. In the following subsections,
we first describe the basic concepts behind extracting the
direction-related information when a target is moving. Then,
we answer how to obtain target location information from the
extracted direction-related information. Finally, we propose the
solution to handle multipath.

Direction-related parameter estimation. Here we first
describe the framework for estimating direction-related para-
meter in device moving scenario (target does not move), which
can be used to deduce the direction-related parameter in target
moving case (device does not move).

Considering a scenario in which we have one receiver that
receives signals from K different sources. When the receiver
moves along a straight line at a speed v, it can emulate a
linear array. We can define the incoming angle of each signal
source in far-field as θk, k = 1, 2, . . . , K . Then, the signal
received from the kth source at time t can be expressed as
xt,k = at,kej(μk+ 2πvt

λ cosθk) [23], where at,k is the amplitude
of the signal and μk is the signal phase at the initial time
point (i.e., t = 0). Then, the signal received at the receiver at
time t is a superposition of K signals, which can be written
as:

y(t) =
K∑

k=1

at,kej(μk+ 2πvt
λ cosθk). (1)

Let us denote R(τ) as the self-correlation of the received
signal amplitudes at delay τ . Then, R(τ) can be expressed
as [23], [32]:

R(τ)=CA+
K−1∑
k=1

K∑
j=k+1

Ck,j · cos
(
2π

vτ

λ
(cosθk−cosθj)

)
,

(2)

where CA is a constant term depending on the total signal

power and Ck,j =
πa2

t,ka2
t,j

16
�K

k=1 a2
t,k

, where a2
t,k is the signal power

of kth signal. It is noteworthy that R(τ) consists of a total
of K(K−1)

2 harmonics. Each harmonic’s frequency is related

Authorized licensed use limited to: University of Leeds. Downloaded on January 06,2025 at 21:48:21 UTC from IEEE Xplore.  Restrictions apply. 



596 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

to the cosine of two sources’ AoAs (i.e., θk, θj , and k =
1, 2, . . . , K , j = 1, 2, . . . , K), which is given by:

˜fk,j =
v

λ
|cosθk − cosθj |. (3)

Note that cosθk and cosθj are unknowns we are trying to
obtain the values. These frequencies f̃k,j can be obtained by
the frequency estimation technique, such as the fast Fourier
transformation of amplitudes’ self-correlation followed by a
peak magnitude detection.

For the target moving and transceiver fixed scenario shown
in Figure 8 (a), the resultant signal is composed of reflec-
tion (Tx → target → Rx) from an ambulating human target
and direct path (Tx → Rx). The resultant signal at time t can
thus be written as:

y(t) = ase
jμs + ade

j(μd+ 2πvt
λ (cosθT +cosθR)), (4)

where as and μs are the amplitude and phase of the direct
path signal, ad is the amplitude of the signal reflected from the
moving target, μd is the initial phase (t = 0) of the reflected
signal, v is the moving speed of the target, θT and θR are two
angles marked in Figure 8 (a).

Equation (4) is a special case of Equation (1) with
2 sources (K = 2), cosθ1 = 0 and cosθ2 = cosθT + cosθR.
The moving target can synthesize a transmitter array. We put
cosθ1 and cosθ2 into Equation (3) to obtain the following:

˜f1,2 =
v

λ
|0 − (cosθT + cosθR)|, (5)

since v, θT and θR are unknowns in practice, we jointly
estimate the direction-related parameter |v(cosθT + cosθR)|
as ˜f1,2λ according to Equation (5).

Localization ambiguity avoidance. By utilizing the
|v(cosθT + cosθR)| estimate from only one transceiver pair to
localize the target, there exist severe localization ambiguities
that stem from three aspects: (1) the absolute value symbol | |
applied to v(cosθT +cosθR); (2) unknown distance d between
the target and the Tx-Rx LoS link as shown in Figure 8 (a);
and (3) unknown speed v and direction θ0 of target movement.
We show the localization result of a special case (θ0 = 0) in
Figure 11 (a). We can see that even with θ0 = 0 to simplify the
problem, there still exist ambiguities (the areas with red color).
So it is difficult to obtain the target’s true initial location.

In this paper, we solve this problem based on the facts that
the target’s moving trajectory is smooth and the velocity is a
constant during a short period of time (e.g., < 1 s). Specifi-
cally, we utilize multiple consecutive estimates of v(cosθT +
cosθR) with a sliding window of size w, and each estimation
process requires samples collected in a time window of size τ .
w and τ are empirically set as 0.25 s and 1 s in our system.
To reduce the computational time, we reduce the sample rate
from 250 KHz to 1 KHz for PSD calculation. For a desired
frequency resolution, we set the number of transformation
point as 215 in FFT procedure. We aim to solve five unknown
parameters: [θT1, θR1, θ0, d1, v], where θT1, θR1 and d1 are the
initial values of θT , θR and d respectively. Note that within
a short period of time, v and θ0 can both be considered as
constants while θT , θR and d are changing. During the process

Fig. 9. The changing trend of v(cosθT +cosθR) estimates at various target
moving directions θ0. It can be seen that the changing trend of v(cosθT +
cosθR) estimates from the 1st to mth is always decreasing no matter the target
moves towards LoS (0◦ < θ0 < 90◦) or moves away from LoS (90◦ < θ0 <
180◦).

Fig. 10. Four adjacent estimates of direction-related parameter |v(cosθT +
cosθR)|. The estimates are the normalized frequencies corresponding to the
peaks of PSD plots.

Fig. 11. Localization ambiguity avoidance. The heatmap exhibiting the
likelihood that how a partitioned grid is likely to be the initial location of
the target. The coordinates of Tx and Rx are (0, 0) and (10, 0), the ground
truth is highlighted with black square. From (a), we can see all grids of the
reddest color result in the same value of |v(cosθT +cosθR)|, resulting severe
localization ambiguities.

of target movement within a short period of time, we keep
estimating the three changing variables. For the mth estimate,
we can have the two equations bellow:{

v(cosθTm + cosθRm) = ±(˜f1,2λ)m

dm(tan(θ0 + θRm) + tan(θTm − θ0)) = L.
(6)

Note that ± can be removed due to our observation as shown
in Figure 9. We find that the changing trend of v(cosθT +
cosθR) estimates from the 1st to mth are always decreasing.
When the target moves towards transceiver pair, the values
of cos θT and cos θR (0◦ < θT < 90◦, 0◦ < θR < 90◦)
are positive and the values decrease with angles θT and θR

increasing. When the target moves away from the transceiver
pair, the values of cos θT and cos θR (90◦ < θT < 180◦,
90◦ < θR < 180◦) are negative and the values again decrease
with angles increasing. So we delete another set of estimates
that do not satisfy the condition of decreasing from the 1st to
mth estimates.
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Fig. 12. Multipath interference presentation. The figure shows that past AoA based multipath removal solution fails when the interfering object is close to
the connecting line between target and receiver/transmitter (like at location B). Our approach has the ability to mitigate the problem.

Consider the fact of trajectory smoothness and speed con-
stancy over a short period of time, we can add the following
constraints: ⎧⎪⎨⎪⎩

θTm ≈ θT1 + (m − 1)α
θRm ≈ θR1 + (m − 1)β
dm ≈ d1 − vτ(m − 1)cosθ0,

(7)

where α and β are constant but unknown. By incorporating
Formula 7 into Formula 6, we find that when m reaches 4,
the number of equations (2m = 8) is larger than the number
of unknowns (a total of 7 with 5 original unknowns and
2 newly introduced unknowns). Thus we are able to solve
the unknowns with only 4 estimates of |v(cosθT + cosθR)| as
shown in Figure 10.

Since the equations are non-linear that cannot be solved
directly, an intuitive choice is to use Approximate Search
algorithm. To avoid the local optimum issue and reduce time
overhead, we adopt Particle Swarm and Global Search from
Matlab Global Optimization Toolbox to achieve global opti-
mum search for the set of non-linear equations. The principle
is to obtain an initial search value close to the solution
using particle swarm, then limit the objective function with
fmincon’s non-linear constraints, and finally use Global Search
to obtain the solution. The computational complexity of the
search algorithm is O(N × M), where N is the dimension
of the particle swarm and M is the number of iterations.
Specifically, we set the number of particles N and the number
iterations M as 70 and 1400, respectively. And we allow the
inertia coefficient change from 0.1 to 1.1. The inertia coeffi-
cient will be updated smoothly at each iteration with a dynamic
factor. In addition, we set a boundary for each searching
variable according to the actual condition, which reduces the
scale of the searching problem. Figure 11 (b) shows that the
initial localization result with our ambiguity avoidance scheme
is close to the ground-truth.

Multipath interference elimination. Consider a typical
multipath scenario shown in Figure 8 (b), we can see that the
received signal at the receiver is a superposition of multiple
signals, which can be written as:

y(t) = ase
jμs + ade

j(μd+ 2πvt
λ (cosθT +cosθR)

+a′
de

j(μ′
d+ 2πvt

λ (cosθ′
T +cosθ′

R), (8)

Fig. 13. Localization errors of using past (5.1 m) and our (1 m) multipath
elimination approaches, when an interfering object locates at point B as shown
in Figure 12 (a).

where ad, μd, θT and θR are the amplitude, initial
phase (t = 0), angle parameters of the direct target
reflection (Tx→target→Rx), respectively. To simplify rep-
resentation, here we approximate the indirect target reflec-
tion (Tx→target→wall→Rx) as a new direct reflection from a
virtual target (Tx→virtual target→Rx), with amplitude a′

d, ini-
tial phase (t = 0) μ′

d, direction parameters θ′T and θ′R. In such
scenario, the f̃λ value set has |v(cosθT + cosθR)| as well as
|v(cosθ′T +cosθ′R)| and |v(cosθT +cosθR)−v(cosθ′T +cosθ′R)|
components. Since the resultant static component (contains
direct path) is much stronger than the reflections, we can lock
the two dominant f̃λ estimates as |v(cosθT + cosθR)| and
|v(cosθ′T + cosθ′R)|.

To distinguish the target corresponding |v(cosθT + cosθR)|
value from the |v(cosθ′T + cosθ′R)| estimate shown in Fig-
ure 12 (b-c), existing solutions (e.g., Dynamic-Music) exploit
the fact that the direct target reflected path is stronger than
the indirect target reflected path [38], [53], [61] due to the
shorter path of former, so they consider the f̃λ value of larger
magnitude as the direct target reflection resulted |v(cosθT +
cosθR)|.

This approach can be effective when the interfering
object (at location A in Figure 12 (a)) is far away from
the connecting line between target and receiver/transmitter.
We can see that the four estimates of |v(cosθT + cosθR)|
decrease monotonically as shown in Figure 12 (d) when there
is one interfering object at location A. Figure 12 (b) shows the
PSD plots and the position (f̃λ) of the peak is the estimate.
We can see that for 4 consecutive time window, the (f̃λ)
is decreasing. These results are similar to the case when
there is no interfering object. However, when the interfering
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object (at location B in Figure 12 (a)) is close to the
connecting line between target and receiver/transmitter, the
|v(cosθT +cosθR)| estimates show remarkable shifts as shown
in Figure 12 (c) and (d) and thus fail to localize the target.
To mitigate this problem, instead of taking the peak value
position f̃λ shown in Figure 12 (c) as |v(cosθT + cosθR)|,
we take the average of two positions corresponding to largest
and second largest peak values as |v(cosθT +cosθR)| if we find
the four estimates are not decreasing monotonously and the
second largest peak value is larger than 50% of the largest peak
value. The reason for this is that when the interfering object is
at location B, the length of the target dynamic path is similar
to that of the interfering dynamic path. In this case, using a
median frequency value can correct the frequency bias caused
by the interference between two frequencies that are too close
to each other. Figure 12 (d) shows that by using our methods
to obtain the new |v(cosθT + cosθR)|, the 4 estimates now
decrease monotonously and match the no-interfere estimates
much better than those obtained with the Dynamic-Music
method. The localization error of our method (1 m) is much
lower than that of Dynamic-Music method (5.1 m).

IV. EVALUATION

A. Experiment Setup and Roadmap

We performed two sets of field experiments to evaluate
WIDESEE in detecting and localizing human targets: field
experiments without a drone and field experiments with a
drone.

1) Field Experiments Without a Drone: We would like to
provide a quantitative evaluation first to justify our design
choices, and to identify the research opportunities and lim-
itations of LoRa sensing. To this end, we evaluate how the
distance between transmitter and receiver affects the sensing
range of LoRa in Section IV-B.1. In Section IV-B.2, we report
the performance of our antenna design for detecting moving
human targets and compare it with two alternative designs
using omni- and horn-directional antennas. We then evalu-
ate LoRa’s penetration capability in detecting three different
human activities in Section IV-B.3, before reporting the local-
ization accuracy of our system in Section IV-B.5. Finally,
in Section IV-B.6, we evaluate the impact of the human
target’s walking speed on detection and localization accu-
racy. Controlled experiments were performed on the ground
for detecting a single moving human target with the LoRa
transceiver pair placed 1 m above the ground.

2) File Study With a Drone: In the field study, we use a
drone to carry the LoRa transceiver pair to detect and locate a
human target in the building shown in Figure 14 (c). We report
the performance for detecting the presence of human targets
and the accuracy for localizing a human target with different
drone speeds. The results are given in Section IV-C.

3) Evaluation Metric: We calculate the accuracy for detect-
ing the presence of a human target as:

Accuracy =
1
C

C∑
c=1

(1 − |Hm,c − Ht,c

Ht,c
|), Hm,c, Ht,c = {0, 1}

Fig. 14. Evaluation scenarios. We evaluate WIDESEE in an open square (a),
an underground parking garage (b), and a middle floor of a 17-floor building
(c). The testing area is on one side of the transmitter-receiver line in all of
the experiments.

Fig. 15. Impact of the transmitter-receiver distance on the detectable distance
(sensing range). WIDESEE can detect a moving object with a distance to the
transceiver pair of up to 53 m in an open square.

Fig. 16. Comparing the detection accuracy (a) and region (b) between our
approach and alternative directional antennas with a similar size. Our antenna
design gives the best trade-off between the detection accuracy and range.

where C is the number of tests, Hm,c and Ht,c are the outputs
of WIDESEE and the ground-truth in the cth test respectively.

B. Field Experiments Without a Drone

1) Sensing Range Under Different Transmitter-Receiver
Distances: In this experiment, we varied the transmitter-
receiver distance, i.e., the distance between the transmitter and
the receiver, from 1 m to 65 m at a step size of 2 m. The tests
were conducted in the open square shown in Figure 14 (a).
In each transceiver pair setting, we asked a target to walk along
the vertical bisector of the transceiver pair 100 times with a
walking distance of 3 m each time, starting from a randomly
chosen position. Note that we moved the starting point further
from the transceiver pair each time, until we fail to detect the
user at that point. We consider a position to be detectable if we
can correctly detect the user at that position for over 90% of
the time. We calculated the distance between each detectable
position and the middle point of the transceiver pair link to
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Fig. 17. Penetration test. WIDESEE can detect a stationary human target who is behind a wall with a thickness of 52cm, and WIDESEE can detect a
moving/walking target deeper inside a wall.

find the largest-possible sensing distance (i.e., sensing range)
for a given setting.

Figure 15 shows how the transmitter-receiver distance
affects the sensing range of WIDESEE. We see that the sensing
range in general grows as the transmitter-receiver distance
increases. However, it reaches a plateau with a detectable
distance of 53 m. This suggests that WIDESEE can achieve
a sensing range of 53 m for a moving target in a relatively
ideal environment (an open square). When the Tx-Rx distance
exceeds 60 m, the sensing range drops rapidly. We believe
this is because the human reflected signal becomes weaker and
limits the contactless sensing range when the distance between
the Tx and Rx is too far. While a 53 m sensing range is already
a significant improvement over WiFi, RFID and mmWave-
based systems, which have a sensing range below 6 m [54],
[60], [66]. However, we believe there is a potential to further
increase this sensing range with careful signal processing
considering the kilometer-level communication range and we
leave it as important future work.

2) Evaluation of Our Antenna System: This experiment is
designed to evaluate the performance of our antenna system
in human target detection. We compare our design against
two alternative designs which use an omnidirectional [1]
and a horn directional (RFMAX [5]) antenna with a similar
size. Our testing area is an open square with a size of
42× 48 m2 depicted in Figure 14 (a). We divided the testing
area into a grid of 224 blocks, 3× 3 m2 for each block. Like
the previous experiment, we asked a human target to choose
any block and then move within the block naturally. We ensure
that each block was tested at least once.

Figure 16 shows that our design presents the best trade-off
between the detection accuracy and area coverage. In this
experiment, we report the number of detectable blocks. Note
that this is different from the evaluation in Section IV-B.1,
where we are interested in the longest-possible distance for
detecting a target that is always on the perpendicular bisector
of the transceiver pair. In this experiment, most of the blocks
are not on the perpendicular bisector of the transceiver pair.
As we increase the transmitter-receiver distance beyond 36 m,
we see a decrease in the number of detectable blocks. This is
mainly due to the directionality of the receiver antenna.

While RFMAX, the horn directional antenna achieves the
second-best detection accuracy, it can detect the least number
of blocks. The omnidirectional antenna, on the other hand, can

Fig. 18. Multi-target detection accuracy.

cover more blocks, but it achieves the poorest detection accu-
racy due to its high sensitivity to the surrounding interference.
The sensing range achieved by our antenna is relatively large
due to the signal focusing and radiation direction switching,
and it delivers a much higher detection accuracy for all
settings. The better detection accuracy of our approach is
largely attributed to its narrower beam, which in turn leads
to a stronger signal and at the same time less interference
from non-target objects.

3) Penetration Test: We also evaluate WIDESEE’s ability to
penetrate the walls. Experiments were conducted in the under-
ground garage as shown in Figure 14 (b) and the second floor
of our test building shown in Figure 14 (c). Our evaluation
includes four settings – no wall and wall made of reinforced
concrete with three different thicknesses (26 cm, 52 cm and
94 cm) between the target and the transceiver pair. In the
through-wall experiment, we placed the transceiver pair 1.5 m
away from the wall.

Figure 17 shows the results. As expected, the thinner the
obstacle between the target and the transceiver pair, the deeper
WIDESEE can successfully detect the target. We observe the
target’s activity also has a significant impact on the detectable
distance. If the target is ambulating or waving, WIDESEE

can successfully detect the target up to 15 m and 13 m,
respectively. WIDESEE can also detect a stationary target with
just respiration. However, the detection distance is limited and
depends on the thickness of the wall. This is not surprising,
as the smaller the activity and the thicker the wall is, the
weaker the received signal strength will be. For our experi-
ments, a 20 cm increase in the wall’s thickness would reduce
the received signal strength by around 29 dB. Nonetheless,
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Fig. 19. CDF plots of the localization error in two large scenarios (10 ×
25 m2) with different densities of multipath.

the results show that WIDESEE can accurately detect a human
target moving or waving deep inside the building.

4) Multi-Target Detection Accuracy: We conducted
multi-target detection experiment in both small space and
large space scenarios. The small space scenario is in an
indoor room with test area size of 3 × 6 m2. The LoRa
transceiver pair is placed 1 m away outside the room and
separated by 3 m. The room wall is made of concrete cement
and with a thickness of 50 cm. The large space scenario is
in outdoor environment with test area size of 10 × 10 m2,
and the transceiver pair is separated by 10 m. In each
scenario, we conducted experiments with different numbers
of volunteer targets inside the room and the volunteers are
allowed to walk randomly within the test area. For each
target quantity, we continuously collected data for about
20 min and segmented the data at step size of 0.25 s.
We used 2157 sets and 540 sets of data for SVM training
and testing, respectively. The identification result is shown
in Figure 18 (a), and we can see that WIDESEE achieves
higher than 98% identification accuracy in small apace. The
accuracy in large space decreases due to the weaker target
reflection.

Impact of distance among targets. In this experiment,
we investigated how the distance among targets affects the
multi-target detection accuracy. The experiment was conducted
in the large space scenario. We collected data of two targets
separated by different distances and walking inside the test
area. The data collected at each distance was used for training
and testing in mul-target recognition model. Figure 18 (b)
shows the identification accuracy of two targets at varying
distances. We can see that when the distance is small as 0 m,
the accuracy decreases. This is expected since there exists
severe mutual occlusion when two targets are too close to
each other.

5) Localization Accuracy in Different Multipath Environ-
ments: We report how multipath impacts localization accuracy
in this section. Our evaluation environments are the open
square (Figure 14 (a)) and basement parking garage (Fig-
ure 14 (b)). As can be seen in Figure 14 (b), the basement
is supported by many pillars and hence has rich multipath.
The test areas in both environments are of the same size
(10 × 25 m2), and we set the transmitter-receiver distance as
10 m. We divided the testing area into 125 blocks, where each
block has a size of 2×1 m2. For each block, a target was asked
to walk following predefined straight lines that have 0◦, 30◦,

Fig. 20. Impact of target moving speed. The target’s moving speed has little
impact on detection, but it affects localization.

45◦, 60◦ or 90◦ degrees with respect to the transmitter-receive
line. For each line, the user walked for around 2 s, starting
from the center of a block. Figure 19 plots the cumulative
distribution function (CDF) of the localization error across our
125 experiment trials. This diagram shows that for over 50%
of our test cases, the localization error is within 2.1 m and
2.7 m in the open square and the basement, respectively. Such
accuracy would be good enough for locating a human target in
many application scenarios, demonstrating the great potential
of sensing using a single LoRa transceiver pair.

We conduct another experiment to show the tracking accu-
racy of our system in a smaller area. This experiment was
performed in a smaller room located in the building shown
in Figure 14. The room has a size of 8 × 10 m2. In this
experiment, the transmitter-receiver distance is set as 6 m.
The target was asked to walk along the trajectory of five
letters “BCIMO”. The recovered trajectories (dots) and the
ground-truth trajectories (solid lines) are shown together in
Figure 21. WIDESEE achieves a median localization error of
52 cm, which is comparable to the 32 cm error achieved in
IndoTrack - a state-of-the-art WiFi tracking system with dense
deployment [60]. This experiment shows that WIDESEE is
able to track the target at higher accuracy in a smaller-size
area.

6) Impact of the Target’s Moving Speed: This experiment
studies the effect of the target’s walking speed on detection and
localization. We consider three walking speeds: slow (0.5 ±
0.2 m/s), average (1 ± 0.2 m/s) and fast (2 ± 0.2 m/s).
We conducted the experiments in the open square shown in
Figure 14 (a).

Figure 20 shows that the target’s moving speed has little
impact on target detection, but it does affect the localization
accuracy. We observe a localization error of 1.7 m, 2 m,
and 2.5 m when the target was moving at slow, average, and
fast speeds respectively. This is largely attributed to the body
motions (e.g., arm swing) – the faster the walking speed is,
the more drastic the body movement will be – a more drastic
body movement makes it harder to satisfy the conditions that
we use for localization (see Equation 7).

C. Building-Scale Field Study

In this field study, we employ WIDESEE with a drone (see
also Figure 2) to perform building-scale sensing. The task is
to detect and track a human target located on the 9th floor of
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Fig. 21. Tracking results in a smaller room with size of 6 × 8 m2. The median tracking error of WIDESEE is 52 cm, which is comparable with a
state-of-the-art that utilizes two WiFi transceiver pair [60].

Fig. 22. Building-scale experiments.

a 17-floor building structure with a size of 20 × 42 × 85 m3

(Figure 14 (c)). Note that the drone needs to be static to the
earth during the localization process based on our localization
model, while it can be flying in the detection phase. Once we
have detected a moving target, we hover the drone in place for
two seconds to collect target-reflected signals, and apply the
localization algorithms to estimate the target position. If no
target is detected, the drone keeps flying. Also note that this
new building had no occupant at the time of our experiment.
The thicknesses of the concrete walls and glass windows
are 40 cm and 5 cm, respectively. The transceiver pair was
carried by a drone in this experiment. The distance between
the transmitter and the receiver is 2 m. Ten student volunteers
participated in this study, serving as the target. Figure 22 (a)
shows the experimental setup. The students were arranged into
three groups to perform stationary (breathing) (2 students),
waving (4 students) and walking (4 students) activities, and are
located in rooms on the same floor. We manually controlled
the drone to fly to an initial position of the 9th floor, and
used the software-based control module (Section III-B.2) to
control the drone’s fly. We varied the flying speed of the drone
in the experiments.

1) Detecting Human Presences: Figure 22 (b) shows the
detection accuracy for each human target who was walking
and waving. When the drone was flying at a low speed of 1±
0.2 m/s, WIDESEE can successfully detect 98% and 96% of
the human targets who were walking and waving respectively.
As expected, the detection accuracy decreases as the drone’s
speed increases, but WIDESEE is still able to detect the target
most of the time when the target was walking or waving.
WIDESEE is unable to detect the stationary (breathing) target
in this study when the device is on a drone and the target is

pretty far away (> 5 m) from the device with a 40 cm wall
made of reinforced concrete in between. However, our current
implementation would already be useful for disaster rescue to
detect conscious survivors, many of whom tend to wave to
attract the attention of rescuers.

2) Localization Accuracy: Figure 22 (c) compares the local-
ization error of our approach with Dynamic-Music [61]. As we
can see, our approach delivers a better localization accuracy
over Dynamic-Music. It reduces the localization error from
8 m to 4.6 m for over 90% of the test cases. Although the
4.6 m localization error is intuitively large, it allows us to
identify which room or roughly which area of a building a
human target is located. This is particularly useful in disaster
rescue where we critically need to narrow down the search area
for survivors. Note that although our localization algorithm is a
2D model, we can roughly determine the vertical information
of target according to the radiation range of reconfigurable
antenna, which is verified in our pre-experiment. When multi-
ple people scattered at different floors but the same direction,
we can locate each target in turn by flying drones across
different floors.

V. DISCUSSIONS

As the first attempt in applying LoRa signals for sensing,
there is room for improvement and further work. We discuss
a few issues here.

Non-moving target localization. We are able to detect
non-moving human target through sensing his/her respiration
or in-place activities such as waving. Note that the sensing
range of through-wall respiration sensing is still limited, since
the signal attenuation caused by walls is significant and the sig-
nal variation induced by respiration movement (around 5 mm
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chest displacement) is small and can easily be buried in noise.
We plan to explore the feasibility of utilizing beamforming
technology [26], [63], [70] to amplify the weak reflected signal
to increase the respiration sensing range in the future. Careful
signal processing with an antenna array is another promising
direction to increase the sensing range as demonstrated in
Farsense [67].

Target localization with device movements. In this paper,
we can localize the target with a single pair of transceiver when
the target is moving. Note that our system cannot localize the
target when the LoRa device is also moving. This is because
we remove the dynamic multipath interference based on the
fact that dynamic multipath reflected twice is much weaker
than direct target-reflected signal. If the transmitter/receiver is
also moving, the original static path will also become dynamic
path, which may be stronger than the direct target-reflected
signal and then we cannot get rid of the effect of dynamic
multipath in this case, resulting in large localization errors.

Multiple-target localization. In multiple-target scenario,
we can identify the number of targets from the composition
signal, but we cannot perform multi-target localization under
the current restricted conditions. Localizing multiple target
means we need to match multiple peaks from the PSD map
to multiple targets. However, it is very challenging to pick
multiple useful peaks under the severe interference of dynamic
multipath with a single transmitter-receiver pair and a limited
channel bandwidth. In our future work, we plan to employ an
antenna array to focus the transmission power at one direction
and also exploit the blind signal separation algorithm [18], [65]
to spatially separate mixed signals for multi-target localization.

Despite these limitations, WIDESEE moves an important
step toward enabling wide-area contactless sensing. We believe
WIDESEE provides valuable reference for future research in
this field.

VI. RELATED WORK

Our work is broadly related to the literature in two areas.

A. Human Activity Recognition
Computer-vision-based human activity sensing techniques

have enabled mature applications. For instance, Kinect [8]
and Leap Motion [3] can achieve fine-grained human gesture
tracking. However, these systems are sensitive to lighting
condition and the monitoring angle and cannot work when the
target is blocked or behind a wall. Infrared camera [35], [52] is
insensitive to light and can achieve long-range sensing. How-
ever, it still cannot penetrate obstacles like walls. Wearable
sensor-based solutions overcome the above limitations [15],
[22], [33] but still bring in inconvenience to users as they
require instrumenting the users. It would be unrealistic to
assume every target has a working wearable in emergencies.

Compared to vision or wearable-based solutions, wireless-
signal-based human activity recognition systems can penetrate
walls and do not require the user to carry or wear a device.
Typically, the UWB radar achieves accurate through-wall
sensing based on the large bandwidth (i.e., several GHz) and
narrow beam [36], [37], but the cost of specialized equipment

that supports wall penetration is expensive. Early work in
this area use multiple Wi-Fi transceiver pairs to construct
a 3D lattice of wireless links to identify the presence of
human movements [50]. Later works try to use a single device
equipped with multiple antennas to realize activity recogni-
tion. For example, WiSee can differentiate nine commonly
seen body gestures with the help of machine learning tech-
niques [48]. The effectiveness of the learning based methods
depends on the quality of the training data. On the other
hand, obtaining high quality training data remains costly and
non-trivial. For example, CrossSense [25] requires collecting
thousands of samples to learn a single activity recognition
model at one given environment. WIDESEE avoids the pitfalls
of a learning-based approach by developing analytical models
for activity recognition. It requires significantly less effort
for collecting data samples and can be portable to different
environments.

Recent studies also show it is possible to sense the respira-
tion [9], [17], [20], [64], [71], [72], heart rate [9], or even emo-
tion [42] using wireless signals. However, prior approaches
only work at a small scale (e.g., the room-level) and would
require dense deployment to work on a large area. WIDESEE

builds upon these past foundations of human activity model-
ing, to extend the scope of contactless human sensing for wide
areas with a LoRa transceiver pair. Our work aims to close the
gap of wireless sensing for disaster rescue in the urban areas,
as well as terrorist search and security surveillance.

B. Indoor Localization and Tracking

There is an intensive body of work in localizing and tracking
objects [11], [12], [24], [57], [60], [70]. Prior work can be
broadly grouped into two categories: device-based and device-
free approaches.

A device-free approach has the advantage of not requiring
the end-user to carry a device. By lifting the limitation of car-
rying a device, device-free methods can target a wider range of
applications when compared to the device-based counterparts.
WIDESEE thus follows a device-free (contactless) approach.

Target localization and tracking can be realized through a
range of wireless signal characteristics, including AoA [24],
[34], ToF [10], [33], [40], and the signal attenuation [31].
An attenuation-based approach is simple and cost-efficient, but
it suffers from poor localization accuracy (especially in non-
line-of-sight conditions) – due to additional signal attenuation
resulted from obstacles and severe amplitude fluctuation due
to rich multipath indoors. Methods using phase information
such as AoA-based localization can effectively separate mul-
tipaths, and a good resolution and accuracy would require a
large antenna array at the receiver. ToF-based methods are
not ideal either, because they are limited by the frequency
bandwidth. More recent attempts leverage SAGE algorithm
to jointly estimate multi-dimensional Wi-Fi link parameters
for tracking [47], [65], while these systems still require
multiple antennas at the receiver. In contrast, Learning based
target localization algorithm [13], [58], [62] can overcome the
multipath limitation of model based localization approaches,
while it requires astronomic amount of training that comes at
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high human cost. In addition, most of the existing technologies
focus on room-scale tracking range due to the limited range
of signal itself.

WIDESEE is the first attempt to realize contactless
wide-area sensing with a single LoRa transceiver pair. It does
so by combing the long-communication LoRa signal and the
mobility of the drone. However, achieving the goal requires
overcoming two challenges: (1) the serve multipath effects
when using single LoRa transceiver pair, and (2) the hurdle
for not having available phase or ToF information on LoRa.
Inspired by [32], [46], WIDESEE extracts direction-related
information from amplitude measurements for localization,
but it advances prior work by relying on a single instead of
multiple transceiver pairs. WIDESEE employs a set of new
algorithms to remove the localization ambiguity caused by
one transceiver pair. WIDESEE also leverages and refines
existing multipath removal methods [61]. The result is a
promising solution using a single transceiver pair for wide-area
contactless sensing, which could potentially open up many
new research opportunities.

VII. CONCLUSION

This paper has presented WIDESEE, a hardware-software
system that can perform wide-area wireless sensing using
just one transceiver pair. WIDESEE utilizes LoRa signals
to achieve better through-wall penetration and larger sens-
ing range. To further widen the sensing area, WIDESEE

employs drones to carry the transceiver to improve the sens-
ing coverage. The combination of single LoRa transceiver
pair and device mobility, however, brings new challenges of
severe interference and sensing ambiguities (e.g., localization).
To address these challenges, we design a set of techniques
at the hardware and software layers, which can be applied
to many wireless sensing applications. We believe WIDESEE

moves an important step towards wide-area wireless sensing,
and is highly attractive in real-world emergency scenarios like
disaster rescue and terrorist search.
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